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Understanding the role of potential 
pathways and its components 
including hypoxia and immune 
system in case of oral cancer
Leena Hussein Bajrai1,2, Sayed Sartaj Sohrab1,3, Mohammad Mobashir4,8,9*, 
Mohammad Amjad Kamal5,6,7, Moshahid Alam Rizvi8 & Esam Ibraheem Azhar1,3*

There are a few biological functions or phenomenon which are universally associated with majority of 
the cancers and hypoxia and immune systems are among them. Hypoxia often occurs in most of the 
cancers which helps the cells in adapting different responses with respect to the normal cells which 
may be the activation of signaling pathways which regulate proliferation, angiogenesis, and cell 
death. Similar to it, immune signaling pathways are known to play critical roles in cancers. Moreover, 
there are a number of genes which are known to be associated with these hypoxia and immune 
system and appear to direct affect the tumor growth and propagations. Cancer is among the leading 
cause of death and oral cancer is the tenth-leading cause due to cancer death. In this study, we were 
mainly interested to understand the impact of alteration in the expression of hypoxia and immune 
system-related genes and their contribution to head and neck squamous cell carcinoma. Moreover, 
we have collected the genes associated with hypoxia and immune system from the literatures. In 
this work, we have performed meta-analysis of the gene and microRNA expression and mutational 
datasets obtained from public database for different grades of tumor in case of oral cancer. Based on 
our results, we conclude that the critical pathways which dominantly enriched are associated with 
metabolism, cell cycle, immune system and based on the survival analysis of the hypoxic genes, we 
observe that the potential genes associated with head and neck squamous cell carcinoma and its 
progression are STC2, PGK1, P4HA1, HK1, SPIB, ANXA5, SERPINE1, HGF, PFKM, TGFB1, L1CAM, 
ELK4, EHF, and CDK2.

Hypoxia often occurs in cancer and helps the cells in adapting different responses than the normal cells such as 
the triggering of signaling pathways regulating critical biological processes (proliferation, angiogenesis, and cell 
death or apoptosis)1. So far from the previous work, a number of genes associated with these processes and func-
tions have been explored and investigated. Similarly, different forms of cancer require different immune systems 
and associated signalling pathways, and the immune signalling network (ISN) may be a major component in 
cancer genesis and progression. Although it has been established that cancers, including head and neck cancer, are 
immunogenic tumours for which immunotherapy is aggressively sought by targeting immunological checkpoints, 
an immune-based prognostic signature remains a viable option2–4. Several prior works2–4 propose pathway-level 
knowledge and analytic methodologies, as well as Hansen and Iyengar’s4 computational strategy to bridge the gap 
between precision medicine and systems treatments. Comprehension and unravelling comprehensive and minute 
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understanding of cell phenotypes and disease pathophysiology remains a basic problem, as do the molecular 
mechanisms that lead to disease initiation and oral cancer progression.

Oral cancer is the 10th most prevalence cancer globally and in general classified as head and neck squamous 
cell carcinoma (HNSCC). It is a malignant neoplasia which arises in oral cavity of lip, tongue, gingiva, mouth 
floor and glands5–7 which may originate by a number of factors such as genetic alterations, gene expression 
alterations, and mutations5,8–13. Furthermore, more factors may act as the potential cause of such cancer and 
one of the cause is HPV (Human Pappiloma Virus) infection and this virus is non-enveloped icosahedral capsid 
with circular double standard DNA which majorly cause cervical cancer in human12,14,15. In addition, there exit 
potential difference between HPV-induced oral cancers than that of HPV-negative (oral) tumors in terms of 
the clinical response and finally the overall survival rates16,17. In the previous study, there are lots of work which 
have been performed for the study of oral cancer such as mutational, gene, and miRNA expression profiling, 
epigenetic changes, and proteomics for HNSCC5,12,18,19.

When we’re looking for a profound understanding of something, from a computational study to a therapeutic 
method20–22. It provides a ray of hope for a revolutionary diagnostic technique. Thus, in HNSCC, the hypoxia 
and immune-based prognostic signatures maintain a diagnostic potential that can be further explored and 
examined. We chose a publically available gene expression dataset for this purpose and evaluated the data with 
the goal of understanding how signaling networks and their components are relevant to the immune system. 
In this study, our goal was to understand the impact of alteration in the expression of hypoxia and immune 
system-related genes and their contribution to head and neck cancer23,24. For this purpose, we have collected the 
hypoxia-associated genes based on the literature related to diverse biological processes and functions and have 
also collected the mutational and expression (both microRNA and gene) datasets from Gene Expression Omni-
bus (GEO) freely accessible public database (http://​www.​ncbi.​nlm.​nih.​gov/​geo/) for which we have performed 
comparative analysis and the clinical relevance i.e., survival analysis25–27.

Based on our work, we observe that there are certain sets of genes which are always differentially expressed 
irrespective of the stages and similar to it there are a number of pathways which are potentially altered in result 
to the differential gene expression patterns. Based on our results, we conclude that the critical pathways which 
are dominantly enriched are associated with metabolism, cell cycle, immune system.

Materials and methods
In the first step, we have selected the data of our interest for mutation, gene, and miRNA expression analysis. 
For the gene expression and miRNA expression datasets, the samples have been analyzed by using the inbuilt 
tool GEO2R28,29 and the mutational dataset which have been obtained from TCGA database have been analyzed 
from in-house MATLAB code. For pathway enrichment analysis, the similar protocols have been followed as 
per DAVID and panther databases30–33. For differential gene expression analysis, we have compared the tumor 
samples with normal samples to generate differentially expressed genes and miRNAs lists and to generate the list 
of mutated genes the threshold has been set i.e., 5% of the samples showing the mutation for specific genes. After 
preparing the lists (overexpressed genes and microRNAs) and the mutated genes, we proceed for our goal which 
is to understand the expression and mutational patterns10,34 and its inferred functions33,34. All the pathways have 
p-values less than 0.05, blue color means highest p-values and the yellow color for lowest p-value. For generat-
ing DEGs network, FunCoup2.035 has been used for all the networks throughout the work and cytoscape36 has 
been used for network visualization. For most of our coding and calculations MATLAB has been used. FunCoup 
predicts four different classes of functional coupling or associations such as protein complexes, protein–protein 
physical interactions, metabolic, and signaling pathways35.

Results
Gene expression profiling reveals that there are selected sets of pathways are mostly affected 
as a result of alteration in gene expression.  In the first step, the major goal was to understand the 
gene expression patterns and profiles between different tumor stages for which we have used the oral cancer 
expression dataset from GEO GSE848467. The dataset contains the samples which have tongue squamous cells 
carcinoma cells of both male and female of different ages and different stages from stage I to IV. We have per-
formed comparative analysis of grade I with grade II, III, and IV to investigate the evolved DEGs and altered 
functions from grade I to IV and the total number of samples were 99. Here, we observe that the number of 
DEGs is comparatively low for grades I and II i.e., 24, for grades I and III is 40 and for grades I and IV is 175 and 
number of shared genes are quite low (Fig. 1a) and alterations in gene expression pattern increases exponentially 
from grade I to IV. Irrespective of the tumor location and the number of DEGs there are 59 pathways which are 
commonly enriched even in combination with the dataset GSE31056 (Fig. 1b,c). All these 59 enriched path-
ways have been displayed with their respective p-values under different conditions (Fig. 1d) and more details 
have been presented as Supplementary Data 1. Further, we have also compared this data with another dataset 
(GSE37991)37–41 in Supplementary Data 2. Here, we also observe that both the datasets share a large number of 
vital DEGs and the pathways.

We have compared gene expression pattern of overlapped genes in HPV infected samples from grade I–IV 
(Fig. 2a–c). Here, we tried to present a list of genes (table/supplementary) irrespective of tumor grades, at the 
same time it also shows dissimilarity in level of gene expression and functional impact. Figure 2d states that 
Grade I and IV are having similar pattern of the expression, grade II shares their pattern with all four grades of 
HPV infected tumor whereas grade III showed distinct from all other grades (Fig. 2a–c). It claims that grade II 
is important stage where all HPV mediated oncogenic components are expressed. In Fig. 2d, we have inserted a 
box with black line which is just to show the reverse behavior in terms of expression for the selected genes grade 3 
versus all other conditions. Overlapped, DEGs of oral tumor also showed difference in functional effect. Figure 2e 
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shows that there are 32 pathways which are mainly altered in HPV-infected oral cancer and those p-value were 
compared with altered pathways of non-infected oral cancer (GEO datasets) pathways, it revealed that few of the 
pathways such as circadian entrainment, arginine and proline metabolism, butanoate metabolism, PI3K-AKT, 
cell cycle, TGF-beta, cAMP, neuro active ligand receptor interaction are highly altered in HPV-infected tumor 
than non-infected oral cancer which implies enhanced vulnerability of HPV infection in oral cancer. Here, we 
also observe that functional effect and gene expression followed the same pattern (Fig. 2d,e). Thus, we conclude 
that different grades of oral tumor lead to diverse impact on gene expression pattern and their functions.

Higher mutations leads to the potential change in critical biological functions associated with 
oral cancer.  For mutational profiling, we have used the datasets from TCGA database which contains 530 
samples (Head and Neck Squamous Cell Carcinoma, Firehose Legacy) and from here, we have selected the 
mutated genes which appear minimum in 5% of the samples and performed the pathway enrichment analy-
sis where PI3K-Akt signaling, focal adhesion, thyroid hormone signaling, calcium signaling, cAMP signaling, 
FoxO signaling, phospholipase-d signaling, cell cycle, ubiquitin mediated proteolysis, apelin signaling, long-
term potentiation, oxytocin signaling, Longevity regulating, ECM-receptor interaction, circadian entrainment, 
estrogen signaling, and melanogenesis (Fig. 3a) are among the enriched pathways for the selected genes which 
were mutated in minimum of the 5% of the samples. Furthermore, the top mutated (≥ 10%) genes and observe 
that TP53, TTN, FAT1, CDKN2A, FRG1BP, CSMD3, MUC16, PIK3CA, SYNE1, NOTCH1, LRP1B, KMT2D, 
PCLO, FLG, DNAH5, USH2A, NSD1, RYR2, PKHD1L1, XIRP2, CASP8, SI, and AHNAK (Fig. 3b) are among 
the highly mutated genes. Majority of these genes are well known to be associated with a number of cancers 
including the head and neck cancer and the similar case is with the enriched pathways. Furthermore, we have 
drawn a venn diagram to look over the commonly and specific altered pathways both because of altered expres-
sion or mutations (Fig. 3c). PI3K-Akt signaling, cAMP signaling, Focal adhesion, Calcium signaling, Oxytocin 
signaling, Apelin signaling, ECM-receptor interaction, and thyroid hormone signaling are those pathways which 
are commonly altered in terms of gene over expression and mutations which gives more significance to these 
pathways while circadian entrainment, cell cycle, phospholipase-d signaling, longevity regulating pathway, 
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Figure 1.   Differential gene expression profiling of different grades of oral cancer. (a) Venn diagram for 
differentially expressed genes, inferred, and enriched pathways; (b) Plot to show the overall number of DEGs, 
inferred, and enriched pathways.
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melanogenesis, FoxO signaling, estrogen signaling, long-term potentiation, and ubiquitin mediated proteolysis 
signaling pathways are specifically altered due to mutation. There are 16 signaling pathways which are exclu-
sively altered due to over expression and some of them are insulin signaling, CAMs, TGF, TNF, tight junction, 
cGMP-PKG, phagosome signaling pathways and more.

Furthermore, we have also investigated the clinical relevance of the hypoxic genes by performing survival 
analysis (Kaplan-Meyer plot) and plot the heatmap of the p-values of all those genes (Fig. 3d) which appear sig-
nificant (p-value < 0.05). Overall, 95 genes appear significant in case of head and neck cancer and STC2, PGK1, 
P4HA1, HK1, SPIB, ANXA5, SERPINE1, HGF, PFKM, TGFB1, L1CAM, ELK4, EHF, and CDK2 appear to be 
highly significant which have p-values even lower than or equal to 0.0013. After analyzing the clinical relevance, 
we have fetched the inferred pathways for these top-ranked genes and we observe that these genes not only relate 
with the hypoxic condition but also a number of fully those pathways which directly affect the tumor initiation, 
propagation, and growth as shown in Table 1. Moreover, these top-ranked genes have been processed for detailed 
clinical relevance for which their overexpression have been checked in patients samples in TCGA database 
(Fig. 4) for all the four grades and the percentage of the patients with overexpressed genes have been shown.

Differential microRNAs expression also potentially impact the cancer associated func-
tions.  After analyzing the gene expression and mutational profiling, we have performed miRNA expression 
profiling and for this purpose, the dataset was collected from GEO database i.e., GSE31227 and the platform 
was GPL977019. This dataset contains 15 patient surgical margin as controls and 15 patient Oral Squamous Cell 
Carcinoma (OSCC) and we found that there are 46 miRNAs out of 739 miRNAs which are overexpressed in case 
of head and neck cancer (Fig. 5a) and in terms of functions the most affected biological pathways are thyroid 
cancer, pathways in cancer, pancreatic cancer, Foxo signaling, chronic myeloid leukemia, HIF1 signaling and 
more and most of these pathways appears to strongly associated with head and neck cancer and oral cancer 
(Fig. 5b). Here, it can be clearly seen that the pathways enriched in DEGs and the miRNA pathways list have a 
number of common pathways such as HIF-1 signaling, Ras, MAPK, immune system associated pathways, and 
directly cancer-associated pathways.

Figure 2.   Differentially expressed genes and the enriched pathways for HPV infected oral cancer. Venn 
diagram for the different combinations of DEGs and the enriched pathways for (a,b) GSE31056 and (c) NGS 
dataset. (d) Heatmap and cluster for the 152 commonly DEGs in case of NGS data. (e) Commonly enriched 32 
pathways for NGS dataset and the p-values for these pathways including the array dataset.
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Discussion
Hypoxia and ISN often help the cells in adapting different responses than the normal cells such as the trigger-
ing of signaling pathways regulating critical biological processes (proliferation, angiogenesis, and cell death or 
apoptosis)15,20,42–49. These two processes have been explored in a number of human diseases and different from 
the previous works, here these two systems have been explored simultaneously in HNSCC and also the role of 
microRNAs have been analyzed with their effect on biological processes and functions and furthermore the 
survival analysis12,50–52 has been analyzed for the hypoxic genes. The reason to focus on hypoxia and mainly the 
ISN was that the associated signaling pathways with these two systems are considered as a master regulator for 
cancer initiation and progression and has also been proven that HNSCC is an immunogenic tumor and immu-
notherapy is strongly pursued through targeting on the immune checkpoints the immune based prognostic 
signature remains a potential that can be applied2–4. In the previous works2–4, pathway-level understanding and 
analysis approaches has also been presented which present computational approach to bridge between precision 
medicine and systems therapeutics.

In this study, the main focus of the study was to understand the expression pattern of both the genes and 
the microRNAs and the mutational profiling followed by the survival analysis for HNSCC for which the data-
sets have been utilized from the GEO and the TCGA database. After the expression and mutational profiling, 
we performed comparative analysis for the functions in both the cases. PI3K-Akt signaling, cAMP signaling, 
focal adhesion, calcium signaling, oxytocin signaling, apelin signaling, ECM-receptor interaction, and thyroid 
hormone signaling are those pathways which are commonly enriched for both the cases differential expression 
and mutation in HNSCC which gives higher significance to these pathways for the selected disease while there 
are specific pathways for DEGs and mutated genes lists which means there are pathways which may be altered 
only because of overexpression of the genes or higher mutations rate. Mutation-specific altered pathways are 
circadian entrainment, cell cycle, phospholipase-d signaling, longevity regulating pathway, melanogenesis, FoxO 
signaling, estrogen signaling, long-term potentiation, and ubiquitin mediated proteolysis signaling pathways 
while insulin signaling, CAMs, TGF, TNF, tight junction, cGMP-PKG, phagosome signaling pathways are altered 
gene expression specific. From OSCC microRNAs analysis, 46 miRNAs appear overexpressed and the most 
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Figure 3.   Mutational profiling and functional impact in oral cancer. (a) We have performed pathway 
enrichment analysis for those genes which appear to have more than 5% mutation for the selected dataset from 
TCGA database; (b) Genes with mutations ≥ 10%; (c) Comparison of the altered functions with respect to 
mutations and differential expression; (d) p-value for Kaplan-Meyer plots after survival analysis of the hypoxic 
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Table 1.   Top hypoxic genes with p-values ≤ 0.0013 and the associated pathways.

Genes Pathways

HGF Cytokine-cytokine_receptor_interaction

HGF Focal_adhesion

HGF Pathways_in_cancer

HGF Renal_cell_carcinoma

HGF Melanoma

PGK1 Glycolysis_/_gluconeogenesis

PGK1 Carbon_fixation_in_photosynthetic_organisms

TGFB1 MAPK_signaling_pathway

TGFB1 Cytokine-cytokine_receptor_interaction

TGFB1 Cell_cycle

TGFB1 TGF-beta_signaling_pathway

TGFB1 Leishmaniasis

TGFB1 Chagas_disease

TGFB1 Pathways_in_cancer

TGFB1 Colorectal_cancer

TGFB1 Renal_cell_carcinoma

TGFB1 Pancreatic_cancer

TGFB1 Chronic_myeloid_leukemia

SERPINE1 p53_signaling_pathway

SERPINE1 Complement_and_coagulation_cascades

P4HA1 Arginine_and_proline_metabolism

CDK2 Cell_cycle

CDK2 Oocyte_meiosis

CDK2 p53_signaling_pathway

CDK2 Progesterone-mediated_oocyte_maturation

CDK2 Prostate_cancer

CDK2 Small_cell_lung_cancer

PFKM Glycolysis_/_gluconeogenesis

PFKM Pentose_phosphate_pathway

PFKM Fructose_and_mannose_metabolism

PFKM Galactose_metabolism

PFKM Insulin_signaling_pathway

HK1 Glycolysis_/_gluconeogenesis

HK1 Fructose_and_mannose_metabolism

HK1 Galactose_metabolism

HK1 Starch_and_sucrose_metabolism

HK1 Amino_sugar_and_nucleotide_sugar_metabolism

HK1 Streptomycin_biosynthesis

HK1 Insulin_signaling_pathway

HK1 Type_II_diabetes_mellitus

ELK4 MAPK_signaling_pathway

L1CAM Axon_guidance

L1CAM Cell_adhesion_molecules_(CAMs)

TGFB1 Hippo_Signaling_Pathway

SERPINE1 Hippo_Signaling_Pathway

HGF Ras_signaling_pathway

HGF Rap1_signaling_pathway

SERPINE1 Apelin_signaling_pathway

HK1 HIF-1_signaling_pathway

SERPINE1 HIF-1_signaling_pathway

PGK1 HIF-1_signaling_pathway

CDK2 FoxO_signaling_pathway

TGFB1 FoxO_signaling_pathway

CDK2 PI3K-Akt_signaling_pathway

HGF PI3K-Akt_signaling_pathway

PFKM AMPK_signaling_pathway

TGFB1 Osteoclast_differentiation
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affected functions are thyroid cancer, pathways in cancer, pancreatic cancer, Foxo signaling, chronic myeloid 
leukemia, HIF1 signaling and more and most of these pathways appears to strongly associated with head and 
neck cancer and oral cancer. Based on the clinical relevance of the hypoxic genes, there are a large number of 
genes which are highly significant and STC2, PGK1, P4HA1, HK1, SPIB, ANXA5, SERPINE1, HGF, PFKM, 
TGFB1, L1CAM, ELK4, EHF, and CDK2 are highly significant which have p-values even lower than or equal 
to 0.0013. Similar to the expression and mutational profiling, the inferred pathways of the top-ranked genes 
are direct components of those pathways which directly affect the tumor initiation, propagation, and growth. 
Moreover, the RNA and miRNA expression analysis shows that there are common functions in the RNA and the 
miRNA pathways list such as HIF-1 signaling, Ras, MAPK, immune system associated pathways, and directly 
cancer-associated pathways.

Conclusions
As mentioned that the major goal of this study was to understand the role of expression profiling of genes and 
the microRNAs and the mutational profiling of the genes and also the clinical relevance in case of HNSCC and 
based on results and the analysis, it leads to the conclusion that the critical pathways which could be dominantly 
enriched or altered in case of HNSCC are associated with metabolism, cell cycle, immune system, and hypoxia 
and the three different datasets of gene expression and microRNA expression, and the mutational data also leads 
to the conclusion that the pathways and the pathways components potentially associated with HNSCC and its 
progression.

Figure 4.   Clinical relevance. Clinical Relevance for the top-ranked genes (based on connectivity of the genes 
within the network generated through network database) and respective inferred pathways. p-value represents 
the clinical significance in terms of survival analysis and the TCGA database and cBioPortal have been used.
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