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Abstract: Dementia is a cognitive impairment that poses a global threat. Current dementia treatments
slow the progression of the disease. The timing of starting such treatment markedly affects the effec-
tiveness of the treatment. Some experts mentioned that the optimal timing for starting the currently
available treatment in order to delay progression to dementia is the mild cognitive impairment stage,
which is the prior stage of dementia. However, medical records are typically only available at a later
stage, i.e., from the early or middle stage of dementia. In order to address this limitation, this study
developed a model using national health information data from 5 years prior, to predict dementia
development 5 years in the future. The Senior Cohort Database, comprising 550,000 samples, were
used for model development. The F-measure of the model predicting dementia development after
a 5-year incubation period was 77.38%. Models for a 1- and 3-year incubation period were also
developed for comparative analysis of dementia risk factors. The three models had some risk factors
in common, but also had unique risk factors, depending on the stage. For the common risk factors,
a difference in disease severity was confirmed. These findings indicate that the diagnostic criteria
and treatment strategy for dementia should differ depending on the timing. Furthermore, since the
results of this study present new dementia risk factors that have not been reported previously, this
study may also contribute to identification of new dementia risk factors.

Keywords: dementia early prediction; machine learning; medical records; mild cognitive impairment
prediction; senior cohort

1. Introduction

With the aging of the population, early diagnosis and timely treatment of dementia are
among the key focus areas in medicine. Early treatment of dementia can slow the disease
progression, whereas a delay in treatment leads to reduced efficacy of medication and
shortens the period during which the patient can benefit from the effect of treatment [1].
It has been concluded that the earliest point of diagnosis at which treatment is effective
is mild cognitive impairment (MCI), which is considered to represent the early stage of
dementia [2]. MCI refers to a state in which the patient experiences a decline in short-term
memory, with forgetfulness regarding recent events, but with no significant impairment
in everyday functioning [3]. Given that taking early preventive measures at the stage of
MCI delays the progression to dementia, researchers have increasingly emphasized the
importance of early prediction of MCI [4].

Several studies have developed techniques for the early diagnosis of dementia based
on brain magnetic resonance imaging (MRI), which has presented excellent performance,
with area under the ROC curve (AUC) values of 98% for Alzheimer’s disease and 87% for
MCI in a previous study [5]. Positron emission tomography (PET), the most commonly
employed neuroimaging tool for dementia diagnosis, can demonstrate neurometabolic
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changes and the presence of amyloid β, a dementia-related protein in the brain. However,
this modality is expensive to perform, and requires ionizing radiation, as well as installation
of special equipment, thus limiting its clinical utilization [4–6]. Brain magnetic resonance
imaging (MRI) scans are cost-effective relative to PET scans and have the advantage of not
involving radiation exposure. However, its diagnostic performance has been limited to
late-stage dementia and is less effective in the early detection of the disease.

The collection of neuroimaging data described above has practical difficulties [7]. How-
ever, in Korea, the National Health Insurance Service (NHIS) which manages healthcare
information for the whole Korean population, stores and manages such data, consequently,
no additional time and effort is required for data collection. In addition, the NHIS data are
not obtained using a cross-sectional survey of short-term analysis for a small group, but
consists of cohort-type data. Most previous studies using NHIS data have focused on the
association between a single disease and dementia, and few studies have investigated the
causes of dementia by considering multiple factors [7–9].

Moreover, examinations and tests in patients who show that abnormal behavior along
with memory impairment are generally not performed in the early stage of MCI, but rather
in the later stage of MCI or when dementia has already developed [3,4]. Consequently,
most existing dementia prediction studies based on NHIS data in fact report predictions of
mild dementia, rather than early prediction in the true sense. Neurodegenerative disorders,
which cause dementia, have been reported to have an onset approximately 20 years before
dementia onset, while the onset of MCI occurs about 5 years prior to dementia onset [2–4].
If the characteristics of MCI patients can be identified early and if this information can be
used for prediction of risk of further progression to dementia in the distant future, it would
be of significant use in early diagnosis.

Therefore, in this study, we aimed to develop a model for predicting the risk of
dementia development, 5 years in the future, during the true early stage of MCI, using
machine learning. We used the NHIS health information data, assessed a wide range of
factors when training the model, and retained only predictors with a significant effect in
the final prediction model.

2. Materials and Methods
2.1. Data Source

The NHIS is a quasi-governmental organization responsible for the public health of
the whole Korean population, and it manages and operates the National Health Insurance
(NHI), which protects the general public against the risk of disease, and the Long-Term Care
Insurance, which aims to ensure a comfortable life in old age [10]. According to the NHIS,
the number of Koreans covered by the NHI in 2019 was 51,391,447. Given the registered
number of residents in Korea, this number indicates that almost all Koreans are covered by
the NHI, and that the NHIS database is representative of the total population of Korea [11].
In addition, the NHIS operates the National Health Insurance Sharing Service (NHISS),
which supports policy and academic research using the national health information data.
The Sample Research Database (DB) held by the NHISS includes standardized and de-
identified datasets for use by academic research by sampling high-demand data from the
pool of big data of the NHIS [12,13]. There are five types of DBs: The Sample Cohort
DB, Medical Check-up Cohort DB, Senior Cohort DB, Infant Medical DB, and Working
Women DB. Among these DBs, the Senior Cohort DB was used in this study for prediction
of dementia.

The Senior Cohort DB is a research dataset constructed to support research targeting
older individuals [10,11]. In 2002, 10% of the 5.5 million subjects aged 60 years or older,
who were eligible for NHI coverage or medical aid, were sampled using simple random
sampling, resulting in construction of a database of about 550,000 older people from the
Korean population [14]. The data in this database are in cohort format and represent
a 14-year data collection period (2002–2015). In this study, data from a 12-year period
(2002–2013) within this 14-year period were used. The Senior Cohort DB consists of the
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Participant Insurance Eligibility DB (PIE-DB), Medical Treatment DB (MT-DB), General
Health Examination DB (GHE-DB), Medical Care Institution DB (MCI-DB), and Long-term
Care Insurance DB (LCI-DB). The PIE-DB contains sociodemographic information, such as
sex, age, and income level, and the MT-DB contains information on diseases for which the
senior subjects have been treated through hospital visits. The GHE-DB contains the main
outcomes of health examination and lifestyle data collected by an interview. The MCI-DB
contains information on the current status of long-term care institutions, and the LCI-DB
contains information related to the application and use of long-term care services by older
people. All DBs can serve as instrumental information for predicting dementia. However,
in this study, only the PIE-DB and MT-DB were used, since the main focus of the research
was on identifying risk factors causing dementia.

2.2. Study Population

To develop a model for predicting dementia 5 years in the future (the 5-year incubation
period model), which was the key objective of this study, models for predicting dementia
after 1 and 3 years (the 1- and 3-year incubation period models, respectively) were also
developed for comparison against the 5-year incubation period model. The incubation
period used in this study refers to the time during which the patient is in the MCI stage,
before being diagnosed with dementia. The 2007–2012 data were used for training of each
prediction model, and dementia status was determined using the data from 2013. In other
words, in constructing the dataset of all incubation period models, 2-year hospital records
were used. The 5-year incubation period model used hospital records from 2007–2008,
the 3-year incubation period model used hospital records from 2009–2010, and the 1-year
incubation period model used hospital records from 2011–2012 for model training.

Next, there were two inclusion criteria for constructing the dataset. First, only patients
with records of treatment at least once in each year from 2007 to 2013 were included in
the dataset. This criterion was established to track how the medical records changed
before 2013, when the patient was diagnosed with dementia. The second criterion was that
patients who had never been diagnosed with dementia from 2007 to 2012 were included
in the dataset. Since the model was aimed at prediction of MCI, use of data from healthy
subjects in the same period of observation was required. Samples of data satisfying both of
these criteria were used to construct the dataset. The process of class assignment for the
healthy group and the dementia group in constructing the gold standard is described in
detail in Section 2.3. When the data class assignment was completed, the gold standard
to be used for modeling was finally determined. Figure 1 describes the process of dataset
construction and the number of data points per case for the 5-year incubation period model.

2.3. Gold Standard

The gold standard datasets are the datasets used for training the model. First, feature
sets were constructed for each model using data from 2007 to 2012. Next, the healthy group
and the dementia group were classified based on the dementia diagnosis status in the
principal and secondary diagnostic features in the MT-DB, according to 2013 data. The
principal diagnosis and secondary diagnosis columns were based on the code system of
Korean Standard Classification of Diseases (KCD), which was established in consideration
of Korean circumstances, based on the International Classification of Diseases published by
the World Health Organization [15]. The revision of the disease classification of the KCD is
ongoing, and since this study used data from 2002 to 2013 for the analysis, the 6th edition
of the KCD was used [16]. The disease classification consists of a systematic classification
system (major group, sub-major group, minor group, detailed group, and sub-detailed
group), and diseases are classified into sub-detailed groups in the Senior Cohort DB. For
classification into dementia groups, five types of detailed group classification codes, which
are “Dementia in Alzheimer’s disease (F00)”, “Vascular dementia (F01)”, “Dementia in
other diseases classified elsewhere (F02)”, “Unspecified dementia (F03)”, and “Alzheimer’s
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disease (G30)”, were used. These codes, which have been used in several previous studies
on dementia, were used in the classification in this study (Table 1) [10,11,17].
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Table 1. Dementia classification code.

Code Diagnosis

F00 Dementia in Alzheimer’s disease
F00.0 Dementia in Alzheimer’s disease with early onset
F00.1 Dementia in Alzheimer’s disease with late onset
F00.2 Dementia in Alzheimer’s disease, atypical, or mixed type
F00.9 Dementia in Alzheimer’s disease, unspecified
F01 Vascular dementia

F01.0 Vascular dementia of acute onset
F01.1 Multi-infarct dementia
F01.2 Subcortical vascular dementia
F01.3 Mixed cortical and subcortical vascular dementia
F01.8 Other vascular dementia
F01.9 Vascular dementia, unspecified
F02 Dementia in other diseases classified elsewhere

F02.0 Dementia in Pick’s disease
F02.1 Dementia in Creutzfeldt Jakob disease
F02.2 Dementia in Huntington’s disease
F02.3 Dementia in Parkinson’s disease
F02.4 Dementia in human immunodeficiency virus (HIV) disease
F02.8 Dementia in other specified diseases classified elsewhere
F03 Unspecified dementia
G30 Alzheimer’s disease

G30.0 Alzheimer’s disease with early onset
G30.1 Alzheimer’s disease with late onset
G30.8 Other Alzheimer’s disease
G30.9 Alzheimer’s disease, unspecified

2.4. Sociodemographic Features

Sociodemographic features included sex, age, region of residence, health insurance
type, household income level, and disability registration information. Additionally, the
educational level was used and consisted of seven features. Participants were classified
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into six age groups, defined at intervals of 5 years from the age of 65 years. The region of
residence was divided into 16 districts according to administrative districts, which have
been reorganized into urban and rural. The health insurance type was classified into
three categories. Household income level was classified into 11 levels, which have been
reorganized into three groups. As for disability registration information, levels 1–2 of severe
disability and levels 3–6 of minor disability were assigned to separate categories (Table 2).
A number of studies have presented educational level as a dementia risk factor, and have
found that a lower educational level was associated with a higher risk of dementia [18,19].
In this study, an educational level feature, which is not included in the Senior Cohort DB,
was created, in addition to the existing features of the health insurance type and household
income level.

Table 2. Feature engineering on categorical data.

Feature Value

Region of residence
(1) Seoul, Busan, Daegu, Incheon, Gwangju, Daejeon, and Ulsan, (2) Gyeonggi, Gangwon,
Chungcheongbuk, Chungcheongnam, Jeollabuk, Jeollanam, Gyeongsangbuk,
Gyeongsangnam, and Jeju

Health insurance type (1) Medical aid beneficiaries, (2) Locally-provided NHI policy holders,
(3) Employment-based NHI policy holders

Household income level (1) 0 to 3rd deciles, (2) 4th to 7th deciles, (3) 8th to 10th deciles

Disability registration information (1) Normal, (2) Levels 1–2 of severe disability and levels 3–6 of minor disability

2.5. Disease Severity Classification Algorithm

In this study, an algorithm for classifying disease severity was developed. Most of the
existing techniques in previous studies considered the cumulative incidence as the number
of disease occurrences over a certain period among those who were likely to develop the
disease during the observation period, using only hospital records, without a severity
analysis. In the present study, the disease was analyzed based on the date of prescription
and the features were constructed in consideration of disease severity. Figure 2 describes
the flowchart of the disease severity classification algorithm.
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First, since the classification system of diseases based on sub-detailed group classifica-
tion involves excessively detailed classification for analysis, it was processed into sub-major
group classification. Consequently, 215 disease features were generated using the disease
diagnosis code. Second, the severity of each disease was calculated using the “date of
prescription” and the “total number of prescription days for 2 years” features, without
duplication in the process. Third, since this approach does not reflect differences in the
characteristics of the disease, the study reflected the disease characteristics according to the
time of onset, and divided the disease into acute and chronic conditions. If the classification
was based on chronic diseases with a relatively long treatment period, the effect of the
diseases with a short treatment period was reduced [20]. To develop rules through which
the diseases could be classified into acute and chronic conditions, criteria were established
based on the distribution map. If the number of cases with a total number of prescription
days of 11 days or longer was ≤3000, the disease was classified as an acute disease, and
if it was >3000, the disease was classified as a chronic disease. Although there was no
clear consensus in the medical research community in terms of classification between acute
and chronic diseases, the criteria created in this study were compared with those of some
published major chronic diseases for validation [21–24]. This comparison confirmed that
all published chronic diseases were included in the chronic disease classification used in
this study. Finally, to analyze the change in disease severity between the 5-year incubation
period model and the 1- and 3-year incubation period models, each disease’s severity
was divided into four stages: “Preclinical,” “minor,” “severe,” and “critical.” Based on
the period of 2 years, “preclinical” (0 days) for acute disease indicated a case without
any treatment, and “minor” (1–7 days) indicated a case of a once-off treatment or treat-
ment within 1 week. “Severe” (8–30 days) indicated treatment for 1 month, and “critical”
(≥31 days) indicated treatment for more than 1 month. For chronic diseases, “preclinical”
(0 days) indicated a case of no treatment experience, “minor” (1–30 days) indicated that
the patient had been prescribed medication for 1 month, “severe” (31–210 days) indicated
that the patient had been prescribed medication for half a year, while “critical” (≥211 days)
indicated a case of treatment for ≥1 year (Table 3). Accordingly, by converting the total
number of prescription days (data in numbers) into categorical data, we created the criteria
for disease severity classification.

Table 3. Classification of disease’s severity.

Stage Acute Disease (Day) Chronic Disease (Day)

Preclinical 0 0
Minor 1–7 1–30
Severe 8–30 31–210
Critical ≥31 ≥211

2.6. Feature Selection

In the process of machine learning, not all features represent important information.
It is necessary to remove redundant and irrelevant variables from the data and select only
the input variables that are closely related to the target variable [25]. There are various
methods of feature selection, depending on the methods of machine learning. Supervised
learning mainly uses the filter method and the wrapper method [26]. The filter method
measures the relevance of features by correlation with the dependent variables. In contrast,
the wrapper method creates a set of optimized features by performing continuous tests on
feature subsets. In this study, there were seven sociodemographic variables and 215 disease
variables. We used the wrapper method, since identification of the best feature combination
is required in datasets with numerous features. The wrapper method includes forward
selection, backward elimination, and stepwise selection. Forward selection starts with no
variables and adds the most important variable at every iteration step of the modeling.
This process is repeated until there is no further improvement in model performance.
Backward elimination starts with all variables and removes the least significant variable,
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one by one, to improve the performance of the model. Stepwise selection is a combination
of forward selection and backward elimination. Using all three types of feature selection
methods, the significance level was set to 0.05 and only variables whose p-value was less
than or equal to the set significance level were selected. In this study, the input variables
were constructed as the combination of features obtained using all three methods rather
than only one method. Consequently, the number of features constituting each incubation
period model decreased with the increase in time from the year of dementia diagnosis
(Table 4).

Table 4. The number of features composed for each incubation period model.

Method IP 1-Year IP 3-Year IP 5-Year

Forward selection 32 29 22
Backward elimination 38 32 23

Stepwise selection 36 29 23
Features finally used 39 32 25

Abbreviations: IP: Incubation Period.

3. Results and Discussion
3.1. Modeling

In this section, the characteristics of the three algorithms that showed the best perfor-
mance among various classification models, i.e., random forest, support vector machine
(SVM), and multi-layer perceptron (MLP), are outlined. First, with the random forest algo-
rithm, random sampling of data is performed in a given dataset to make multiple decision
trees. Based on the prediction result of each decision tree, the final prediction is determined
by a majority vote [27,28]. Therefore, the random forest is a combination of several decision
trees and can avoid overfitting. Moreover, the algorithm shows high stability [28]. In this
study, 200 decision trees were generated in the 5-year incubation period model for analysis.
Second, the SVM classifies data that are difficult to distinguish in two dimensions using hy-
perplanes in a finite dimensional space [29]. Accurate classification and prediction of data
are achieved through a hyperplane with a margin that maximizes the separation between
data from a given dataset that needs to be classified [30]. Even when linear classification
of the data is not possible with the SVM method, nonlinear classification of data can be
performed using a kernel function. In this study, SVM classification was performed using
the radial basis function kernel, a nonlinear kernel function, in the 5-year incubation period
model. Third, the MLP algorithm uses the back propagation algorithm that reflects the
difference between the target value and the output value in the hidden layer and adjusts
the weight for training a neural network [31]. The accuracy improves with iteration of this
process, and thus the number of epochs has a significant impact on the performance. In
this study, two hidden layers were created in the 5-year incubation period model and 26
and 22 nodes were assigned to each layer. Additionally, a hyperbolic tangent function was
used as the activation function in both hidden layers.

The random forest is the simplest to use, and shows excellent performance and can
appropriately identify a robust model. The SVM is also an excellent approach that has
been sufficiently verified and presents excellent classification performance, regardless of
the size or complexity of the data. On the other hand, the MLP does not require as much
attention to feature engineering as other approaches, but it is more suitable for processing
relatively large amounts of data with complex processing, such as image classification and
speech recognition.

Prior to modeling with a machine learning algorithm, the data distribution between
the healthy group and dementia group was imbalanced, which needed to be addressed
first [32]. When prediction is performed with imbalanced sets of data, overfitting may occur.
This is due to the fact that the model attempts to predict classes with higher weights. Thus,
precision may be increased, but the recall of classes with small distributions is decreased.
Methods for resolving data imbalance include oversampling and undersampling. In
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this study, random undersampling was performed with the healthy group data with
high distribution to balance the number of cases between the healthy group and the
dementia group.

Data that have undergone all processing can be divided into training and test data,
but if this process is performed alone, overfitting may also occur [33]. This is due to the fact
that, when the evaluation is performed with fixed training and test datasets, the model is
compelled to produce a biased outcome in which the optimal performance is achieved only
for the test data. In this study, to address this problem, stratified K-fold cross-validation
was used to create 10-fold cross-validation, and the performance of the algorithm was
evaluated. In addition, to improve model performance, hyper-parameter optimization was
performed using a grid search.

3.2. Performance Measures

The proposed approach evaluates the models by five measures as follows: Precision,
recall, F-measure, accuracy, and AUC. If a healthy case is classified as a dementia case, it can
be re-assigned as a healthy case by performing additional tests, but when a dementia case
is incorrectly classified as a healthy case, the appropriate treatment timing may be missed.
In this regard, recall, precision, and accuracy are important indicators in the problem of
disease prediction [34]. The F-measure, an index that considers both precision and recall,
is obtained by calculating the harmonic mean of precision and recall. In our study, the
F-measure was determined by adjusting the threshold so that the recall and precision
values did not exhibit bias to one side. The AUC refers to the area under the ROC curve,
which is a graph showing the performance of a classification model at all thresholds [35].
The equations of the evaluation measures are as follows:

Precision =
DD

HD + DD
(1)

Recall =
DD

DH + DD
(2)

Accuracy =
HH + DD

HD + HH + DD + DH
(3)

F − measure =
2 × Precision × Recall
(Precision + Recall)

(4)

where HH: Healthy classified as healthy, HD: Healthy classified as dementia, DD: Dementia
classified as dementia, DH: Dementia classified as healthy.

3.3. Evaluation Results

Among the performance indicators used in the classification model, this study used
the F-measure as the main performance indicator of the model under evaluation. As a
result of the experiments outlined in Table 5, the best F-measure performance was obtained
when the random forest algorithm was used in all incubation period models.

The random forest method is optimized for imbalanced data, as compared to the SVM,
and thus it performed a more accurate prediction with the algorithm, which was more
favorable to the overfitting problem. Furthermore, since forward propagation is sufficient
for NHIS health information data without the need for back propagation, the performance
with MLP modeling was slightly lower than that of other algorithms.

Each incubation period model showed good prediction performance, in the order of
the 1-, 3-, and 5-year incubation period. The 5-year incubation period model, predicting
a more distant future, yielded an F-measure of 77.38%, and the 1-year incubation period
model, predicting the near future, produced an F-measure of 90.71%. Although the results
of the distant future prediction model naturally showed lower performance than the near
future model, it yielded encouraging results. This indicated that dementia can be predicted
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with high accuracy, even when only NHIS health information data from 5 years earlier are
used for prediction of the stage of MCI.

Furthermore, to show the validity of the acute and chronic classification method
applied to the disease severity classification algorithm, the model’s performance was
compared before and after disease classification using data from the 5-year incubation
period model. Table 6 shows that the F-measure value was improved by 2.26% when the
classification algorithm was applied. Thus, higher predictive performance can be achieved
when a model is developed considering the characteristics of the disease, rather than only
the number of days of prescription.

Table 5. Performance with application of the machine learning algorithms to each incubation period model.

Incubation
Period Classifier Precision

(%)
Recall

(%)
Accuracy

(%)
F-Measure

(%)
AUC
(%)

1-year
RF 87.08 94.65 90.32 90.71 95.17

SVM 89.78 90.05 89.90 89.86 95.68
MLP 87.86 91.97 89.65 89.87 94.21

3-year
RF 73.55 89.30 78.63 80.66 85.37

SVM 79.34 78.64 79.04 78.93 86.58
MLP 74.07 86.96 78.30 80.00 84.81

5-year
RF 75.88 78.93 76.96 77.38 81.76

SVM 73.67 76.13 74.49 74.79 82.19
MLP 71.39 82.61 74.79 76.59 81.77

Note: The F-measure values shown in bold indicate the method with the best performance. Abbreviations: RF: Random Forest; SVM:
Support Vector Machine; MLP: Multi-Layer Perceptron; AUC: Area Under the ROC Curve.

Table 6. Comparison of the performance of the 5-year incubation period model before and after the disease classification.

Classifier Disease
Classification

Precision
(%)

Recall
(%)

Accuracy
(%)

F-Measure
(%)

AUC
(%)

Random forest
Before 72.22 78.26 74.12 75.12 80.81

After 75.88 78.93 76.96 77.38 81.76

3.4. Important Features

To investigate the importance of features for each incubation period model, permuta-
tion feature importance, a commonly used method, was adopted in this study. Permutation
feature importance is a method of determining the importance of a feature according to how
much it affects performance loss when the feature is not included in the model [36]. The
feature importance was examined when the random forest algorithm, the algorithm with
the highest performance among the three machine learning methods, was used. Table 7
presents dementia risk factors and their ranking for each incubation period model. The
number in parentheses in front of each dementia risk factor in the table indicates the rank-
ing of the dementia risk factor: The higher the ranking (the closer the ranking value is to 1),
the more important is the feature. As the incubation period increased from 1 to 5 years, the
number of extracted risk factors decreased. This indicated that, as the year of dementia
diagnosis approached, the number of abnormal symptoms increased, resulting in more
risk factors. However, in the prediction of a more distant future, there are fewer abnormal
symptoms that can be identified, and consequently fewer risk factors are identified.

Nevertheless, there were features that were common among the models, as well as
those that differed among the models. Table 8 shows only the non-overlapping factors of
the 1- and 5-year models. Considering these factors, the appropriate treatment will need to
be provided timeously for each period.

Risk factors that have not been identified in previous studies and are newly presented
in this study are outlined in Table 9. To determine the publication status in the previous
studies, the Named Entity Recognition (NER) method, developed in the biomedical domain,
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was used [37]. The NER method is a tool that recognizes disease, gene/protein, DNA/RNA,
drug, compound, and symptoms, and was shown to have an F-measure of 71.37% in a
previous study. We performed NER on all relevant papers identified in PubMed. If
the terms “Dementia” or “Alzheimer” and the risk factor candidates proposed in this
study appeared together in one paragraph, it was determined as a previously identified
risk factor. In this manner, although the risk factors that have been identified as newly
proposed predictors of dementia require further verification, the method proposed in this
study simplifies and shortens the process of discovering new dementia risk factors.

Table 7. Dementia risk factors according to the incubation period of models.

Incubation Period Dementia Risk Factors and Ranking

1-year

(1) Organic, including symptomatic mental disorders, (2) Age, (3) Hypertensive diseases, (4) Diseases of
oesophagus, stomach, and duodenum, (5) Acute upper respiratory infections, (6) Soft tissue disorders,
(7) Other acute lower respiratory infections, (8) Metabolic disorders, (9) Sex, (10) Disorders of lens,
(11) Cerebrovascular diseases, (12) Disorders of conjunctiva, (13) Dermatitis and eczema, (14) Educational
level, (15) Mood (affective) disorders, (16) Health insurance type, (17) Mycoses, (18) Other diseases of the
urinary system, (19) Osteopathies and chondropathies, (20) Diseases of liver, (21) Diseases of inner ear,
(22) Cerebral palsy and other paralytic syndromes, (23) Abnormal findings on diagnostic imaging and in
functional studies, without diagnosis, (24) Polyneuropathies and other disorders of the peripheral nervous
system, (25) Injuries to the head, (26) Injuries to the hip and thigh, (27) Noninfective enteritis and colitis,
(28) Aplastic and other anemias, (29) Disease Name of Oriental Medicine, (30) Mental and behavioral
disorders due to psychoactive substance use, (31) Other bacterial diseases, (32) Pediculosis, acariasis, and
other infestations, (33) Sequelae of infectious and parasitic diseases, (34) Abnormal findings on examination
of urine, without diagnosis, (35) Demyelinating diseases of the central nervous system, (36) Poisoning by
drugs, medicaments, and biological substances, (37) Inflammatory diseases of the central nervous system,
(38) Disease of appendix, (39) Other congenital malformations of the digestive system.

3-year

(1) Age, (2) Organic, including symptomatic mental disorders, (3) Sex, (4) Acute upper respiratory infections,
(5) Other acute lower respiratory infections, (6) Diseases of oesophagus, stomach, and duodenum,
(7) Metabolic disorders, (8) Disorders of eyelid, lacrimal system, and orbit, (9) Disorders of conjunctiva,
(10) Household income level, (11) Osteopathies and chondropathies, (12) Mycoses, (13) Mood (affective)
disorders, (14) Injuries to the thorax, (15) Injuries to the head, (16) Other degenerative diseases of the
nervous system, (17) Persons with potential health hazards related to family and personal history and
certain conditions influencing health status, (18) Human immunodeficiency virus (HIV) disease,
(19) Disorders of thyroid gland, (20) Noninfective enteritis and colitis, (21) Cerebral palsy and other paralytic
syndromes, (22) Abnormal findings on examination of urine, without diagnosis, (23) Disability registration
information, (24) Disorders of skin appendages, (25) Urolithiasis, (26) Symptoms and signs involving the
nervous and musculoskeletal systems, (27) Persons encountering health services in other circumstances,
(28) Mental and behavioral disorders due to psychoactive substance use, (29) Disease pattern/syndrome of
Oriental Medicine, (30) Hernia, (31) Persons with potential health hazards related to communicable diseases,
(32) Systemic connective tissue disorder.

5-year

(1) Age, (2) Organic, including symptomatic mental disorders, (3) Educational level, (4) Sex, (5) Acute upper
respiratory infections, (6) Dorsopathies, (7) Metabolic disorders, (8) Disorders of thyroid gland, (9) Disorders
of conjunctiva, (10) Disorders of lens, (11) Region of residence, (12) Mood (affective) disorders,
(13) Extrapyramidal and movement disorders, (14) Diabetes mellitus, (15) Cerebral palsy and other paralytic
syndromes, (16) Other degenerative diseases of the nervous system, (17) Noninflammatory disorders of
female genital tract, (18) Abnormal findings on examination of blood, without diagnosis, (19) Persons
encountering health services for examination and investigation, (20) Persons encountering health services in
other circumstances, (21) Injuries to unspecified parts of trunk, limb, or body region, (22) Schizophrenia,
schizotypal, and delusional disorders, (23) Visual disturbances and blindness, (24) Mental and behavioral
disorders due to psychoactive substance use, (25) Pediculosis, acariasis, and other infestations.



Int. J. Environ. Res. Public Health 2021, 18, 9223 11 of 15

Table 8. Dementia risk factors showing differences between the 1- and 5-year incubation period models.

Incubation Period Dementia Risk Factors and Ranking

1-year

(1) Hypertensive diseases, (2) Diseases of esophagus, stomach, and duodenum, (3) Soft tissue disorders,
(4) Other acute lower respiratory infections, (5) Cerebrovascular diseases, (6) Dermatitis and eczema,
(7) Health insurance type, (8) Mycoses, (9) Other diseases of the urinary system, (10) Osteopathies and
chondropathies, (11) Diseases of liver, (12) Diseases of inner ear, (13) Abnormal findings on diagnostic
imaging and in function studies, without diagnosis, (14) Polyneuropathies and other disorders of the
peripheral nervous system, (15) Injuries to the head, (16) Injuries to the hip and thigh, (17) Noninfective
enteritis and colitis, (18) Aplastic and other anemias, (19) Disease Name of Oriental Medicine, (20) Other
bacterial diseases, (21) Sequelae of infectious and parasitic diseases, (22) Abnormal findings on examination
of urine, without diagnosis, (23) Demyelinating diseases of the central nervous system, (24) Poisoning by
drugs, medicaments, and biological substances, (25) Inflammatory diseases of the central nervous system,
(26) Disease of appendix, (27) Other congenital malformations of the digestive system.

5-year

(1) Dorsopathies, (2) Disorders of thyroid gland, (3) Region of residence, (4) Extrapyramidal and movement
disorders, (5) Diabetes mellitus, (6) Other degenerative diseases of the nervous system, (7) Noninflammatory
disorders of female genital tract, (8) Abnormal findings on examination of blood, without diagnosis,
(9) Persons encountering health services for examination and investigation, (10) Persons encountering health
services in other circumstances, (11) Injuries to unspecified parts of trunk, limb, or body region,
(12) Schizophrenia, schizotypal, and delusional disorders, (13) Visual disturbances and blindness.

Table 9. Newly identified dementia risk factors by the incubation period model.

Incubation Period Dementia Risk Factors and Ranking

1-year

(6) Soft tissue disorders, (13) Dermatitis and eczema, (16) Health insurance type, (19) Osteopathies and
chondropathies, (23) Abnormal findings on diagnostic imaging and in function studies, without diagnosis,
(26) Injuries to the hip and thigh, (29) Disease Name of Oriental Medicine, (31) Other bacterial diseases,
(32) Pediculosis, acariasis, and other infestations, (33) Sequelae of infectious and parasitic diseases,
(38) Disease of appendix.

3-year

(11) Osteopathies and chondropathies, (14) Injuries to the thorax, (23) Disability registration information,
(24) Disorders of skin appendages, (26) Symptoms and signs involving the nervous and musculoskeletal
systems, (27) Persons encountering health services in other circumstances, (29) Disease pattern/syndrome of
Oriental Medicine, (31) Persons with potential health hazards related to communicable diseases,
(32) Systemic connective tissue disorder.

5-year

(11) Region of residence, (17) Noninflammatory disorders of female genital tract, (18) Abnormal findings on
examination of blood, without diagnosis, (19) Persons encountering health services for examination and
investigation, (20) Persons encountering health services in other circumstances, (21) Injuries to unspecified
parts of trunk, limb, or body region, (25) Pediculosis, acariasis, and other infestations.

3.5. Changes in the Distribution of Common Risk Factors

Even in the case of the common risk factors of the 1- and 5-year incubation period
models, it is judged that there would be differences in disease severity, depending on the
dementia incubation period, and therefore, in order to analyze the disease severity of each
patient, the severity was calculated for all diseases and changes in the distribution of the
number of patients were analyzed. Common risk factors are shown in Table 10, and all
factors were disease-related factors, except for “Age”, “Sex”, and “Educational level”.

Table 10. Common dementia risk factors shared between the 1- and 5-year incubation period model.

Incubation Period Dementia Risk Factors

1- and 5-year

Age, Sex, Educational level, Organic, including symptomatic mental disorders, Cerebral palsy and
other paralytic syndromes, Mood (affective) disorders, Metabolic disorders, Disorders of lens,
Disorders of conjunctiva, Mental and behavioral disorders due to psychoactive substance use,
Pediculosis, acariasis, and other infestations, Acute upper respiratory infections.
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Changes in the severity distribution of chronic disease factors are presented in Table 11.
For “Organic, including symptomatic mental disorders”, “Cerebral palsy and other para-
lytic syndromes”, and “Mood (affective) disorders”, the number of patients with “minor”,
“severe”, and “critical” conditions was increased in the 1-year incubation period model
compared to the 5-year incubation period model. For “Metabolic disorders”, only the
number of “minor” patients showed a slight increase, but there were no other notable
changes. On the other hand, in the case of “Disorders of the lens” and “Disorders of the
conjunctiva”, the number of “preclinical” patients actually increased during this period.
That is, “Organic, including symptomatic mental disorders” showed increasing severity
as the onset of dementia approached, whereas “Disorders of the lens” and “Disorders
of the conjunctiva” showed symptom alleviation. Among the six chronic diseases, “Or-
ganic, including symptomatic mental disorders”, which showed the most rapid change
in symptoms, refers to a type of mental and behavioral disorder and corresponds to a
sub-major group category of the KCD that includes codes F00–F09. Except for the detailed
group classification code that was used to classify the dementia group in the gold standard
creation stage, codes F04–F07 and F09 correspond to “Organic, including symptomatic
mental disorders.” The diseases corresponding to codes F04–07 and F09 include “Organic
amnestic syndrome, not induced by alcohol and other psychoactive substances”, “Delirium,
not induced by alcohol and other psychoactive substances”, “Other mental disorders due
to brain damage and dysfunction and to physical disease”, “Personality and behavioral
disorders due to brain disease, damage, and dysfunction”, and “Unspecified organic or
symptomatic mental disorder”. These five disease factors, together, are determinants that
can increase the prevalence of dementia and should be carefully managed in old age to
prevent and delay dementia onset.

Table 11. Changes in the distribution of chronic diseases among common dementia risk factors.

Stage
Organic, Including Symptomatic

Mental Disorders
Cerebral Palsy and Other

Paralytic Syndromes Mood (Affective) Disorders

IP 5-Year (%) IP 1-Year (%) IP 5-Year (%) IP 1-Year (%) IP 5-Year (%) IP 1-Year (%)

Preclinical 81.0 9.2 96.5 94.9 87.2 81.9
Minor 9.8 52.8 1.9 3.1 8.2 11.4
Severe 4.7 16.4 1.3 1.5 3.3 3.7
Critical 4.5 21.5 0.3 0.5 1.3 3.0

Stage
Metabolic Disorders Disorders of Lens Disorders of Conjunctiva

IP 5-Year (%) IP 1-Year (%) IP 5-Year (%) IP 1-Year (%) IP 5-Year (%) IP 1-Year (%)

Preclinical 85.4 84.2 72.9 87.3 72.3 84.7
Minor 6.7 9.1 22.8 11.5 24.9 14.2
Severe 4.5 4.3 4.0 1.0 2.7 1.1
Critical 3.3 2.4 0.3 0.2 0.1 0.0

Abbreviations: IP: Incubation Period.

Next, changes in the severity distribution of acute disease factors are outlined in
Table 12. “Mental and behavioral disorders due to psychoactive substance use” and
“Pediculosis, acariasis, and other infestations” showed an increase in the number of “minor”
and “severe” patients. On the other hand, “Acute upper respiratory infections” showed
an increase in the number of “preclinical” patients. The distribution of all factors in acute
diseases showed little change as compared to that in chronic diseases.
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Table 12. Changes in the distribution of acute diseases among common dementia risk factors.

Stage
Mental and Behavioral Disorders Due to

Psychoactive Substance Use
Pediculosis, Acariasis, and Other

Infestations
Acute Upper Respiratory

Infections

IP 5-Year (%) IP 1-Year (%) IP 5-Year (%) IP 1-Year (%) IP 5-Year (%) IP 1-Year (%)

Preclinical 99.3 98.3 99.0 97.8 40.9 67.1
Minor 0.3 1.0 0.3 1.0 47.3 27.9
Severe 0.2 0.5 0.5 1.0 11.0 4.9
Critical 0.2 0.2 0.2 0.2 0.9 0.2

Abbreviations: IP: Incubation Period.

Thus, even in the case of these common dementia risk factors, our results confirmed
that the severity levels of chronic and acute diseases differ, depending on the dementia
incubation period. Consequently, our dementia prediction models were developed in
consideration of these changes.

4. Conclusions

In this study, a dementia prediction model was developed using health information
data from the NHIS, in which most of the Korean population have been registered. For
prediction of dementia development in the distant future, data from 5 years previously
in the true early stage of MCI, which is the optimal time for effective dementia treatment,
were used for model development. This is due to the fact that the NHIS health information
data usually record dementia data from the late stage of MCI or early stage of dementia,
which is about 5 years after the early stage of MCI. The main results and applications of
the study are presented as follows.

First, a model for predicting dementia in the distant future (5 years later) was de-
veloped using a machine learning algorithm, which showed promising performance (F-
measure 77.38%) as compared with the performance of the near-future model (1 year later;
F-measure 90.71%). Since the model for predicting dementia with data from 1 year earlier
usually represents the middle or late stage of MCI or the early stage of dementia, more
dementia-related symptoms are present during the early stage of MCI. Consequently, the
performance of a near-future prediction model is naturally high. On the other hand, since
the distant-future model predicted dementia using NHIS health information data from
5 years earlier, a time when symptoms are rare, the performance of the model, although
lower than that of the near-future model, has significant implications.

Second, risk factors affecting dementia prediction were presented in terms of different
incubation periods. Even with common risk factors, it was judged that there would be
differences in the severity of the disease according to the incubation period model, and
thus changes in the distribution of disease severity were analyzed and compared between
models. In this way, information on dementia risk factors and their severity, which are
different for each incubation period model, can be used as the optimal criteria for dementia
treatment according to the relevant period.

Third, new dementia risk factors, indicating a high risk of developing dementia, were
presented, which are different from those that have already been reported to be predictors
of dementia in previous studies. If the clinical applicability of the newly proposed risk
factors are verified, it will be possible to use them as therapeutic targets for early diagnosis
of dementia or development of control methods. The method used here for identification
of novel risk factors are expected to facilitate the discovery process of additional new
dementia risk factors.

Despite these contributions, the current proposed approach has a limitation. It deals
with only the old medical records, so it cannot consider the new environments such as
COVID-19. The classification performance would be improved if the new conditions can
be considered. Therefore, we will make an agreement with several hospitals about the use
of new information for patients and will deal with not only old medical history but also
new environments in the next research.
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This study is representative of the Korean population and identified risk factors for
dementia, according to the incubation period. The findings of this study can be evaluated
as data of instrumental value for treatment of dementia disease. In the future, dementia
risk factors identified for each incubation period that are verified can be used as baseline
data for actual clinical trials. In addition, development of an early dementia prediction
model is planned by additional utilization of a range of NHIS health information data,
such as the GHE-DB, which contains information on the main health examinations that
patients have undergone, and the MCI-DB, which contains information on long-term care
institutions, among the data provided by NHISS.
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