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Edematous severe acute malnutrition is
characterized by hypomethylation of DNA
Katharina V. Schulze 1,2, Shanker Swaminathan1,2, Sharon Howell3, Aarti Jajoo1,2, Natasha C. Lie2,4,

Orgen Brown3, Roa Sadat2, Nancy Hall2, Liang Zhao5, Kwesi Marshall3, Thaddaeus May2, Marvin E. Reid3,

Carolyn Taylor-Bryan3, Xueqing Wang1,2, John W. Belmont 1,2, Yongtao Guan1,2, Mark J. Manary6,7,

Indi Trehan 6,7,8, Colin A. McKenzie3,9 & Neil A. Hanchard 1,2*

Edematous severe acute childhood malnutrition (edematous SAM or ESAM), which includes

kwashiorkor, presents with more overt multi-organ dysfunction than non-edematous SAM

(NESAM). Reduced concentrations and methyl-flux of methionine in 1-carbon metabolism

have been reported in acute, but not recovered, ESAM, suggesting downstream DNA

methylation changes could be relevant to differences in SAM pathogenesis. Here, we assess

genome-wide DNA methylation in buccal cells of 309 SAM children using the 450 K

microarray. Relative to NESAM, ESAM is characterized by multiple significantly hypo-

methylated loci, which is not observed among SAM-recovered adults. Gene expression and

methylation show both positive and negative correlation, suggesting a complex transcrip-

tional response to SAM. Hypomethylated loci link to disorders of nutrition and metabolism,

including fatty liver and diabetes, and appear to be influenced by genetic variation. Our

epigenetic findings provide a potential molecular link to reported aberrant 1-carbon meta-

bolism in ESAM and support consideration of methyl-group supplementation in ESAM.
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Annually, severe acute malnutrition (SAM) directly con-
tributes to nearly one million deaths of children under age
5 globally, and indirectly to millions more1. Despite

concordant micro- and macro-nutrient deficiencies, SAM classi-
cally presents as one of two phenotypically distinct forms—ede-
matous SAM (ESAM), which includes the syndromes of
kwashiorkor and marasmic-kwashiorkor, and nonedematous
SAM (NESAM) or marasmus2,3. NESAM is typically character-
ized by weight loss and wasting, while ESAM is defined by the
presence of bilateral, pitting edema and usually has more overt,
and often more severe, multiorgan dysfunction, including hepatic,
hematopoietic, and gastrointestinal impairment, alongside skin
and hair abnormalities4–7.

Given that ESAM accounts for 50–70% of SAM cases in some
developing countries8, and has different clinical outcomes rela-
tive to NESAM, considerable interest remains in gaining a better
understanding of the underlying molecular pathophysiology2,9.
The divergent SAM phenotypes are not fully explained by
environmental, dietary, or infectious factors7,10–12, despite a
substantial catalog of disparate studies describing biochemical
and physiological differences between the two forms13–16,
including recent reports of quantitative shifts in microbiota17,18.
These observations, however, are subject to reverse causation
and provide an incomplete picture of the broad pathophysio-
logical dysfunction that is the hallmark of ESAM19. Moreover,
despite differences in pathophysiology and clinical outcome, the
treatment of SAM has remained largely unchanged and is the
same regardless of form20–22. Although public health strategies
that address food security remain important to SAM23, such
strategies are notoriously difficult to implement and are sus-
ceptible to volatility in climate and society. A better under-
standing of the underlying molecular pathophysiology of ESAM
could provide additional therapeutic insights that could be used
to further improve outcomes and prevent development of the
condition.

There are no definitive molecular or genetic correlates of acute
childhood ESAM; however, ESAM and NESAM differ bio-
chemically in the flux of constituent metabolites of the 1-carbon
cycle24,25. During steady-state re-feeding, but while still acutely
ill, ESAM patients show a significantly lower concentration of the
essential amino acid methionine with slower methyl-group and
total methionine flux25 in the conversion of methionine to S-
adenosyl-methionine (SAM-e). SAM-e is the major source of
methyl groups required for the methylation of cellular

components, including the methylation of DNA26–28 during
mitosis. These differences in 1-carbon metabolism between
ESAM and NESAM, however, are not observed after recovery
from SAM, implying that nutritional and dietary recovery
involves a reversal of the biochemical changes observed during
the acute illness. While previous studies have shown altered DNA
methylation in individuals with a history of severe acute mal-
nutrition more generally29,30, none compared DNA methylation
between the edematous and nonedematous forms of SAM, par-
ticularly during acute disease. Since the phenotypic differences
that characterize the two forms of SAM are only evident during
acute malnutrition, concomitant molecular changes incurred
during acute illness could potentially highlight important drivers
of the differing pathophysiologies. We hypothesize that in cells
with high mitotic rates, acutely ill children with ESAM will have
lower DNA methylation compared to their NESAM counterparts,
whereas methylation differences among recovered SAM indivi-
duals will be less disparate. Given the interrelationship between
DNA methylation, gene regulation, and sequence variation, we
further postulate that the integration of these modalities across
acute and recovered SAM participants might provide valuable
insights to the distinct pathophysiology of ESAM.

Here, we systematically assess DNA methylation at 420,500
genome-wide CpG sites in buccal epithelium DNA samples
obtained from two independent SAM cohorts—309 prospectively
recruited, acutely ill children (Fig. 1; Supplementary Table 1) with
SAM from Malawi and Jamaica and 65 adult SAM survivors from
Jamaica; the latter were retrospectively recruited 16 or more years
after their acute malnutrition event (Fig. 1; Supplementary
Table 1). Methylation is compared between ESAM (cases) and
NESAM (controls), and differentially methylated sites are then
interrogated for their corresponding gene expression profiles and
surrounding single nucleotide variation.

Results
Hypomethylation of DNA characterizes acute ESAM. A com-
parison of genome-wide methylation between acutely ill children
(predischarge, DC samples) with ESAM and NESAM revealed
significant methylation differences at 877 CpG sites at a false
discovery rate (FDR) < 0.01, of which 157 were significant at
a conservative Bonferroni-corrected threshold of P < 1.2 × 10−7

(t test; Fig. 2a). The mean absolute difference in methylation beta-
values across all significant sites was 0.054 (SD 0.02). Consistent
with previous observations of slower methyl-flux in acute ESAM,
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Fig. 1 Overview of sampling timeline across both cohort locations and time points.
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all but one differentially methylated site (156/157; 99%) were
significantly hypomethylated in ESAM relative to NESAM
(Fig. 2b). Differentially methylated sites showed the same direc-
tion of effect (hypo- or hypermethylation) with a consistent effect
size (binomial test, P= 3.08 × 10−14) and magnitude (t test,

lambda adjusted P < 0.05 in both cohorts for 89 of 147 probes
(60%)) in both Jamaican and Malawian samples (Fig. 2c; Sup-
plementary Data 1). Conversely, among samples taken from adult
Jamaican survivors of SAM several years after the acute insult
(delayed, DL samples), we found no evidence for differential
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Fig. 2 DNA hypomethylation in ESAM. a The genome position of each locus is plotted against its −log10(P value). Depicted, from the inner to the
outermost ring, are the recovered (DL) single site, acute (DC) single site, and DC cluster-based differential methylation results. Red lines mark the
Bonferroni threshold of significance for each analysis. Black (N= 157) and red dots (N= 166) pass this significance threshold, in their respective analyses.
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of effect size and adjusted statistical significance between Jamaica and Malawi DC samples at the N= 157 Bonferroni-significant single CpG sites; ten sites
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methylation between ESAM and NESAM using either our strin-
gent Bonferroni-corrected cut-off or the more permissive FDR <
0.01 for significance (Fig. 2a), despite being adequately powered
to detect the magnitude differences observed between DC sam-
ples. This was again consistent with the previously observed lack
of differences in methyl-flux between ESAM and NESAM at the
time of recovery.

Methylation levels at adjacent CpG sites show strong
correlation31; therefore, to bolster support for differential
methylation of significant single CpGs and to limit potential
false-positives, we divided the genome into windows of clustered
CpGs in which adjacent CpGs were within 10 kb and showed the
same direction of effect (Methods). We then compared methyla-
tion in ESAM and NESAM averaged across the resulting regions
using the same parameters and covariates as our single-site
analysis. Reassuringly, 102 of the 157 single sites (65.0%) were
found in the resulting 166 Bonferroni-significant differentially
methylated clusters (DMCs; t test, P < 3.7 × 10−7, corrected for
135,053 clusters). The majority of the remaining significant single
sites (50/55; 91%) fell into clusters that were significant at FDR <
0.01 (Supplementary Data 2). An additional 71 Bonferroni-
significant DMCs had no individual CpGs meeting our single-site
cut-off for significance, but, as a cluster, showed significant
differential methylation between the two groups. All but two of
the 166 significant DMCs were hypomethylated in ESAM
compared to NESAM (Fig. 2a).

Hypomethylation has varying effects on gene expression. In
order to better understand the potential regulatory effect of the
differentially methylated loci, we next looked for genic features
that were overrepresented among the CpG sites found within
significant DMCs, relative to all tested loci. CpGs within DMCs
were significantly enriched over gene bodies (i.e. coding exons
and intervening introns; hypergeometric test, P < 1.4 × 10−6) and
relatively depleted in regulatory regions upstream of the tran-
scription start site (TSS) and over the first exon (Fig. 3a).
Moreover, the effect sizes obtained from the single site linear
regression analysis appeared to differ modestly by gene context
annotation (Kruskal−Wallis test, P= 0.047; Supplementary
Fig. 1), with smaller effect sizes at loci within 200 bp of tran-
scription start sites relative to those of CpG loci within 1500 bp of
the TSS (Dunn’s test, P= 0.004), gene bodies (Dunn’s test, P=
0.012), 5′ untranslated regions (UTR; Dunn’s test, P= 0.019), and
the first exon (Dunn’s test, P= 0.022). Conversely, the magni-
tudes of effect sizes of Bonferroni-significant loci found within
1500 bp of TSSs were larger than those of CpG loci in intergenic
regions (Dunn’s test, P= 0.013).

The regulatory consequences of methylation on gene activity
vary32, such that the effect of hypomethylation on gene
expression is dependent upon genomic and tissue context;
therefore, to provide further context for our findings, we assessed
intraindividual correlation between gene expression and genome-
wide DNA methylation levels in buccal cell samples obtained at
the time of diagnosis from 20 additional Malawian children.
Correlation was determined between CpG methylation and
expression of highly expressed genes (expression levels twofold
above the mean antigenomic background; Methods) found within
10 kb of our DMCs (N= 25; Supplementary Data 2; Fig. 3b).
With the exception of five CpG probes binned within one DMC
that overlapped two highly expressed genes, PMM2 and
CARHSP1, all methylation values were correlated with the
expression of a single gene. Consistent with the notion that
promoter methylation is generally repressive of gene expression,
correlations at methylation sites within 200 bp of the transcrip-
tion start site (TSS200) tended to be inversely related to gene

expression (two-sided Wilcoxon signed rank test, P= 0.027);
negative correlation between methylation and MED24 gene
expression is exemplified in Fig. 3c. Conversely, methylation at
intergenic regions (IGR) was generally positively associated with
gene expression (two-sided Wilcoxon signed rank test, P=
0.030). However, at other gene regions, and particularly at gene
bodies, CpG methylation showed significant positive and negative
correlations with gene expression (Fig. 3b; Supplementary Data 3),
suggesting a more complex transcriptional response to the acute
insult than might have been anticipated from widespread
hypomethylation.

Differentially methylated loci relate to nutrition and
metabolism. Next, we sought to understand the potential disease
relevance of genes within our DMCs. Given the lack of known
genetic loci or molecular correlates for ESAM, we leveraged
publicly available databases and ontologies to provide disease and
molecular context to our hypomethylated genes.

We first interrogated the catalog of genome-wide association
studies (GWAS)33 for genes within 10 kb of our significant DMCs
that were also implicated by replicated GWAS SNPs of genome-
wide significance. We then agnostically projected the resulting
gene list on to disease traits using their mapped experimental
factor ontologies (EFOs, Methods). Thirty-two EFOs were
represented at least twice by 33 of the 237 genes found within
10 kb of our Bonferroni-significant hypomethylated loci (Fig. 4a).
Some of these EFOs occurred frequently when we repeatedly
resampled 237 of the 2436 genes in the GWAS catalog that are
also targeted by the 450 K array (April 24, 2018); for example,
body height was enriched by the random gene set in 93% of
10,000 permutations (Supplementary Fig. 2). This is likely
representative of the number of GWAS that address body height
as well as the number of genes associated with the trait. However,
mapping 33 GWAS catalog genes to 32 associated EFO terms, as
seen in our data, was observed with a probability of only 0.06
among random permutations (i.e. ≥33 GWAS genes mapping to
≥32 EFO terms). Nutrition and cardiometabolic disease were
among the enriched parent ontologies shared across EFO terms
linked to our Bonferroni-significant genes (color-shaded in
Fig. 4a).

To further explore the disease relevance of our hypomethylated
loci, we also attempted to place our top candidate genes in the
context of the organ-specific phenotypes of ESAM using the
human phenotype ontology (HPO) (Methods)34,35, which
includes 34 phenotypes associated with the term kwashiorkor
(Fig. 4b, Supplementary Data 4). These kwashiorkor-related
HPOs, in turn, were associated with 1747 genes. Twenty
kwashiorkor HPO genes were also among the 237 Bonferroni-
significant DMC genes, while 143 overlapped the 1549 genes
associated with FDR < 0.01 significant DMCs. We randomly
selected 10,000 different gene combinations from the set of 24,094
genes within 10 kb of all regions tested for differential methyla-
tion that were equal in size to either the number of Bonferroni or
FDR-significant genes; in each instance we then determined the
number of randomly selected genes overlapping genes linked to
kwashiorkor HPOs. Based on the resulting distributions, we
found that the number of genes overlapping between true DMC
genes and kwashiorkor HPO genes was larger than random by
approximately one standard deviation for Bonferroni-significant
genes (Z-score= 1.11; Supplementary Fig. 3a) and more than
four standard deviations for FDR-significant genes (Z-score=
4.19; Supplementary Fig. 3b).

To date, however, only a minority of the >20,000 human genes
have been mapped to HPO terms (N= 3498, build #129), largely
on the basis of phenotypes observed in single-gene Mendelian
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disorders. Therefore, to better understand the link between our
candidate genes and kwashiorkor HPOs, we used gene ontologies,
which collate genes with similar properties, as intermediate links
between HPO-annotated genes and our ESAM genes (Supple-
mentary Fig. 4).

The 1748 genes annotated to HPO terms associated with
kwashiorkor were significantly enriched (hypergeometric test,
FDR < 0.01) in 2464 gene ontologies—we refer to these as

kwashiorkor-phenotype gene ontologies (KGOs). We then
assessed how many of the 64 gene ontologies enriched
(hypergeometric test, P < 0.01 vs. background) by the 237 genes
in our Bonferroni-significant DMCs (Supplementary Data 5)
were also in the list of KGOs. Just over half (33/64; 50.7%) of
these study gene ontologies (SGOs) were also KGOs, and the
majority of these (29/33; 88%) were also in the top quartile for
significance in the KGO list, implying that the gene ontologies
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most highly enriched by our study genes were also highly
enriched among the kwashiorkor phenotypes. We quantified the
overlap between the two gene ontologies by creating a weighted
enrichment score for SGOs that was maximized by SGOs that
both overlapped the KGO list and had a high significance rank
among KGOs (Methods). The kwashiorkor subphenotypes of
immunodeficiency and fever, followed by hepatomegaly and
obesity had the strongest SGO scores, again reflecting the
significance of metabolism, immunity, and the liver to ESAM
pathophysiology (Fig. 4b).

Closer scrutiny of the individual genes encompassed by our
DMCs revealed several candidates with potential importance to
nutrition in general and the ESAM phenotype in particular. For
instance, hepatic steatosis (fatty liver) is associated with obesity
but is also well-described in ESAM36–38, with severe involvement
at the time of diagnosis heralding a poor prognosis39. Our list of
Bonferroni-significant hypomethylated genes included NDUFS2
(NADH:Ubiquinone oxidoreductase core subunit S2; Supple-
mentary Fig. 5a), which encodes a subunit of mitochondrial
complex I that has recently been implicated in the development of
malnutrition-related fatty-liver in rats37. PHLDA1 (Pleckstrin
Homology Like Domain Family A Member 1), which encodes a
nuclear protein associated with adipogenesis, was also in one of
our top DMCs; hypermethylation of hepatic Phlda1, with
concomitant transcriptional silencing, has been reported in mice
who developed fatty liver after being fed a high-fat diet40. Other
DMCs included NFE2L1, a nuclear transcription factor integral to
the maintenance of proteasome function in hepatocytes that has
also been implicated in liver steatosis41, and SLC2A4, which
encodes an insulin-regulated facilitative transporter of glucose
(GLUT4) that leads to hepatic steatosis in homozygous knockout
mice42.

One of the largest and most significantly hypomethylated
DMCs included SOCS3 (Supplementary Fig. 5b), a regulator of
cytokine-, JAK-STAT-, and leptin- signaling, for which changes in
methylation have been associated with metabolic syndrome43,
body mass index (BMI)44, and diabetes45, while changes in
expression in muscle tissue have been associated with diet-induced
metabolic derangements46. These observations, alongside the
occurrence of several other inflammatory and immunoregulatory
genes in our top DMCs, including LENG8, CHI3L1, SDK1, and
CSF3 (Supplementary Fig. 5c), provide a potential pathophysio-
logical link with the altered inflammatory state noted in ESAM47.
Other DMCs included the O-linked glycosylation pathway enzyme
genes B3GNT7 (Supplementary Fig. 5d), CSGALNACT1, and
ST3GAL3, which may be relevant to observations of reduced
sulfated glycosaminoglycans in intestinal biopsies from children
with acute kwashiorkor16, and AQP1 (Aquaporin 1), a member of
the aquaporin family of transcellular water channels48 that has
been implicated in the development of tissue edema. A potential
role for aquaporins was further supported by an FDR-significant
DMC (t test, P= 4.52 × 10−5, FDR= 6.42 × 10−3) that included
two other members of the same family (AQP5 and AQP6;
Supplementary Data 2).

Potential role for sequence variation in acute ESAM. Given the
established association between single nucleotide polymorphisms
(SNPs) and methylation at nearby CpG sites (methylation
quantitative trait loci—meQTLs)49–51, we also sought to deter-
mine whether genetic variation in and around our hypomethy-
lated loci might influence the extent of methylation at our DMCs.
A model of genetic influence in SAM, however, would need to
account for our observation of differential methylation between
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ESAM and NESAM only being evident during the acute nutri-
tional stress. Context-dependent expression quantitative trait loci
(eQTLs) have been described in the literature52–54, and, although
similar observations for meQTLs are few, both eQTLs and
meQTLs are thought to represent binding sites for transcription
factors (TFs), with meQTLs influencing the activity of core
methylation enzymes55 instead of directly impacting gene tran-
scription (eQTLs). In the context of acute SAM, therefore, in
which we had some evidence for a complex transcriptional state,
we considered whether there was any evidence for nutritional-
state-dependent meQTLs. We explored this by integrating
methylation data with genome-wide genotyping data available for
138 SAM samples from Jamaica (Methods) and evaluating
meQTLs at our DMCs in the context of acute (DC) and recovered
(DL) samples. Several significant (Wald test, P < 3.4 × 10−8)
meQTL signals were observed in both DC (5030 SNP−CpG
pairs) and DL (1346 SNP−CpG pairs) sample groups (Supple-
mentary Fig. 6).

We focused on meQTLs within 10 kb of any of the 1261 DMCs
surpassing our FDR threshold (t test, FDR < 0.01), and, to
account for subdividing of our initial sample, we first considered
all SNP−CpG associations of nominal significance (Wald test,

P ≤ 0.05; Methods). At these FDR DMCs, 1885 of the 16,792
SNP-CpG pairs met our significance threshold among acute (DC)
samples; of these, 162 pairs (~8.5%), representing 111 DMCs
(Supplementary Data 6), had evidence of a significant difference
between ESAM and NESAM in the strength of meQTL
association (Wald test, Pinteraction ≤ 0.05) with no evidence of a
similar interaction among recovered (DL) samples (Methods).
This group included 16 SNP−CpG pairs at 14 of our Bonferroni-
significant DMCs (Fig. 5a). At these loci, the genotype-
methylation association was significant in either acute NESAM
or ESAM but was no longer significant at the time of recovery.
Among the 162 disease-specific meQTLs, 26 SNP-CpG pairs (16
unique loci) were still evident at a more stringent significance
threshold (Wald test, P < 1 × 10−4), and the majority of this latter
group (23 of 26) showed strong association in acute ESAM, but
were not significant in acute NESAM or among recovered groups
(Fig. 5b, c). Interestingly, almost two-thirds (64.1%) of these
candidate nutrition-sensitive meQTLs were predicted to strongly
alter the likelihood of TF binding56,57, although, a similar
proportion was observed among putative nutrition-insensitive
meQTLs (65.1%; Supplementary Data 7 and 8) and there was
substantial overlap between the two sets of TFs. The ten (8.5%)
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TFs unique to the nutrition-sensitive meQTLs included the
related TFs MLX and MLXIPL, which participate in pathways
associated with nonalcoholic fatty liver disease (NAFLD)58. Given
the modest samples sizes employed and a limited view of African
genetic variation, however, it is likely that some of the nutrition-
insensitive meQTLs could be misclassified and are really
nutrition-sensitive, or that more complex mechanisms of
activation in the context of severe malnutrition could differentiate
the two datasets.

To further explore this nutrition-sensitive meQTL model, we
evaluated our set of meQTLs against meQTLs identified in the
same tissue in another childhood methylation study, which
analyzed individual methylation differences in monozygotic twin
pairs59. Only 10 (6.2%) out of 162 putative nutrition-sensitive
buccal meQTLs were also found in this reference buccal meQTL
dataset, in contrast to 238 (12.6%) out of 1723 non-nutrition-
sensitive meQTLs (Fisher’s exact test, P= 0.005). We also
performed a similar analysis using meQTLs assessed across
tissues and age-groups in the ARIES study60. Similar to the
reference buccal meQTLs, we found that only 9 of the 162
putative nutrition-sensitive pairs (5.6%) were identified as
meQTLs in any ARIES data subset, whereas almost twice the
proportion (11.6%; 200 of 1723) of putative non-nutrition-
sensitive meQTLs were represented (Fisher’s exact test, P=
0.018; Supplementary Table 2); this was consistent with a model
in which proposed nutrition-sensitive meQTLs remain relatively
quiescent during states of adequate nutrition—that is, the effect
of the SNP on methylation is minimally (or not) evident under
normal circumstances—but becomes manifest during the acute
nutritional stress of SAM.

Discussion
Using genomic and epigenomic platforms that have been applied
to other complex traits, we provide a molecular evaluation of
ESAM. We deliberately focused on differences incurred in the
context of acute starvation, such that the molecular changes
described are specific to the acute pathology of ESAM, and
relative to NESAM. This differentiates our study from previous
studies of more general malnutrition that are agnostic to the form
of SAM29,30. Similarly, by integrating molecular correlates of
expression and assessing the contribution of cis-acting genetic
variation, we provide a unique view of this gene-environment
response that may hold lessons for other disorders.

Consistent with lower concentrations and slower methyl-flux
of methionine reported in acute, but not recovered, ESAM, we
observed extensive DNA hypomethylation in ESAM children
relative to their NESAM counterparts during the acute insult that
was not evident among recovered individuals. Patterns of
methylation can vary widely between tissues, making extrapola-
tion of single-tissue findings challenging. We chose buccal epi-
thelium as an easily accessible tissue that is embryologically
related to the gut, one of the major organs affected in ESAM; thus
some of our DMCs may be directly relevant to the emerging
literature on gut pathophysiology in ESAM61. Furthermore,
methylation levels in buccal epithelium often correlate with
methylation in other cells62, which aids in interpreting observed
DMCs as also relevant to other ESAM-disturbed organs, such as
the liver. In fact, 40% of our differentially methylated sites showed
strong correlation (Pearson r ≥ 0.7) between buccal and blood
DNA methylation (Methods, Supplementary Data 9). This
assertion is further bolstered by the aforementioned stable-
isotope studies of methionine metabolism25, which described the
slowing of whole-body methyl-group turnover in ESAM; this
would be expected to impact DNA methylation patterns across
the breadth of mitotically active tissues.

Hypomethylation was enriched over gene bodies and, in
additional age-, gender- and SAM-status matched samples,
methylation at differentially methylated loci within gene bodies
correlated with both increased as well as decreased expression at
proximal genes; this suggests that DNA methylation changes
in acute SAM have a complex effect on neighboring gene tran-
scription. Such a complex transcriptional profile in the context
of hypomethylation is consistent with recent studies of the
methylation-expression interface, which have emphasized gen-
ome context-dependent, bidirectional associations between
altered DNA methylation and gene transcription63.

Hypomethylated DMCs overlapped genes associated with
organ dysfunction similar to those recorded in ESAM over dec-
ades of metabolic and clinical studies4–6,36,64–67. The implicated
genes included disruption of pathways involved in liver pathol-
ogy, inflammation, and metabolism. This latter group also
included genes associated with common nutritional and cardio-
metabolic disorders. Fatty liver is known to occur in both under-
and overnutrition; our results suggest that this might reflect
regulatory disruptions in a core set of genes, including NDUFS2
and PHLDA1, that lead to steatosis regardless of the directional
effect of the nutritional insult. This was a recurrent theme with
genes related to metabolic stress such as SOCS3, CHI3L1, and
CSF3. Our data suggest that the same genes that are in involved in
obesity/diabetes might also be relevant to ESAM, possibly causing
a mirrored molecular response to the availability of nutrient
energy sources that utilizes similar pathways.

Our observations may also be relevant to the chronic diseases
and long-term health effects described among survivors of acute
starvation68–70. Genes implicated in our ESAM study showed
little-to-no overlap with those noted in a previous study of
methylation in adult survivors of malnutrition29; however, that
study did not include the severity or type of SAM, and primarily
focused on whole blood samples, making direct comparisons
difficult. Nonetheless, it may be that the underlying mechanisms
postulated here are still relevant—mitotic turnover among
growing children is typically higher than in adults; and, whereas
buccal epithelium is dynamically replenished, other cell types
demonstrate less continuous renewal, allowing aberrations in
methylation incurred during childhood to be perpetuated in tis-
sues such as heart or muscle, potentially leading to the long-term
health consequences that have been associated with the divergent
SAM phenotypes30,69,70.

We also observed preliminary evidence for a model of
nutrition-sensitive meQTLs at 8% of our differentially methylated
loci. The diagnosis of ESAM depends upon the clinical recogni-
tion of nutritional edema; however, the occurrence (and degree)
of other clinical manifestations, such as skin, hair, or liver
changes, is more variable. Given the relevance of genetic variation
to phenotypic variation, our speculation is that nutrition-sensitive
meQTLs might fine-tune the degree of hypomethylation at
DMCs, akin to genetic modifiers of disease, and thereby modulate
the clinical expression of ESAM phenotypes. Given limitations in
genome-wide coverage of African-ancestry populations inherent
in current genotyping platforms71, and differences in ancestral
make-up between SAM cases and tissue- and age-comparable
controls, larger studies utilizing longitudinal sampling in diverse
disease contexts, populations, and cellular/organism models are
required to determine the extent to which this hypothetical model
holds true.

Our findings do not give a definitive answer to the long-
standing question of the primary cause of kwashiorkor (i.e. what
causes some children to develop kwashiorkor and others
marasmus); however, the epigenetic changes observed provide
a plausible link between observations of altered 1-carbon
metabolism in acute SAM and the clinical manifestations of
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ESAM/kwashiorkor. Whilst we cannot fully assay the effect of
perturbed methylation at the organismal level, children with
SAM are typically ill for days to weeks beforehand, suggesting
the potential for a widespread, systemic shift in biology as part
of the pathophysiology. Outside of cancer biology, there are few
disease states in which epigenetic changes have been clearly
linked to nutritional metabolism. Regulation of DNA methyla-
tion is complex and we cannot fully discount that the methy-
lation changes observed here are purely secondary or unrelated
to either 1-carbon metabolism or ESAM; however, given the
interdependencies of 1-carbon metabolism, methyl-group flux
and DNA methylation72,73, our working hypothesis is that the
observed DNA hypomethylation is closely related to the slow
turnover of 1-carbon cycle metabolites, including methionine,
noted in previous studies. The root of this turnover difference
remains obscure but could reflect subtle upstream differences in
diet quality or innate handling of dietary nutrients (e.g. genetic
differences in metabolism) or both.

Irrespective of the initiating insult, downstream differences in
pathophysiology that distinguish the two acute clinical states
could still relate to the epigenetic changes observed in ESAM. In
fact, a theoretical link between the biological processes regulated
by 1-carbon metabolism and the organ dysfunction of ESAM was
postulated decades ago74, but never empirically tested. This
provides a context for further integrating biochemical and
metagenomic observations of ESAM with our findings. The levels
of sulfur-containing 1-carbon amino acids cysteine and methio-
nine in plasma have consistently been shown to be lower in acute
ESAM than NESAM14,25,75, and similar changes have been noted
in response to gut microbiome dysbiosis, which is now well-
described in malnutrition17,18,76,77. Smith et al.76, for example,
reported significantly lower methionine and cysteine levels in
gnotobiotic mice transplanted with the stool microbiome of
children with kwashiorkor than those transplanted with stool
from their healthy twins. Thus, one hypothetical molecular cas-
cade involves the initiation of aberrant 1-carbon metabolism,
exacerbated by gut microbiome dysbiosis, and downstream epi-
genetic changes that potentiate dysregulation of genes central to
expression of the clinical phenotype. The therapeutic corollary of
this hypothesis is that augmentation of methyl-flux, through
nutritional supplementation of methionine, related 1-carbon
derivatives, or associated methyl-donor cofactors (e.g. choline
or betaine) before or during acute illness, may be a viable way of
abating DNA hypomethylation and mitigating the severity and/or
establishment of acute ESAM78,79, as recently partially suggested
by the administration of choline in a mouse model of hepatic
steatosis induced by undernutrition80.

Methods
Experimental design. Demographics of the samples utilized for the present study
are given in Supplementary Table 1. DNA samples used in the study were from
participants recruited in St. Andrew, Jamaica, and rural sites in five southern
Malawi districts. In Jamaica, the study was approved by the Ethics Committees of
the UHWI/University of the West Indies Faculty of Medical Sciences. In Malawi,
the study was approved by the National Health Science Review Committee
(NHSRC) of the Ministry of Health, Government of Malawi. In both countries,
written informed consent was obtained from adult participants and the parent or
adult guardian of participating children and all ethical regulations regarding
human participants were complied with. Permission to use the participant samples
for genetic studies at Baylor College of Medicine (BCM) was approved by the
Institutional Review Board (IRB) of BCM.

Participants from Jamaica were recruited as part of a long-standing study of
genetic susceptibility to SAM being undertaken at the Tropical Metabolism
Research Unit (TMRU) of the Caribbean Institute for Health Research (CAIHR) at
the University Hospital of the West Indies (UHWI), located in St. Andrew,
Jamaica. Participants were either current (prospective) or former (retrospective)
patients admitted for in-patient care on the metabolic research ward of TMRU,
which serves as a tertiary referral center for children with severe malnutrition from
the entire island81,82. The principal inclusion criterion for all participants was a

diagnosis of SAM according to the Wellcome Classification83; i.e. marasmus (<60%
weight-for-age; no edema), marasmic-kwashiorkor (<60% weight-for-age with
edema), or kwashiorkor (60–80% weight-for-age with edema). Weight and height
of all individuals was measured at the time of recruitment. Prospectively recruited
individuals, who were sampled within 8 weeks of their hospital admission, were
designated as acute (discharged, DC) samples. Admission records were used to
identify former patients living within a 20-mile radius of TMRU. Among these
SAM survivors, samples from available adults (older than 17 years) were designated
as delayed (DL) samples. The Wellcome classification was used in both prospective
and retrospective cohorts in order to facilitate comparability between the groups.
Participants with pre-existing chronic illnesses predisposing to potential secondary
malnutrition (e.g. HIV seropositive, congenital malformations, cerebral palsy) were
excluded from this arm of recruitment.

In Malawi, DNA samples were prospectively obtained between 2013 and 2016
from participants seen at 18 outpatient feeding clinics in rural Malawi84. Each
child’s weight, length, and mid-upper-arm circumference (MUAC) were measured.
Children between 6 and 59 months of age, with nutritional edema (indicative of
kwashiorkor), and those with a MUAC < 11.5 cm (indicative of marasmus), or both
(marasmic-kwashiorkor), were eligible for enrollment. Samples were obtained at
the time of initial diagnosis (acute, DC), and participants were categorized as either
edematous (kwashiorkor and marasmic-kwashiorkor) or nonedematous
(marasmus) for the purposes of the study. MUAC has been noted to be a more
sensitive indicator of acute malnutrition than weight-for-age22,85 and has become
the de facto standard-of-care for the diagnosis of NESAM in much of rural Africa.
Adhering to the recruitment strategy, edematous and nonedematous participants
were matched by age and gender within the study age spectrum. Individuals with
overtly compromised or infected oral mucosa were excluded from the study. Acute
(fever, diarrhea) and chronic (e.g. HIV) illnesses as well as antibiotic use at the time
of recruitment were recorded for each participant.

The mitotic turnover of buccal cells takes anywhere from 5 to 25 days in healthy
individuals86, meaning that incident DNA methylation patterns likely reflect
methyl-group turnover in the preceding days to weeks. This is congruent with the
concordance of results between the Jamaica and Malawi DC cohorts, despite slight
differences in the timings of sample acquisition (Supplementary Data 1). Although
SAM classification schemes were different in Malawi and Jamaica, we observed that
reclassifying individuals according to the Wellcome criteria in both cohorts
strengthened our associations; this suggests that our analysis is more conservative,
but more applicable to current recommendations for assessing SAM87.

DNA processing and methylation array typing. In Jamaica, two sets of mouth
swabs (ten plastic sterile cotton tip applicators) were used to swab the inner jaw,
with five strokes of each jaw taken with each swab81. Swabs are then placed in a
15 ml orange top tube with 3 ml of cell lysis solution. In Malawi, buccal epithelium
was sampled using the Oragene Discover (OGR-250) DNA collection kit in con-
junction with CS-1 and CS-2 sponges (DNA Genotek Inc., Ottawa, Ontario,
Canada). The protocol was modified to collect buccal epithelial cells by obtaining
ten passes of each inner cheek using five swabs. DNA was extracted according to
the manufacturer’s instructions.

The quantity of double-stranded DNA (dsDNA) in each sample was assessed
using plate fluorescence (PicoGreen, Life Technologies, Grand Island, NY).
Bisulfite conversion was performed with the EZ-96 DNA Methylation kit in deep
well format (Zymo Research Corp., Irvine, California, USA) on 500 ng of extracted
DNA. A random number generator was used to assign samples to plates ahead of
methylation array typing. DNA methylation was assessed using Illumina’s Infinium
HumanMethylation450 Bead Chip array (Illumina, Inc., San Diego, California,
USA) following the manufacturer’s recommendations for the manual process
outlined in the Infinium HD Assay Methylation Protocol Guide.

Methylation array processing. IDAT files for all samples, containing raw fluor-
escence intensity values, were collated and analyzed in R using the ChAMP package
(version 1.8.2)88 to identify low-quality samples. Out of an initial total of 407,
33 samples with >2% failed probes were excluded (all from Jamaica, 19 DL). All
remaining 374 samples (Supplementary Table 1) were imported simultaneously
using the Methylation Module (version 1.9.0) in Illumina’s GenomeStudio software
(version 2011.1). Reading all samples together reduced the potential for batch
effects in downstream data. Background fluorescence intensity values were sub-
tracted from the remaining IDAT files without control normalization. The
resulting fluorescence intensity values were color balanced and quantile normalized
using the R package lumi (version 2.22.1)89. Probes meeting the following criteria
were omitted from subsequent analyses: internal controls (N= 65), detection
P value < 0.0001 in >10% of samples (N= 860), bead counts <3 in 5% of samples
(N= 665), sex chromosomes (N= 11,288), cross-reactive (N= 29,895), and con-
taining SNPs with a minor allele frequency (MAF) >0.01 in African populations at,
or within 5 bp of, the single base extension (SBE) site (N= 16,918 and N= 5386,
respectively)90. A total of 420,500 probes remained for differential methylation
analysis. All reported genome coordinates were referenced to hg19.

Methylation analysis. Methylation estimates resulting from the lumi preproces-
sing steps in the form of M values were normalized using the qqnorm function in
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R (v3.4.1). Processing with the COMBAT module of the ChAMP suite88 showed no
evidence for systematic biases on the basis of chip or batch using single value
decomposition (Supplementary Fig. 7).

Resulting M values were fit to a linear regression model to identify single probes
with evidence of differential methylation between ESAM and NESAM samples:
Mi ¼ Caþ Ybþ e, where M= normalized methylation value at probe i, Ca=
matrix of covariates, Yb=matrix of case (ESAM) or control (NESAM) status, and
e= random error. Acute (DC) samples were analyzed separately from adult
recovered (delayed; DL) samples. Principal component analysis (PCA) using
methylation values for all probes demonstrated no systematic global differences
between DC samples from Jamaica and Malawi (Supplementary Fig. 8), and these
were combined to increase the available sample size and mitigate age differences
between ESAM and NESAM children observed in each country. In the subsequent
analysis, age, gender, and the first principal component (PC1), which accounted for
20.6% of the variance in the data, were utilized as covariates. Preference was given
to PC1 as a covariate over geographic sampling location as it improved the
genomic inflation factor (from 1.24 to 1.16) and thus likely encompassed other
sample variation in addition to location; inclusion of additional principal
components was found to increase the genomic inflation factor (Supplementary
Table 3). For the DL analysis, there were no systematic sample differences noted on
PCA (Supplementary Fig. 8); gender and age were included as covariates.

To provide evidence that differentially methylated sites were consistent across
countries, DC individuals from each country group were also assessed separately.
In the Jamaican DC cohort, ESAM children were significantly younger than those
with NESAM, and vice versa in the Malawian DC cohort (Supplementary Table 1).
To account for this confounding, age was omitted as a covariate in the country-
specific methylation analysis, and instead, 2459 probes shown to be sensitive to age
in buccal epithelial cells91 were removed. Gender was utilized as a covariate under
the same linear regression model used for the joint analysis.

We validated our results from the 450 K beadchip by performing capture-based
bisulfite sequencing (SeqCap Epi CpGiant Enrichment Kit, Roche NimbleGen, Inc.,
Madison, Wisconsin, USA)92 on three samples from Jamaica that also had array-
based methylation. Overall correlation between array and sequencing at
overlapping high-quality sites was 0.95 (Pearson’s r; Supplementary Fig. 9).

Methylation clustering using CpG correlation. Methylation at neighboring CpG
loci tends to be correlated31; therefore, in order to reduce false positive associations
at individual sites, adjacent CpG sites were binned into clusters on the basis of their
magnitude and direction of association. Single probes with effect sizes [betaslope]
between −0.05 and +0.05 were removed to reduce ambiguity of the direction of
effect at the margins of association, which could change cluster assignment. Of the
166 Bonferroni DMCs, 19 would have included >2 of these marginal probes. The
remaining probes were binned into nonoverlapping clusters in which the distance
between adjacent probes was at most 10 kb, and all binned probes shared the same
direction of effect (Supplementary Fig. 10). This resulted in 135,053 and 173,635
clusters for the DC and DL analyses, respectively. The regression analysis described
above was then repeated using the mean M values of all probes within a cluster as
the dependent variable. The resulting DC clusters encompassed anywhere from 1
to 43 probes, with a median size of 1.7 kb (range 4 bp to 41.5 kb for clusters with >2
probes).

Cellular composition of samples. To confirm that our DNA samples were pri-
marily derived from buccal epithelial cells in our dataset of 309 DC and 65 DL
samples, we isolated available CpG sites that were needed for the online Horvath
DNA methylation age calculator (accessed September 21, 2017)93, which provides
probabilities for potential tissues of origin based on tissue-specific methylation
patterns. According to the tissue prediction algorithm, 97.4% of the 309 DC
samples were primarily buccal (epithelial) in origin (median probability of pre-
dicted buccal samples: 0.84), and this proportion was similar in ESAM (162/164
(98.8%)) and NESAM 139/145 (95.9%) (Supplementary Fig. 11). Similarly, a sec-
ondary method of cell type heterogeneity assessment, EpiDISH94 used in combi-
nation with EpiFibIC reference data95 and its robust partial correlations (RPC)
method, predicted epithelial as the major cell fraction in 91.6% (283/309) of acutely
malnourished children, with no difference between ESAM and NESAM (chi-
squared test, P= 0.12). This was consistent with anecdotal reports from field
recruitment that many of the acutely malnourished children were also dehydrated
and had insufficient saliva for collection. We also performed capture methylation
sequencing of buccal and peripheral blood DNA sampled <3 days apart from the
same three individuals; mean Pearson correlation within-individuals (0.84) was less
than between the same tissues from different individuals (0.96). Pearson correlation
between buccal and blood methylation from bisulfite sequencing data was assessed
at 116/157 Bonferroni-significant single sites that were captured at any coverage in
both tissues and had nonzero variance between samples. Among DL adult samples,
58.5% were estimated to be primarily buccal epithelial (median probability of
predicated buccal samples: 0.31), while the remaining samples were predicted to
have originated from saliva (40.0%) or whole blood (1.5%); however, this pro-
portion was not significantly different between former ESAM and NESAM.
Similarly, our secondary method predicted epithelial as the major cell fraction in
27.7% (18/65) of adult samples, without differences in ESAM and NESAM (chi-
squared test, P= 0.82). On the basis of these results we concluded that the primary

comparisons between ESAM and NESAM in each group are not significantly
impacted by cellular composition, although this may have a greater impact on
comparisons between DC and DL groups.

Pearson correlation was assessed between blood and buccal at CpG loci that
passed the Bonferroni threshold of significance in our single site analysis and that
were captured by bisulfite sequencing, according to the approach described in
ref. 92, in the three individuals with paired buccal and blood samples
(Supplementary Data 9).

Gene ontology and pathway enrichment analysis. RefSeq genes overlapping or
within 10 kb of Bonferroni-significant clusters were taken as candidate genes.
ConsensusPathDB’s over-representation analysis (accessed June 29, 2017)96 was
used to identify enriched gene ontologies (hypergeometric test, FDR < 0.01) asso-
ciated with these candidates. RefSeq genes overlapping or within 10 kb of the CpG
loci targeted by the array were used as background. Gene ontology analysis
included all levels with default parameters.

GWAS study enrichment score. The NHGRI-EBI catalog of published genome-
wide association studies (GWAS)33 includes GWAS hits labeled with terms from
Experimental Factor Ontology (EFO; https://www.ebi.ac.uk/efo/). We first con-
sidered EFO labels of GWAS hits that were mapped to one of our top differentially
methylated genes. Each pair of an EFO and gene was then given a score based on
the number of SNPs mapped to the gene in separate GWAS hit records labeled
with the EFO term. The final scores were then projected onto the differentially
methylated genes, focusing on EFOs represented by more than one gene. To assess
the relative likelihood of individual EFOs, we generated a list of 237 genes
(replicating the number of genes associated with our Bonferroni-significant loci)
randomly selected from the list of 20,622 genes linked to 450 K array probes. This
random selection was repeated 10,000 times and the GWAS enrichment score was
evaluated in each instance.

Phenotype-gene ontology scores. Human Phenotype Ontology terms34,35 asso-
ciated with kwashiorkor were used as ESAM-associated phenotypes, with the
exception of global developmental delay, which was considered to be an overly
broad term for development in acute malnutrition (motor delay was retained).
From this list, genes associated with each term were obtained from the HPO site
(build #129; accessed June 2017). These genes were then run through Con-
sensusPathDB as described above, using the same set of background genes, to
derive a set of kwashiorkor-phenotype gene ontologies (KGO) with FDR < 0.01.

To quantify the overlap between study gene-ontologies (SGO) (Supplementary
Fig. 4; Supplementary Data 5) and phenotypes associated with kwashiorkor, we
derived a weighted enrichment score. First, enriched SGOs and KGOs were ranked
by P value, such that each SGO ontology was given a value equal to the P value
quartile in which it fell (i.e. 1, 0.75, 0.5, 0.25) multiplied by its scaled quartile place
in the KGO list. Therefore, SGOs that are not found in the KGO list receive a score
of 0 by default, and SGOs that are found in the KGO list and in the top quartile of
both lists would have a score of 1 (the highest score). Then, for each kwashiorkor
HPO term, we identified the genes associated with that term and calculated the
proportion of those genes that mapped to each SGO. The final score for each SGO
−phenotype pair was then derived by taking the arithmetic mean of the two scores
((quartile score+ proportion score)/2); this final score ranged from 0 to 1.

DNA/RNA dual collection and processing. Twenty-eight additional Malawian
DC buccal samples had both DNA and RNA isolation, and these were used for
gene expression-methylation correlation analysis. DNA was extracted as outlined
above, and methylation was assessed using the Illumina EPIC methylation kit in
24 samples following procedures as outlined for the main dataset. The Oragene
RNA (RE-100) RNA collection kit was used in conjunction with CS-2 sponges
(DNA Genotek Inc., Ottawa, Ontario, Canada) with modification, to collect buccal
epithelial cells from multiple cheek swabs. RNA was extracted according to the
manufacturer’s instructions. Gene expression analysis was undertaken for 24 sam-
ples using the Affymetrix GeneChip human Clariom S assay (Thermo Fisher
Scientific, Waltham, Massachusetts, USA) following the recommendations of the
GeneChip WT PLUS Reagent Kit—Target Preparation for GeneChip Whole
Transcript (WT) Expression Arrays manual.

Expression analysis. Gene expression levels in the form of fluorescence intensity
values stored in CEL files were background corrected and normalized on Affy-
metrix’s Expression Console software (build 1.4.1.46, Thermo Fisher Scientific,
Waltham, Massachusetts, USA) using the SST-RMA algorithm. Probe sets with
expression levels twofold above the mean expression levels of the antigenomic
control probes, which are designed to be incompatible with any human genome
sequence, were considered as expressed.

Methylation-expression correlation. Paired DNA methylation and expression
data were available for 20 out of 28 samples (remaining samples failed quality
control for either methylation or gene expression, or both), who did not differ from
the previous Malawian cohort with regard to age, gender, and ESAM/NESAM
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proportions. Spearman correlation coefficients were calculated between the
methylation beta- andM values for each CpG site and the expression value for each
gene within 10 kb of the differentially methylated cluster into which the site was
binned. Only genes with expression levels twofold above the antigenomic back-
ground were assessed. This resulted in 151 CpG-gene expression comparisons,
consisting of 146 unique CpG loci and 25 unique expressed gene transcripts,
corresponding to 25 genes. A post-hoc power analysis using G*Power (version
3.1.9.2)97, set to exact test family and correlation: bivariate normal mode with
α= 0.05 and N= 20, revealed that, dependent on the minimum (|rho|= 0.45) or
maximum (|rho|= 0.65) coefficient associated with significant correlations, our
analysis has a power of 53% or 91%, respectively.

Genotyping. DNA samples from the broader Jamaica cohort81,82 were genotyped
on two separate genotyping platforms: HumanOmni1-Quad BeadChip (Illumina,
San Diego, CA) and HumanOmni2.5 BeadChip (Illumina, San Diego, CA). Quality
control was performed for SNPs and samples in each phase individually and then
on the merged set. GenomeStudio software (Illumina) was used to interpret nor-
malized fluorescence intensities as genotypes. SNPs with more than 2% missing
data (genotyping efficiency <0.98), SNPs out of Hardy−Weinberg equilibrium
(exact test, P < 1 × 10−3), or with MAF < 0.05 were removed. Samples with more
than 2% missing data (genotyping efficiency <0.98), or with evidence of excessive
inbreeding (inbreeding coefficient, F > 0.1) were removed. Pairs of samples with
excess allele sharing suggestive of close familial relationships (parent−offspring,
siblings; Pi_HAT > 0.1) were identified using identity-by-descent (IBD) analyses,
and in such cases one member of the pair was removed from analysis (N= 22).
After merging of datasets and sample quality control (QC), 384 samples and
450,012 autosomal SNPs remained; 138 samples had both adequate genotyping and
methylation data for analysis after QC (53 ESAM-DC, 37 NESAM-DC, 23 ESAM-
DL, and 25 NESAM-DL).

Population ancestry. Genotyped individuals were evaluated for shared ancestry
using the multidimensional scaling (MDS) method found in PLINK98. A subset of
100,330 independent SNPs (r2 < 0.1; window size 50 SNPs per nonoverlapping
window) was used for analysis. ESAM and NESAM samples clustered together on
the first and second MDS dimensions and showed close ancestry with African
populations from the 1000 Genomes Project Phase 3, particularly the Yoruba of
West Africa (YRI) (Supplementary Fig. 12). MDS values were used as covariates of
ancestry in meQTL analyses.

Cis-acting methylation quantitative trait loci (meQTLs). Identification of
meQTLs was undertaken using the R package MatrixEQTL99 (version 2.1.1).
Initially a linear regression model (Probe value= Covariates (age, sex, first
two MDS components)+ SNP (0, 1, 2 minor alleles)) was used for all SNPs
within 10 kb of a CpG. Analyses were performed separately for DC and DL
samples. To test for nutrition-dependent specific effects, meQTLs significant in
DC samples (P ≤ 0.05) that also overlapped FDR-significant differentially
methylated clusters were selected. Analyses were performed using a separate
linear regression model: Probe value= Covariates (Age, sex, first two MDS
components)+ SNP (0, 1, 2)+ SAM type (ESAM or NESAM)+ SNP × SAM
type. MeQTLs with a significant (t test, P < 0.05) SNP × SAM type interaction
were then reported separately for ESAM and NESAM (Supplementary Data 6).
Significant meQTLs, with DC-specific ESAM-NESAM interactions as well as
those without any evidence of ESAM-NESAM interactions, were compared to
meQTLs identified by Gaunt et al.60 in cord and peripheral blood at different
life stages. Counts of meQTL overlap at any life stage were compared using
Fisher’s exact test.

meQTL overlap with transcription factor binding motifs. MotifBreakR57 (ver-
sion 1.6.0) was applied to identify transcription factor binding motifs described by
Jolma et al56. that coincided with SNPs from significant meQTLs. The function’s
default parameters were changed to allow a maximum match-calling P value
threshold of 1 × 10−4, filter by P value, use of the information content (ic) method,
and to show results with neutral effects on transcription factor binding likelihood.
SNPs with an absolute score difference >1.5 between reference and alternate allele
were considered to indicate a strong likelihood of altering transcription factor
binding (Supplementary Data 7 and 8).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Methylation datasets generated during the current study are available on the Gene
Expression Omnibus (GEO) database under the accession number GSE112893. The
source data underlying Fig. 3a, c, Supplementary Fig. 5a–d, and Supplementary Table 1
are provided as a Source Data file. All other relevant data supporting the key findings of
this study are available within the article and its Supplementary Information files or from
the corresponding author upon reasonable request. A reporting summary for this Article
is available as a Supplementary Information file.

Code availability
All analyses were carried out in the programming language R (versions 3.2.0 and above)
as described in the methods. Software versions and relevant parameters are included in
the corresponding methods sections. Scripts are available from the authors upon request.
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