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Abstract

Females are more affected by psychiatric illnesses including eating disorders, depression,

and post-traumatic stress disorder than males. However, the neural mechanisms mediating

these sex differences are poorly understood. Animal models can be useful in exploring such

neural mechanisms. Conditioned taste aversion (CTA) is a behavioral task that assesses

how animals process the competition between associated reinforcing and aversive stimuli in

subsequent task performance, a process critical to healthy behavior in many domains. The

purpose of the present study was to identify sex differences in this behavior and associated

neural responses. We hypothesized that females would value the rewarding stimulus

(Boost®) relative to the aversive stimulus (LiCl) more than males in performing CTA. We

evaluated behavior (Boost® intake, LiCl-induced behaviors, ultrasonic vocalizations

(USVs), CTA performance) and Fos activation in relevant brain regions after the acute sti-

muli [acute Boost® (AB), acute LiCl (AL)] and the context-only task control (COT), Boost®
only task (BOT) and Boost®-LiCl task (BLT). Acutely, females drank more Boost® than

males but showed similar aversive behaviors after LiCl. Females and males performed CTA

similarly. Both sexes produced 55 kHz USVs anticipating BOT and inhibited these calls in

the BLT. However, more females emitted both 22 kHz and 55 kHz USVs in the BLT than

males: the latter correlated with less CTA. Estrous cycle stage also influenced 55 kHz

USVs. Fos responses were similar in males and females after AB or AL. Females engaged

the gustatory cortex and ventral tegmental area (VTA) more than males during the BOT and

males engaged the amygdala more than females in both the BOT and BLT. Network analy-

sis of correlated Fos responses across brain regions identified two unique networks charac-

terizing the BOT and BLT, in both of which the VTA played a central role. In situ

hybridization with RNAscope identified a population of D1-receptor expressing cells in the

CeA that responded to Boost® and D2 receptor-expressing cells that responded to LiCl.

The present study suggests that males and females differentially process the affective

valence of a stimulus to produce the same goal-directed behavior.
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Introduction

Females are more affected by psychiatric illnesses including eating disorders, depression, post-

traumatic stress disorder and other anxiety disorders than males [1–5]. Animal models have

provided insight into neural mechanisms mediating sex differences in the behavioral and neu-

ral processes that may be involved, like stress and fear-learning [6–12]. However, there has

been little exploration of models in which animals must balance the benefits of a reward

against the risk of an aversive experience, a process that more closely recapitulates real world

decision making.

Conditioned taste aversion is a task which interrogates this situation. This model has been

proposed to have special relevance for eating disorders and conditioned/anticipatory nausea,

conditions experienced disproportionately by women [13]. CTA is a classical conditioning

paradigm which pairs a palatable substance with an aversive visceral experience, such as the

emetic agent lithium chloride (LiCl), producing an aversion to the substance at subsequent

exposure. Unlike many other classical conditioning paradigms, in which an aversive stimulus

is paired with a neutral cue, the use of a palatable substance in CTA requires the animal to pro-

cess the affective valence of the reward versus the aversion [14–16]. This provides an opportu-

nity to understand neural processes by which this decision-making occurs. Animal studies of

sex differences in CTA are mixed but tend to report that females develop less CTA than males

[17–23]. While this seems to be discordant with the human situation, careful reviews of sex dif-

ferences in varying models of classical conditioning suggest that in situations involving stress,

fear, or aversive stimulation, including conditioned taste aversion, males and females do not

show quantitative differences in responding but utilize different strategies [12, 18, 19].

The purpose of the present study was to test the hypothesis that males and females use dif-

ferent strategies to attain the same degree of CTA, with females exhibiting greater influence of

the reinforcing stimulus that is paired with the aversive stimulus than males. We used several

modifications of most published approaches to better capture the ability of this task to assess

affective valence. We used a nutritive substance (chocolate-flavored Boost1) in non-food

deprived animals, which more closely represents CTA outside the confines of a laboratory

[24]. While current studies of CTA focus primarily on performance of the task, this study

aimed to capture both the emotional valence and the neural mechanisms that respond to each

step of the CTA process. We accomplished this goal by evaluating both behavior and Fos

responses to the appetitive stimulus (Boost1), the aversive stimulus (LiCl), and the perfor-

mance of the CTA task. We evaluated a total of 6 conditions: (1) acute Boost1 (AB), (2) acute

LiCl (AL), (3) NaCl injection only (control for acute conditions) (AN), (4) Boost1 previously

paired with NaCl (“BOT), (5) Boost1 previously paired with LiCl (BLT), and (6) context only

task (COT). By including the acute conditions, as well as the control and appetitive task, we

were better able to capture previously underappreciated neural activation in brain regions rele-

vant to the CTA paradigm.

In this study, we characterized behavioral and neural responses to CTA in males and

females. Behavioral observations of the aversive stimulus included pica, ptosis, and lying on

belly (LOB) as indications of nausea in LiCl-treated rats. We also quantitated ultrasonic vocali-

zations (USVs) as a measure of affective valence on task day. Rats engage in two distinct call

patterns: short 55-kHz (which range from 30–70 kHz and are associated with positive emo-

tional valence), and longer 22-kHz calls (associated with negative affective valence). They emit

55 kHz calls during behaviors such as play, mating, social approach, and in anticipation of a

reward [25–28]. We therefore hypothesized that animals would engage in these calls on task

day when anticipating Boost1 that was not devalued with LiCl injection. Conversely, 22-kHz

calls are exhibited in contexts of social withdrawal (e.g. after mating [29]) and to warn the
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colony of potential predators [30–32]. Female rats are more likely than males to exhibit

22-kHz calls in the presence of cat urine [33]. We hypothesized that rats would engage in these

calls on task day when anticipating Boost1 that was previously paired with LiCl.

We used the immediate early gene Fos as a marker of neuronal activity at each stage of

CTA: in response to the acute rewarding, aversive, and neutral stimuli (NaCl injection),

and during control task, Boost1 task and during CTA expression. We analyzed 11 brain

regions known to be associated with the response to reward and/or LiCl. We selected

more rostral regions that are associated with the decision-making process in CTA, rather

than the more caudal regions which serve to transmit sensory signals that are interpreted

by higher-order areas of the brain. Specifically, we included the following regions of inter-

est that have been implicated in CTA. We evaluated the supraoptic and paraventricular

nuclei of the hypothalamus (SON, PVN), which respond to LiCl and have been implicated

in inhibition of food intake [34–41].We also evaluated the Central nucleus of the Amyg-

dala (CeA) [42], which responds both to LiCl and Boost1, and has been shown to also

contribute to the establishment of either positive or negative affective valence of food sti-

muli, but is not required for acquisition of expression of CTA [37, 38, 42, 43]. We also

selected key regions of interests that are critical for establishment of taste memory and

CTA including the basolateral amygdala (BLA) and the agranular (aIC) and granular

(gIC4 and gIC5/6) insula, the interaction of which are thought to be critical for taste mem-

ory and the acquisition and expression of CTA [44–51] as well as the ventromedial pre-

frontal cortex (vmPFC), a highly-interconnected brain region known promote decision-

making and valuation processing [52–55]. We sampled the ventral tegmental area (VTA),

implicated in responses to both reinforcing and aversive stimuli [56, 57], as well as targets

of dopaminergic projections from the VTA, the nucleus accumbens core and shell, which

have been implicated in CTA acquisition and expression [58–64]. We also conducted net-

work analysis to interrogate correlations among the Fos responses to the areas sampled.

Finally, our Fos data prompted us to examine more closely specific cell types in the amyg-

dala using mRNA in situ hybridization.

The following studies showed that males and females differentially assign valence to the

expectation of a rewarding and aversive stimulus, identified cell types that contribute to the

neural processing of these stimuli, and characterized novel behaviors that correlate with pre-

dicted CTA expression and experimental condition.

Results

Behavioral responses during conditioned taste aversion

The CTA experimental design is described in Fig 1A. To first characterize CTA expression, a

dose-response curve was established in both sexes. Animals received either NaCl (0.15M) or

LiCl (19 mg/kg, 38 mg/kg, or 80 mg/kg) (Fig 1B). LiCl-induced behavior was measured as

described in Table 4 in Materials and Methods. Statistics show a main effect of sex [F (1,111) =

6.05, p = 0.015] and a main effect of treatment [F (3,111) = 29.31, p< 0.001] but no interaction

of treatment x sex. Fisher’s post hoc analysis showed that males inhibited Boost1 intake more

than females after pairing with the low dose of 19 mg/kg LiCl.

Female rats drank more Boost1 than males at initial exposure when adjusting for body

weight, with a main effect of sex [F (1,146) = 21.91, p< 0.001, (Fig 1C)] but no effect of estrous

cycle (Fig 1D). Both male and female rats generally increased the volume of Boost1 they con-

sumed at subsequent exposure. This ratio of consumption was similar in males and females

despite the propensity for females to drink more on first exposure.
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To determine whether the estrous cycle contributed to CTA behavior, estrous cycle was

determined by vaginal lavage on task day. Cycle stage did not have a significant effect on CTA

expression (Fig 1E).

LiCl-induced behaviors

Pica was measured after the same range of doses of LiCl: 0 mg/kg (NaCl), 19, 38, and 80 mg/

kg. Both male and female rats engaged in pica equally across doses of LiCl. 2-way ANOVA

Fig 1. (A) Protocol for CTA paradigm. (B) Dose response curve to LiCl (n = 7–23). (C) Boost1 consumption on first exposure by sex (n = 48–100). (D)

Estrous cycle and day 1 Boost1 consumption (n = 8–9). (E) Estrous cycle and CTA expression on task day (n = 10–14). All data expressed as mean

±SEM. These findings show that females consume more of the reinforcer (Boost1) and show less CTA after a low dose of LiCl, but CTA is not

influenced by estrous state.

https://doi.org/10.1371/journal.pone.0260577.g001
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showed an effect of treatment [F (3,158) = 20.79, p< 0.001] and no effect of sex or interaction

of treatment x sex (Fig 2A). Pica events at 80 mg/kg were higher than 38 and 19 mg/kg. Lying

on belly (LOB) was the only nausea behavior measured in this study that correlated with CTA

expression, Pearson correlation = -0.3701 and p< 0.0434 (Fig 2B and 2C). Rats also exhibited

ptosis after LiCl injection (Fig 2D). Neither of these behaviors correlated with CTA behavior

as measured by the ratio of Boost1 consumption on day 2 as compared to day 1, but both

LOB and pica correlated with ptosis ([F(1,43] = 8.00, p< 0.007 and [F(1,43] = 21.5,

p< 0.0001) respectively.

Ultrasonic vocalizations during conditioned taste aversion task

Rats were taken through the CTA protocol as described. We recorded USVs during the first 10

minutes of the habituation process on Day 2, before offering the 2-bottle test, as vocalizations

typically occur in anticipation of a reward.

We found an effect of treatment [F (1,59) = 4.52, p< 0.038, Fig 3A and 3B], with BOT

showing more 55 kHz calls than the BLT. Dividing by sex due to pre-planned contrast showed

that males expressed more 55 kHz calls in the BOT[F (1,24) = 8.53, p = 0.007], while females

were not significant.

Fig 2. (A) Pica events after increasing doses of LiCl (0, 19, 38, and 80 mg/kg) in male and female rats (n = 6–45) (B) LOB was

measured for 1 hour after 38 mg/kg LiCl or NaCl (n = 18–33). Data shown as mean ± SEM. (C) LOB correlation with D2/D1 ratio

(D) Ptosis events measured over 1 hour after 38 mg/kg LiCl or NaCl (n = 18–33). All data shown as mean±SEM. � = different from

NaCl (0 mg/kg). # = different from 19 mg/kg and 38 mg/kg. ��� = p<0.0005. These findings show that among the behaviors induced

by LiCl administration, only LOB correlated with CTA, although the other behaviors correlated with each other.

https://doi.org/10.1371/journal.pone.0260577.g002
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There was a significant correlation of 22 kHz calls in the LiCl-paired environment by 2-way

ANOVA, with a main effect treatment [F (1,59) = 9.48, p< 0.0032, Fig 3C and 3D]. Dividing

by sex due to pre-planned contrast showed that females significantly increased 22 kHz calls in

Fig 3. USVs were recorded for first 10 minutes during CTA task. (A) 55 kHz calls in male and female rats during CTA expression (n = 11–19). (B)

Representative 55 kHz call. (C) 22 kHz warning calls during CTA expression in male and female rats (n = 12–19). (D) Representative 22 kHz call (E) 55

kHz vocalizations in females by cycle only (n = 150–16) (E) 55 kHz calls in females by task and cycle (n = 6–8). Data expressed as mean±SEM. �indicates

different by Fisher’s post hoc except where otherwise. (G) Correlation of 55 kHz and 22 kHz USV’s during the BOT with CTA in males and females

(combined). (H) Correlation of 55 kHz and 22 kHz USV’s during BLT with CTA in males and females (combined).

https://doi.org/10.1371/journal.pone.0260577.g003
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the LiCl-paired environment [F (1,34) = 9.17, p< 0.005], while males were not significant.

This effect was not influenced by estrous cycle state.

Female rat 55 kHz vocalizations were substantially influenced by estrous cycle. By task,

females showed an effect of estrous cycle with no effect of treatment [F (1,24) = 7.38, p< 0.012,

Fig 3D]. One-way ANOVA for each low- and high-estradiol states individually showed females

in high-estradiol states increased 55 kHz vocalizations in the COT group compared to active

task [F (1,12) = 5.20, p< 0.042, Fig 3E]. There was no effect of treatment in the low-estradiol

group. High-estradiol states were associated with an increased likelihood of engaging in 55

kHz calls, and low-estradiol states with decreased the frequency of 55 kHz calls, regardless of

experimental condition [F (1,27) = 6.35, p< 0.018, Fig 3F].

We conducted analysis of potential correlations between USVs expressed by all animals

(both sexes, irrespective of estrous cycle) and performance in the CTA task (D2/D1 ratio).

These results are shown in Fig 3G and 3H. For the BOT group, 22 kHz but not 55 kHz USVs

correlated significantly with CTA. Conversely for the BLT group, 55 kHz but not 22 kHz USVs

correlated with CTA. We also conducted 2-way ANOVA of CTA for the interaction of the

presence and absence of USVs by an individual rat x sex to determine if sex was contributing

to the linear regression observed above. For the BOT, there was a nonsignificant association

between 22 kHz with CTA ([F(1,27] = 3.53, p< 0.07), and the relationship of CTA to 55 kHz

was nonsignificant. These data are consistent with the significant, but minor association

depicted in Fig 3G and 3H. For the BLT, sex had a significant impact on the relationship

between 55 kHz USVs and CTA ([F(1,34] = 6.43, p< 0.02). CTA in females that expressed 55

kHz USVs was higher (less suppressed) than males.

To further understand the contributions of individual animals, we counted the number of

individual animals of each sex that emitted 22 kHz, 55 kHz calls or both under each of the task

conditions. Females were chosen irrespective of estrous cycle stage, as animals of each stage

were distributed equally among groups. These data are shown in Table 1.

In summary, overall animals responded as predicted with an increase in 55 kHz USVs

when anticipating Boost1 and decrease in 55 kHz USV’s after pairing with LiCl (BLT). How-

ever, marked sex differences were observed including a significant effect of estrous cycle, an

increased expression of dual 22 kHz and 55 kHz among individual females compared to males

during BLT and a correlation between 55 kHz USVs during the BLT which correlated with less

CTA in females only.

The Fos response to acute and conditioned stimuli

We evaluated Fos expression to better characterize differences in the neural circuits involved

in the development and expression of the COT, BOT and BLT in males and females. Fos analy-

sis was performed across 11 brain regions associated with the response to rewarding and aver-

sive stimuli (Table 2).

Table 1. Number of individual males and females emitting 22 kHz and/or 55 kHz USVs in different task

conditions.

22 kHz 22 + 55 kHz 55 kHz only Total

F M F M F M

COT 2 0 3 0 1 2 8

BOT 3 1 1 1 6 7 19

BLT 7 2 6 3 2 4 24

Total 12 3 11 4 9 13 51

https://doi.org/10.1371/journal.pone.0260577.t001
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We performed 3-way repeated measures ANOVA (sex x treatment, area as a repeated mea-

sure) on all experimental conditions, which revealed a main effect of sex [F (1,62) = 5.37, p =

<0.001, females greater than males], a main effect of treatment [F (5,62) = 9.57, p =<0.01], a

main effect of area [F (10,462) = 229.69, p<0.001], and an interaction of treatment x area [F

(50,462) = 8.46, p< 0.001]. These results show that Fos expression varies significantly between

conditions, and females generally express more Fos across conditions than males.

We then performed 3-way repeated measures ANOVA for the acute and conditioned sti-

muli separately. For the acute condition, 3-way repeated measures ANOVA (treatment x sex,

area as a repeated measure) revealed a main effect of treatment [F (2,31) = 17.36, p< 0.001]

and area [F (10,231) = 101.64, p< 0.001], and an interaction of treatment x area [F (20,231) =

9.73, p< 0.001], with no effect of sex for the acute stimuli. AB and AL groups both differ from

NaCl control, and different from each other (LiCl greater than Boost1). We conducted lower

level 2-way ANOVA (sex x Rx) for areas that are implicated functionally in CTA and/or

showed statistically relevant findings. These data show that Fos expression is different between

experimental conditions, and Fos expression in individual brain regions shows an effect of

treatment. Fos expression between males and females was not different in these conditions.

The central nucleus of the amygdala (CeA) responds to aversive visceral stimuli such as

LiCl as well as rewarding stimuli [43]. We found Fos in the CeA increased both AB and AL

groups [F (2,30) = 31.39, p< 0.001 effect of treatment] similarly in male and female rats (Fig

4A, atlas location shown in Fig 4C, representative images shown in Fig 4D). The basolateral

amygdala (BLA), known for its role in assessing the valence of a stimulus [65–68], showed an

effect of treatment [F (2,17) = 9.06, p< 0.0021], with no effect of sex (Fig 4B, atlas location

shown in Fig 4C, representative images shown in Fig 4E). Post-hoc analysis showed both AB

and AL groups were increased compared to NaCl control.

The granular insula (gIC) receives both taste and visceral inputs [69–76], and is divided

into several layers. We considered layer IV (gIC4) and layers V/VI (gIC5/6). Fos in gIC5/6

increased in both AB and AL (Fig 5A, atlas location shown in Fig 5C representative images

shown in Fig 5D), showing a significant effect of treatment [gIC5/6; F (2,29) = 14.52, p<

0.001]. Fos in gIC4 likewise increased in both AB and AL compared to AN (Fig 5B, atlas loca-

tion shown in Fig 5C representative images shown in Fig 5E). The gIC4 showed an effect of

treatment [F (2,17) = 15.62, p> 0.001]. These results support the hypothesis that the gIC is

responsive to both rewarding and aversive visceral stimuli.

Table 2. Fos positive neurons±SEM.

Acute NaCl Acute Boost1 Acute LiCl Control Task Boost1 Task LiCl Task

F M F M F M F M F M F M

vmPFC 244±37 229±72 244±20 239±33 266±41 272±51 246±37 241±32 268±52 212±31 249±44 221±43

aIC 183±32 187±40 198±20 215±22 212±50 206±27 232±32 193±14 223±31 176±26 227±21 174±24

gIC5/6 100±38 87±44 197±29 178±77 206±44 206±70 81±45 86±26 162±53 145±23 144±55 99±72

gICL4 134±66 85±28 262±23 253±82 255±23 267±89 148±82 98±64 225±69 184±27 121±45 79±43

NAcC 91±30 98±35 133±7 98±20 100±62 109±29 110±1 76±18 123±26 99±34 101±21 64±29

NAcS 117±39 123±36 125±19 107±33 171±78 141±68 120±26 90±17 153±38 113±41 124±52 118±52

SON 7±5 14±8 11±9 10±12 112±34 112±3 10±10 2±1 21±6 27±27 5±2 45±70

BLA 34±8 32±8 56±16 53±8 67±25 58±15 52±19 24±5 61±10 42±3 52±6 41±15

CeA 44±22 42±26 133±40 108±33 191±73 199±58 30±7 42±60 142±19 115±60 62±48 48±28

PVN 113±51 103±26 122±51 143±29 230±102 226±96 95±36 107±28 91±20 74±45 141±39 134±70

VTA 63±17 50±13 84±30 92±16 93±29 52±15 63±22 69±15 118±22 66±30 83±13 51±9

https://doi.org/10.1371/journal.pone.0260577.t002
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The supraoptic nucleus (SON) responds to acute LiCl [37, 77]. It is the primary site oxyto-

cin production, which is known to have emetic and anorectic properties [40, 78–80]. The Fos

response in the SON increased markedly in response to AL [F (2,16) = 54.36, p< 0.001 effect

of treatment], with no response to AB (Fig 6A, atlas location shown in Fig 6C, representative

Fig 4. (A) Fos response in the CeA across conditions. N = 4–7. (B) Fos response in the BLA across conditions. N = 3–4 (C)

Atlas image of CeA and BLA. (D-E) Representative images.

https://doi.org/10.1371/journal.pone.0260577.g004
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Fig 5. (A) Fos response in the gIC5/6 (N = 4–9) across conditions. (B) Fos response in the gIC4 (N = 3–4) across conditions. (C) Atlas image of gIC5/6 and

gIC4. (D,E) Representative images.

https://doi.org/10.1371/journal.pone.0260577.g005

Fig 6. (A) Fos expression in the PVN across conditions. N = 3–8. (B) Fos expression in the SON across conditions. N = 3–4

(C) Atlas image of SON and PVN. (D,E) Representative images.

https://doi.org/10.1371/journal.pone.0260577.g006
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images shown in Fig 6D). Fos in the paraventricular nucleus (PVN), which contains receptors

for oxytocin and is the primary location for release of stress-related peptides such as cortico-

tropin-releasing hormone and vasopressin [34, 35, 41, 81], likewise increased specifically in

response to the aversive stimulus [F(2,27) = 8.44, p< 0.001, Fig 6B, atlas image shown in Fig

6C, representative images shown in Fig 6E]. These data show that the PVN and SON are

uniquely activated in the AL group, but not the AB group, and are therefore specific to the

nausea response.

The ventral tegmental area (VTA) is responsive to rewarding stimuli and implicated in

addiction [82–84]. Fos in the VTA showed an effect of treatment [F (2,22) = 4.19, p = 0.03],

with AB increased compared to AL and AN (Fig 7A, atlas image shown in Fig 7B, representa-

tive images shown in Fig 7C). These data show that Boost1, but not LiCl, activates the VTA.

Interoceptive signals and contextual stimuli converge in the ventromedial frontal cortex

(vmPFC) and agranular insula (aIC) [44, 55, 73, 85–89]. However, no significant effects were

found in the vmPFC or aIC in any condition, and so these will not be discussed further.

The nucleus accumbens responds to rewarding stimuli, typically in behavioral paradigms

that utilize deprivation. The accumbens shell is more responsive to rewarding stimuli, while

the accumbens core responds to conditioning of rewarding stimuli [63, 90–95]. No significant

Fig 7. (A) Fos response across conditions in the VTA. N = 3–4 (B) Atlas image of the VTA. (C) Representative images.

https://doi.org/10.1371/journal.pone.0260577.g007
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effects were found in either the accumbens core (NAcC) or shell (NAcS) during the acute

stimuli.

3-way repeated measures ANOVA (sex x treatment x area) of the CTA task conditions

revealed a main effect of sex [F (1,31) = 7.33, p< 0.011] and area [F (10,231) = 145.72, p<

0.001] and an interaction of treatment x area [F (20,231) = 6.87, p =<0.001]. Females were

more responsive than males overall. We then ran second order ANOVAs of treatment x sex in

individual areas, and treatment x area in each sex.

Fos in the CeA increased in response to the BOT. It showed an effect of treatment [F (2,29)

= 24.95, p< 0.001] and just missed an effect of sex [F (1,29) = 3.96, p< 0.056]. The BOT dif-

fered from the COT, both globally and in each sex individually (Fig 4A, atlas location shown in

Fig 4C, representative images shown in Fig 4D). Fos in the BLA showed an effect of sex [F

(1,18) = 17.34, p< 0.001, Fig 4B, atlas location shown in Fig 4C, representative images shown

in Fig 4E]. This was driven largely by high baseline Fos immunoreactivity in the COT for

females. Lower-level ANOVA by sex showed a significant effect of condition in males only,

with both BOT and BLT differing from control. These results show that the CeA is responsive

to the rewarding stimulus (BOT group), but not after association with the visceral stimulus

(BLT group). The BLA, meanwhile, was unusually activated in COT for females, but showed

increased Fos response in both the BOT and BLT for males.

The gIC5/6 showed an effect of treatment [F (2,31) = 5.29, p< 0.011], with the BOT differ-

ing from the COT. This difference is driven by the female rats, which showed increases in Fos

response in both the BOT and BLT compared to COT (Fig 5A, atlas location shown in Fig 5C,

representative images shown in Fig 5D). Fos in the gIC4 showed an effect of treatment [F

(2,17) = 4.39, p< 0.014], and no effect of sex (Fig 5B, atlas location shown in Fig 5C, represen-

tative images shown in Fig 5E). The BOT showed increased Fos expression compared to the

BLT globally. The females showed a statistically significant increase in Fos expression in the

BOT compared to BLT conditions. These results suggest that the gIC is responsive to the rein-

forcing stimulus, an effect that is driven by high expression in females.

Females had higher Fos expression in the NAcC than males. It showed an effect of sex [F

(1,31) = 12.31, p< 0.001] but no effect of treatment (see Table 2). Females had higher Fos

expression than males, both globally and in the BOT specifically. Fos in the NAcS showed an

effect of sex [n = 4, F (1,18) = 14.52, p< 0.001], with no effect of treatment (see Table 2). These

results suggest that, in the non-deprived CTA conditions, the NAc is non-contributory.

Neither the PVN nor the SON responded during the task conditions (Fig 6A and 6B, atlas

location in 6C, representative images 6D, E). In the VTA in the task conditions, there was an

effect of treatment [F (2,16) = 3.86, p = 0.043], an effect of sex [F (1,16) = 9.18, p = 0.01], and

an interaction of sex x treatment [F (2,16) = 3.90, p = 0.04]. By Fisher’s post hoc, females were

increased compared to males overall, and BOT in females was increased compared to their

control, as well as compared to males in the BOT (Fig 7A, atlas location 7B, representative

images 7C). These data show that females engage the VTA more than males in response to the

reinforcing stimulus.

Network analysis of Fos responses to control, Boost1, and LiCl tasks

A major goal of the present study was to compare activated neural networks involved in the

typical LiCl conditioned taste aversion task (BLT) with those activated when animals were

anticipating Boost1 presentation without a previous aversive stimulus (BOT) and those acti-

vated when animals experienced only the test cage (COT). We first conducted network analy-

sis of these three conditions. We then subtracted correlations contained in the COT from the

BOT and BLT networks (Fig 8A and 8B respectively). The two networks are quite distinct.
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However, in both, the VTA became central to each network, with all brain areas sample

involved in the BLT—COT network.

Responses of dopamine D1- and D2-receptor expressing cells in the

amygdala to rewarding and aversive stimuli

The role of the amygdala in the response to acute aversive stimuli such as LiCl is well-estab-

lished [37, 63, 77, 96–99]. A study by Kim, et. al., examined the expression patterns and

responses to both fear and reward in multiple neuronal cell types in the CeA and BLA [43], lay-

ing an important groundwork for further interrogation into the function of specific neuronal

cell types. The BLA is responsible for assessing the salience of a signal, whether it be rewarding

or aversive [43, 65–67, 100–102]. BLA outputs to the CeA promote defensive and appetitive

behaviors [43].

Findings above indicating the centrality of the VTA in the task networks stimulated interest

in potential amygdala dopamine involvements in this task. Dopamine receptors are present

throughout the amygdala, but little is known about their reactivity to reinforcing or aversive

stimuli. We used RNAscope to visualize D1 and D2 dopamine receptors (Drd1 and Drd2)

throughout the amygdala. We found that Drd1+ and Drd2+ cells occupy largely distinct ana-

tomical locations within the amygdala. Consistent with previous studies, we found that the

CeC and CeL were composed primarily of Drd2+ cells, while the CeM contained primarily

Drd1+ cells. A smaller population of Drd1+ cells are present in the CeL (Fig 9A). The BLA, in

contrast to the CeA, represents a nearly homogenous population of D1-receptor expressing

cells, with few D2-receptor expressing cells (Fig 9A). Using the mRNA in situ hybridization

method RNAScope, the co-expression of Fos and D1 or D2 receptors was characterized in

each of the acute conditions, as well as during CTA expression, in the BLA and CeA (Fig 9B

and 9C)

Responses of D1-receptor expressing cells in the BLA to acute and conditioned reward-

ing and aversive stimuli. The BLA expressed Fos in response to both rewarding and aversive

stimuli, and during BLT expression in male rats only. The Drd2 cells, which represented a

small fraction of total cells, did not respond in any stimulus-specific pattern (Fig 10A).

We performed 2-way ANOVA (sex x treatment) for total Fos mRNA. In the acute condi-

tions, total Fos mRNA expression in the BLA showed a main effect of treatment [F (2,17) =

32.00, p< 0.001] and an effect of treatment by sex [F (2,17) = 5.73, p< 0.013] for the acute sti-

muli. Post hoc analysis showed AB and AL conditions differed from, globally and for both

Fig 8. Network of significant Fos correlations for control task (A), BOT—COT(B) and BLT—COT(C). Each brain region represented as a node in the

network. Colors indicate correlations with no other brain areas (black), members of the main network (red) and members of a second network (blue, Control

task). Line color indicates positive (black) or negative (magenta) correlations.

https://doi.org/10.1371/journal.pone.0260577.g008
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sexes individually. We next considered the co-expression of Fos+/Drd1+ cells. 2-way ANOVA

(sex x treatment) revealed an effect of treatment [F (2,22) = 4.03, p< 0.005] and an interaction

of treatment x sex [F (2,22) = 4.03, p< 0.037]. Post hoc analyses revealed a difference between

the AB and AL conditions compared to AN, both globally and by each sex individually.

Fig 9. (A) Distribution of Drd1+ and Drd2+ cells across the amygdala. BLA = basolateral amygdala. CeA = central nucleus

of the amygdala. ASTA = amygdalostriatal transition area. (B) Representative images of RNAScope in acute LiCl and acute

Boost11 conditions in the CeA. (C) Representative images of RNAScope in acute LiCl and Boost1 conditions in the

BLA.

https://doi.org/10.1371/journal.pone.0260577.g009
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For the task condition, 2-way ANOVA revealed a main effect of treatment [F (2,23) = 5.66,

p< 0.001] and an interaction of sex x treatment [F (2,23) = 9.46, p< 0.0016]. There was no

main effect of sex. Post hoc analysis revealed both the BOT and BLT differed from the COT.

By sex, males in the BOT and BLT differed from their respective controls. Females did not dif-

fer from controls, which had high levels of baseline Fos.

The same pattern emerged when considering Fos+/Drd1+ co-expressing cells (Fig 10B).

There was an effect of treatment [F (2,23) = 8.59, p< 0.0024] and an interaction of sex x treat-

ment [F (2,23) = 9.64, p 0.0014]. There was no main effect of sex. As with total Fos, the BOT

and BLT conditions showed greater Fos mRNA expression than the control. As with total Fos

only males differed in the BOT and BLT conditions from their respective controls.

The CeA is responsive to rewarding and aversive stimuli in a cell-specific manner.

Representative images for the CeA are shown in Fig 9C and results in Fig 10B. Unlike the BLA,

the CeA responded to rewarding and aversive stimuli in a cell-specific manner. In the acute

condition, ANOVA revealed an effect of treatment [F (2,17) = 30.32 p< 0.001] for total Fos

+ cells. There was no main effect of sex or treatment x sex interaction. Post hoc analysis

revealed the AN differed from both the AB and AL conditions.

When considering Fos+/Drd1+ co-expressing cells, there was an effect of treatment [F

(2,17) = 100.22, p =< 0.001]. There was no main effect of sex or interaction of sex x treatment.

Fig 10. (A) RNAScope analysis of co-expression of Fos and Drd1+/Drd2+ cells in the basolateral amygdala across conditions. N = 3-4/condition (B)

RNAScope analysis of co-expression of Fos and Drd1+/Drd2+ cells in the central nucleus of the amygdala across conditions. N = 3-4/condition. � = p<0.05; ��

= p<0.005; ��� = p<0.0005; ���� = p<0.0001 by Tukey’s post hoc.

https://doi.org/10.1371/journal.pone.0260577.g010
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The AB condition differed from the AN condition, with robust expression of double positive

cells (Fos and Drd1). There was no difference between the AL and AN condition.

The opposite association of Fos and condition was found for Drd2 expressing cells. By

ANOVA there was an effect of treatment [F (2,17) = 38.63, p< 0.001]. There was no effect of

sex or interaction of treatment x sex. The AL condition showed significant expression of Fos

in Drd2+ cells, but not the AB condition.

In the task condition, there was an effect of treatment [F (2,18) = 40.24, p =<0.001], with

no effect of sex or treatment x sex interaction. There was significant mRNA expression of Fos

in the BOT, but not the BLT condition. When considering Fos+/Drd1+ cells, there was an

effect of treatment [F (2,18) = 53.15, p < 0.001]. As with the acute condition, there was signifi-

cant overlap between Fos+ and Drd1+ cells.

Altogether, these data showed that Drd1+ cells are differentially responsive to the rewarding

stimulus in the CeA, while Drd2+ cells are differentially responsive to the aversive stimulus in

the CeA. Following treatment with acute LiCl, Fos response showed both anatomical and neu-

ronal cell type specificity, with activation occurring primarily in the CeL and CeC, and co-

expressing with Drd2-expressing cells. Conversely, in Fos and Fos/drd1 co-expression were

observed in both AB and BOT.

Boost1 produced a Fos response in the CeM and CeL and co-expressed with Drd1-expres-

sing cells. Increases in Fos and Fos/Drd1 co-expression were observed in both AB and BOT.

Discussion

Conditioned taste aversion is most often characterized as a task which reflects avoidance/aver-

sion. By assessing behavioral and neural responses to both the reinforcing and aversive stimu-

lus as well as the reinforcing and aversive task (BOT, BLT), the present findings suggest that

male and female rats respond behaviorally in a different way and activate different brain areas

in anticipation of reinforcing or aversive stimuli. Females demonstrated greater responsiveness

to the rewarding stimulus. This responsiveness was reflected in their behavioral tendency to

drink more Boost1 than males in both AB and BOT conditions, and in Fos activation in the

VTA and other areas during the BOT. Furthermore, the correlation between less CTA and 55

kHz USVs in females suggests that their behavior in the BLT was more influenced by memory

of the reinforcing aspects of the task than males, as we predicted. Interrogation of the neural

network revealed that the reinforcing and aversive stimuli activate circuits in a stimulus- and

cell type-specific manner, suggesting that opposing stimuli activate parallel, but distinct, neural

pathways.

Behavioral responses to rewarding and aversive stimuli

CTA is an essential behavior to prevent further consumption of foods that may be toxic and

should be avoided. The devaluation of the hedonic stimulus when it is paired with an aversive

visceral stimulus is critical to the CTA paradigm. For example, delivering only an aversive

stimulus like footshock can reduce CS consumption without changing palatability, while aver-

sive visceral experience reduces both consumption and palatability, as measured by CS con-

sumption in the home cage [103–105]. Here, we use USVs to show that the behavior is more

complex than simply showing aversion. The literature demonstrates that USVs show high lev-

els of individual variation, including a substantial proportion who do not vocalize at all [27, 64,

106]. Despite this variability, we found that animals were more likely to engage in USVs that

reflected the relative reinforcing or aversive qualities of their anticipated stimulus. Indeed, ani-

mals whose reinforcing stimulus was previously paired with LiCl were more likely to emit both
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55 kHz and 22 kHz calls, suggesting that they are responding in anticipation of both the

hedonic and aversive stimulus.

USVs were remarkably sex specific. They proved to be a useful tool to assess sex differences

in both positive (55 kHz) and negative (22 kHz) response to stimuli during CTA expression.

Males expressed 55 kHz calls in anticipation of Boost1 and inhibited 55 kHz calls when the

Boost1 was devalued with LiCl. The expression of USVs is consistent with the literature on

USVs in CTA [107] and our prediction. Increases in 55 kHz in the context previously paired

with Boost1 suggests animals are assigning a positive valuation to the hedonic stimulus. The

converse inhibition of 55 kHz USVs reinforces the notion that USVs can be correlated with an

expected outcome. Vocalization patterns in females reflected high-estradiol (more vocal) and

low-estradiol (less vocal) states but females were more likely to engage in 22 kHz calls than

males. This result could suggest that females are more likely to attach a negative valuation to

BLT or that they are more likely, in general, to elicit warning calls to alert the colony of nearby

dangers. The latter hypothesis is supported by studies showing females are more likely than

males to increase 22 kHz calls in the presence of a predator [108], especially considering their

comparable sensitivity to CTA. In addition, during the BLT, more females emitted both 22

kHz and 55 kHz USVs, suggesting as predicted that they would exhibit behaviors indicating

greater anticipation of Boost1 even after pairing with LiCl. USVs provide additional insight

not only into the animal’s valuation of the stimulus, but to how they communicate this

valuation.

This is the first study to comprehensively evaluate nausea behaviors in both male and

female rats in CTA. We found that male and female rats showed similar nausea behaviors after

LiCl administration. Of the three acute nausea behaviors we observed, only lying on belly cor-

related with CTA expression, suggesting this behavior may be an expression of more severe

nausea than pica. Further studies in CTA and other nausea-relevant paradigms may prove use-

ful in characterizing how this behavior correlates to nausea.

The Fos response to rewarding and aversive stimuli

CTA is a unique form of learning in that the stimuli do not need the same temporal proximity

as other operant learning and behavioral conditioning paradigms [109, 110]. The nature of

digestion is such that visceral malaise may occur minutes to hours after the ingestion of a toxic

substance. Hedonic and aversive inputs follow parallel pathways: caudal regions, such as the

nucleus of the solitary tract and parabrachial nucleus, increase Fos in response to both LiCl

and sucrose [111, 112]. These circuits then converge in brain regions like the amygdala to

assess valence. The responses to acute stimuli observed in the present study replicated these

basic findings [37, 63, 77, 99, 113–119].

We hypothesized intersection of the neural circuits conveying information about reinforc-

ing and aversive stimuli may be found within the circuit itself, reducing the necessity for events

to overlap in time for learning to occur. This schema was borne out in our data. The neural cir-

cuit underlying the response to the acute stimuli overlapped in key brain regions, including

the BLA, the CeA, the gIC5/6, and the gIC4. In contrast to brain areas that respond to both

acute stimuli, the PVN and SON uniquely responded to the aversive stimuli, and the VTA

responded uniquely to the reinforcing stimuli. Sampling of more caudal areas may prove use-

ful in delineating the cell type-specific circuit in future studies. Regions such as the NTS [120–

127] and PBN [97, 98, 112, 121, 127, 128] which were omitted in the present study to focus on

rostral brain areas that are involved in higher-order processing of both aversive (emetic) and

rewarding stimuli, and future use of cell-type specific probes will allow more complete dissec-

tion of this circuit.
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The gustatory cortex (GC, which processes taste [70, 71, 75, 129]) and visceral insular cortex

(VIC, which processes visceral stimuli [75, 76, 130, 131]) are topographically distributed

throughout the insular cortex, including layers IV, V, and VI [75, 76, 130, 132, 133]. Our data

demonstrate that the GC and VIC show significant overlap in Fos expression [75, 134]. The

GC reacts to novel taste and lesions are known to cause a decrease in neophobia [58, 71, 129,

135]. Additionally, lesions to the GC can attenuate CTA on first trial, a deficit that disappears

with repeated CS-US pairings [72]. These studies raise the question whether the loss of neo-

phobia acts as a latent inhibition, reducing CTA by making the CS appear familiar [42]. An

alternative explanation from our studies is the possibility that lesions of the GC likewise

destroy cells that are part of the VIC, and thereby reduce the nausea effects of LiCl. Lesion

studies that also assess nausea behavior would help to clarify this question. Additionally, our

findings of cell-specific Fos responses in the CeA suggested that future studies which interro-

gate cell-specific responses in areas like the highly heterogenous insular cortex to rewarding

and aversive stimuli in a cell-specific manner will provide new insight into integration of affec-

tive valence to produce motivated behavior.

In contrast to fear learning, CTA involves the convergence of two stimuli of opposing

valence, resulting in complex decision-making rather than a fear-induced defensive response.

The RNAScope data showing that the response to rewarding and aversive stimuli show cell-

type and anatomical specificity in the CeA suggests that other regions may show similar stimu-

lus-specificity when specific cell populations are evaluated. How these two neural networks

converge to produce the memory of the experience, and the subsequent decision-making pro-

cess that guides the animal’s behavior, is an important area of future study.

We were surprised to see there was no activation of the nucleus accumbens shell after AB,

or the core during BOT. One explanation is that most studies showing such activation

increased the reward of the hedonic substance by water and/or food deprivation during CTA

acquisition, while we did our studies in animals that were not deprived. Studies show deprived

animals express higher levels of Fos in these key brain areas compared to satiated animals [92,

94].

We found no sex differences in the neural activation in response to the acute stimuli in any

of 11 brain regions we assessed. This was a surprising result, as females drink more Boost1 at

first exposure and are relatively less sensitive to developing CTA. It is possible that our limited

analysis did not sample a critical area that accounts for these differences. A more comprehen-

sive study of the neural circuit that includes other brain regions associated with CTA, such as

the bed nucleus of the stria terminalis or parabrachial nucleus may be of value.

The Fos response during CTA expression

Our novel experimental approach included evaluation of the neural circuits engaged during

both the acute rewarding and aversive stimuli, as well as during the reinforcing task (expecta-

tion of Boost1) and CTA task (expectation of Boost1 after pairing with LiCl). Neural activa-

tion during BOT was similar to that of AB, while activation during the BLT differed

considerably from AL. The rewarding effects of Boost1 that were not devalued with LiCl were

reinforced with repeated offerings of the hedonic stimulus. We therefore saw similar neural

activation during expression of the BOT. There was no increase in Fos with the second pairing,

likely because the taste is no longer novel [136, 137]. When this same stimulus was devalued

with LiCl, drinking behavior was reduced, and the circuit was inhibited.

During CTA expression, females broadly expressed higher levels of Fos than males. By area,

they were significantly more responsive in the gIC5/6 and gIC4 during the BOT. We also

found that the VTA increased with the reinforcer (BOT) in only female rats. The VTA is
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known for its role in reinforcement and addiction, and sends outputs to the nucleus accum-

bens, amygdala, and frontal cortex [83, 138–140]. Our data support the hypothesis that female

rats find the sweet taste more reinforcing and are therefore less sensitive to CTA, especially at

lower doses of LiCl. Cell-type analysis would benefit our understanding of how females differ-

entially process sweet taste, a critical area of study in the field of eating disorders [141–149].

This result is particularly interesting considering their relative lack of USV expression in

response to the rewarding stimulus. While males are more unequivocal about the “goodness”

of Boost1, as evidenced by their consistent expression of 55 kHz USVs, females in low-estra-

diol states do not express 55 kHz USVs, despite drinking comparably.

Network analysis of Fos correlations

Network analysis of Fos regional correlations during COT, BOT and BLT provided insights into

the Fos responses that were not revealed by simple analysis of Fos responses by condition. Each of

the three task conditions elicited unique networks of brain area interactions. The control task was

the simplest, with two independent small networks and 3 areas with no interactions (vmPFC,

NACs and BLA). In the BOT and the BLT, the aIC was a central node in the more complex inter-

actions, a finding consistent with its known role in ingestive tasks and suppression of ingestion

associated with sickness [150]. The BLA exhibited correlated responses with aIC and vmPFC in

both tasks, also a relationship predicted by BLA’s known role in learned responses (including to

taste and ingested stimuli), both appetitive and aversive[48, 101, 151].

The most impressive demonstration from this analysis is the centrality of the VTA in both

BOT–COT and BLT–COT networks, and its correlations with PFC, NACs, BLA and CeA with

the Boost1 task and both NACs and NACc in the LiCl-Control task. A significant body of

work has identified specific subpopulations of dopamine neurons in the VTA that respond to

positive and negative stimuli through interaction with nucleus accumbens and prefrontal cor-

tex, as well as its innervation of the CeA and BLA [150, 152–156]. All these associations are

present in this single model.

Network analysis also revealed previously unexpected relationships. The presence of the

PVN and vmPFC in all three task networks in both Boost1 and LiCl was not predicted from

their Fos levels in individual tasks, given their lack of significant Fos response to task. For

PVN, its conflicting negative relationship at least with gIC5/6 and gIC4 suggests that heteroge-

nous populations in the brain area were activated by varying aspects of these conditions. This

speculation is strengthened by the more central involvement of the PVN in the BOT–COT

and BLT–COT task networks once these Control influences were subtracted. vmPFC Fos was

the highest in almost all conditions, but the specificity of its role in each condition might not

have been revealed without network analysis.

The multiple interactions revealed from the modest number of brain areas sampled (11)

demonstrates the potential value of network analysis, especially the subtraction approach of

removing correlations associated with control conditions. For example, it suggests that mecha-

nistic interrogation of dopaminergic influences in CeA and BLA during CTA with approaches

like optogenetics and/or DREADDS could be informative. More complex networks can be

identified by sampling many brain areas, as has been shown for fear memory [157] and in

response to both approach and avoidance associated with social interactions [158].

Dopamine receptors in the amygdala respond to rewarding and aversive

stimuli

Our studies showed that Drd1+ neurons were responsive to the rewarding stimulus, while

Drd2+ cells were responsive to the aversive stimulus. This is the first time these cell types have
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been studied in the context of CTA. Kim, et. al. [43] showed that silencing Drd1+ neurons in

the CeA inhibited feeding behavior in mice. However, other studies demonstrate that direct

blockade of Drd1 in the CeA did not affect feeding behavior, suggesting these neurons are

being activated by something other than dopamine. Drd1+ neurons highly co-express with 3

other neuropeptides: tachykinin 2, neurotensin, and somatostatin. Although these neuronal

cell types do not affect behavior when manipulated on their own, Kim shows that these cell

types may work collectively to coordinate feeding behavior.

Only about 30% of Fos+ neurons in the CeA co-expressed with Drd1+ cells in response to

the appetitive stimuli, suggesting additional cell types may also be important for the processing

of the reward. A similar percentage of Drd2+ receptors were responsive to LiCl. A more thor-

ough examination of the CeA in response to a food reward and aversive stimulus would be

useful in delineating the cell types that process this stimulus.

Contrary to our findings in the CeA, Drd1+ neurons in the BLA responded to both reward-

ing and aversive stimuli, without input from Drd2+ neurons. These findings suggest that Drd1

+ neurons may receive innervation from more caudal areas that respond specifically to these

stimuli [159]. Additionally, the BLA is known to respond to rewarding or aversive stimuli in a

location-specific manner, with the rostral BLA responding to aversive stimuli and the caudal

BLA responding to rewarding stimuli. The dual responses observed in the present study may

reflect the location at which we sampled the BLA, which was in the central zone where these

two stimuli converge [160].

In summary, these findings support our hypothesis that CTA is best characterized as a task

in which animals must balance rewarding and aversive stimuli. As such, it has significant rele-

vance as a task which reveals how affective valence is integrated into decisions about behavior.

The present study provides the first comprehensive comparison of how male and female rats

respond to the reinforcing stimulus, aversive stimulus and integrate this information to

express CTA. These findings support our hypothesis that females may attach more significance

to the reinforcing stimulus in assessing the balance of positive and negative affective valence in

performing this task.

The USV analysis showing inhibition of 55 kHz calls and increased 22 kHz calls in the LiCl-

paired context suggests that additional neural centers may be involved in assigning valence

during the CTA task that are not captured by LiCl behaviors or our Fos analysis. Our Fos anal-

ysis of rostral brain regions revealed a significant role of the CeA and granular insula, which

represents both the gustatory and viscerotopic cortices, in processing of the reinforcing and

aversive stimuli and showed increased global Fos expression in females overall during the task.

Further characterization of both the acute and conditioned circuits in males and females will

help clarify how these stimuli are differentially processed between the sexes. Finally, our data

found a novel role for specific cell types in the CeA and BLA that have not previously been

studied. These results suggest that similar cell-specific analysis in cortical areas will continue to

reveal details of the neural circuit(s) engaged while animals learn this type of task.

Materials and methods

Animals

Male and female Sprague Dawley rats [post-natal day (PN) 60, Charles River Laboratories,

Raleigh, NC] were received 1 week before behavior tests. Rats were housed by sex in ventilated

plastic cages with ad libitum PM5001 Rodent Chow and water on a 7 am-7pm light/dark cycle.

Females were not selected based on estrous cycle stage, but cycle was determined by lavage on

the final day of behavioral testing. A single lavage was performed as repeated lavages can
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establish place preference for the location of lavage and suppress behavioral responses to other

reinforcers [161].

Conditioned taste aversion protocol

Animals were conditioned to ip injections with NaCl for 3–4 consecutive days prior to experi-

mental procedures. The conditioned taste aversion protocol (Fig 1A) was conducted over 3

days using a slight modification of the Boost1method described by Anderson and colleagues.

[106] On day 0, animals were water deprived overnight and then conditioned to test cage.

Water bottles were weighed and placed on cages with spouts pointing way. Rats were allowed

to habituate to their new environment for 30 minutes, after which they were given access to

water for 60 minutes in the test cage, to condition them to drinking from new bottles. Water

bottles were weighed again, and consumption was measured.

On day 1, animals were returned to the test cage and allowed to habituate for 30 minutes.

They were then offered Boost1 and allowed to drink for 60 minutes. Boost1 consumption

was measured. If animals drank a minimum of 1 mL of Boost1, they were then injected with

LiCl (38 mg/kg, 0.15M) or the equivalent volume of isotonic NaCl. This dose was selected to

achieve a robust Fos response for interrogation of the neural network. They were observed for

60 minutes for LiCl-related behaviors. They were then returned to their home cages and

allowed to drink and eat ad libitum.

On day 2, non-water deprived animals were returned to the same test cage and allowed to

habituate for 30 minutes. They were then given a 2-bottle test, offering either Boost1 or water

for 60 minutes. Boost1 and water consumption were measured, and the ratio of day 2/day 1

(D2/D1) consumption was calculated. After 60 minutes of re-exposure to the Boost1, animals

were perfused with formalin and brains collected for Fos analysis. Brains were post-fixed in

formalin overnight at 4˚C, then cryoprotected in 30% sucrose solution (30% sucrose, 70%

PBS) for 3–4 days. Brains were flash-frozen in brain molds in ethanol/dry ice bath, in 2:1 30%

sucrose/tissue freezing media solution. They were stored at -80˚C until ready to cut for immu-

nohistochemistry or RNAScope.

Animals whose brains were analyzed for the acute stimulus were taken through day 0 as

described. On day 1, they were allowed to habituate for 30 minutes in the test cage before

receiving LiCl (38 mg/kg) or the equivalent of isotonic NaCl or were allowed to drink Boost1

for one hour, after which they were perfused, and brains collected for Fos analysis (see

Table 3). Experimental conditions are described in Table 3.

Behavior scoring

Three behaviors were time-sampled as a behavioral estimation of nausea [pica, ptosis, lying on

belly (LOB)]. As rats do not vomit, they will often attempt to dilute an ingested toxin through

pica, the consumption of non-food substances. LiCl behaviors were assessed using a modified

version of published measures: Pica and LOB are well known LiCl behaviors [162–164], and

ptosis was included following the observation that it occurred frequently in LiCl-treated ani-

mals compared to NaCl-treated animals. Animals are observed for two consecutive 15-second

Table 3. Experimental conditions.

Acute Stimulus Conditioned Stimulus
Boost1 Boost1 paired with NaCl

LiCl (38 mg/kg) Boost1 paired with LiCl

NaCl (control) Context only control

https://doi.org/10.1371/journal.pone.0260577.t003
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blocks (30 seconds total) every 5 minutes for 1 hour. Animals were given a score of 0–3 as

described in Table 4.

Scoring of ultrasonic vocalizations

In a within-groups design, rats were split by sex, treatment [NaCl + H2O (Control), NaCl

+ Boost1, and LiCl + Boost1] on Day 2 of CTA experiment (task day). USVs were recorded

with an Echo Meter Touch 2, from Wildlife Acoustics, an accessory that attaches to a lightning

port on the Apple iPhone. The Echo Meter Touch Bat Detector iOS app (v 2.7.20) was used to

record the vocalizations. Recordings were uploaded from the smartphone to a secure online

server. Manual scoring of the USVs during the 10-minute recording period was done using the

visualization software from Wildlife Acoustics, Kaleidoscope Pro Analysis. Scoring was performed

by a blinded observer in batches of 1-minute intervals. The scorer determined how often the rat

engaged in>10 55 kHz vocalizations, or>1 22 kHz vocalizations in each interval. Scores were

calculated as a percentage of the 10 1-minute blocks in which the vocalizations occurred.

Collection of brain area slices and immunohistochemistry

Brains were cut on a Leica CM3050S cryostat to produce 30 uM slices at approximately

180 μm intervals (every 6th slice) through the rostral to caudal extent of the region. The coordi-

nates that were sampled are provided in Table 5. Coordinates were based on the Paxinos and

Watson Rat Brain Atlas. Three to four slices were stained for each rat, and 2 images (both

hemispheres) were taken per slice and counted at 20X. Manual counts of fos+ cells using FIJI

were performed under blinded conditions for each animal and averaged. Six slices per region

were counted per region for each rat and averaged to provide a single value for each area/rat

except for the PVN which yielded only 2 slices using the cutting parameters described above.

Table 5.

Brain area Coordinates

vmPFC Bregma +3.72 to +3.00

aIC Bregma +1.92 to +1.20

gIC4

gIC5/6

NAcC

NAcS

SON Bregma -1.20 to -1.55

BLA Bregma -2.16 to -2.80

CeA Bregma -2.16 to -2.80

PVN Bregma -1.80 to -2.04

VTA/PBP Bregma -4.80 to -5.04

https://doi.org/10.1371/journal.pone.0260577.t005

Table 4. Scoring of LiCl behaviors.

Behavior Score = 0 Score = 1 Score = 2 Score = 3

Pica No pica Some pica while still moving

around

Pica in a crouched position, but still moved or

looked around

Remained crouched, engaged in pica for most of

15-second interval

LOB No LOB Some LOB, still in crouched

position

Some LOB, more flattened posture Entirely flattened posture

Ptosis No ptosis Ptosis for <5 seconds Ptosis for most interval (>5 seconds, <10 seconds) Ptosis for entire interval

https://doi.org/10.1371/journal.pone.0260577.t004
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Slices were stored in 1:1 TBS/glycerol solution at -20˚C until ready to stain. To stain, slices

were first washed in 0.2% Triton-X in TBS solution 3 times. Slices were then blocked for 1

hour in solution of 0.3% Triton-X and 5% normal goat serum (NGS) in PBS. Slices were

stained overnight in 0.3% Triton-X, 5% NGS, and 1:20,000 anti-Fos antibody (Abcam—

ab190289) with gentle shaking at 4˚C. Slices were then washed 3 times in solution of 0.3% Tri-

ton-X and 5% NGS in PBS (10 minutes first wash, 30 minutes second wash, 40 minutes third

wash). Slices were then stained with secondary antibody (AlexaFluor 488, Invitrogen–A-

11034) in 0.3% Triton-X, 5% NGS, and 1:200 secondary antibody for 2 hours. Slices were then

washed in 1X PBS (10 minutes first wash, 30 minutes second wash, and 40 minutes third

wash), with DAPI (R&D Systems 5748) added at a dilution of 1:10,000 for last 10 minutes of

second wash. Slices were mounted on VWR Superfrost1 Plus microscope slides with a drop

of Vecta-Shield anti-fade medium (Vector Laboratories 101098–042).

Vaginal lavage and estrus cycle analysis

A vaginal lavage smear was performed on all female test subjects prior to transcardial perfu-

sion. Vaginal cytology was analyzed to determine the phase of estrous cycle. The method of

estrous cycle analysis as previously described [161]. Animals were grouped into high estradiol

states (proestrus/estrus) and low estradiol states (metestrus/diestrus).

mRNA In Situ hybridization

Brains were cut at 14 uM on a Leica CM3050S cryostat and placed on a Superfrost1 Plus

Micro Slide. 3 consecutive slices were placed on each slide. Slices were collected ~90 uM apart.

Slides were desiccated at -20˚C for 20 minutes, then placed into -80˚C with desiccants for long

term storage. Slides were stained within 1 month of collection for optimal signal.

When ready to stain, slides were placed in 1X PBS for 5 minutes to remove OTC then placed

in the HybEZ™ oven for 30 minutes at 60˚C. They were then transferred to cold PFA for 15 min-

utes at 4˚C, after which they were taken through the mRNA in situ hybridization procedure as

outlined for RNAscope by ACDBio, using Protease IV. Probes were for Fos (Rn-Fos—403591),

Drd1 (Rn-Drd1a-C2, 317031-C2), and Drd2 (Rn-Drd2-C3–315641-C3). The Fos probe contained

20 oligo pairs and targeted region 84–1218 (Acc. No. NM_001256509.1) of the Fos transcript. The

Drd1 probe contained 20 oligo pairs and targeted region 104–1053 (Acc. No. NM_012546.2) of

the DRD1 transcript. The Drd2 probe contained 20 oligo pairs and targeted region 445–1531

(Acc. No. NM_012547.1) of the DRD2 transcript. Secondary antibodies were obtained from

Akoya (OPAL 690, OPAL 520, and OPAL 570) and diluted to a concentration of 1:750. All experi-

ments were run with positive and negative controls. The positive control targeted Polr2a (C1),

PPIB (C2), and UBC (C3). The negative control targeted DapB (of Bacillus subtilis strain).

Imaging and analysis

Slides were imaged with an Axio Imager upright microscope at 20x (16 z-stacks 2 uM apart) for

IHC or 20x (8 z-stacks 1 uM apart) for mRNA in situ hybridization. Images were z-projected for

max intensity using FIJI (ImageJ) software and Fos+ neurons were manually counted. 2–6 slices

per region were imaged and counted per animal. Counts were averaged per animal.

Drugs

LiCl was purchased from Sigma Aldrich (203637). LiCl was dissolved in distilled sterile water

to a concentration of 0.15M. Sterile isotonic saline (NaCl, 0.9%; 0.15M) was used as a control

injection.
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Network analysis

Network analysis of the COT, BOT and BLT were conducted using slight modifications from a

similar approach used to analyze networks activated by D1 and D2 agonists in developing rat

brain [165]. Correlations among Fos levels in brain areas in each task condition were estab-

lished by developing a matrix of correlations for each pair of brain areas for every subject.

Males and females were combined to generate adequate statistical power to conduct the analy-

sis. A symmetrical matrix of statistically significant (p< 0.05 or better) Pearson correlation

coefficients (r) was created in NCSS. All other correlations were set at 0. This matrix was

loaded into UCINET 6.370 (Analytic Technologies, Lexington KY) [166]. Networks for COT,

BOT and BLT were visualized with Netdraw. Each brain area appears as a node, and statisti-

cally significant correlations between specific pairs of brain areas are indicated as a line

between brain areas. Figures are derived from UCINET graph theoretic layout with distance

and node repulsion which provided the clearest illustration of all the correlations detected.

Members of independent substructures identified by UCINET software (in COT only) are

indicated by the color of the symbols. Brain areas with no Fos correlations with other brain

areas are shown in the upper left. A secondary analysis of BLT and BOT networks after sub-

traction of correlations associated with the COT was conducted. All Pearson correlation coeffi-

cients were converted to Z scores using the Fischer transformation (⅟2[ln (1 + r)–ln (1-r])

then Z scores for control conditions were subtracted from BOT and from BLT, Z-scores were

back-translated to Pearson correlation coefficients, t values calculated using the formula r�
p

(n-2)/
p

(1-r2). Significant correlations in the subtraction networks were visualized as described

above. This approach was selected in lieu of more typical heatmaps of Pearson correlation

coefficients as it provides more information about relationships among multiple areas and is

more rigorous because it includes only statistically significant correlations.

Statistics

All results were analyzed by ANOVA with post hoc Fisher’s exact test corrected for multiple

comparisons using the statistical package NCSS. Behavioral results were analyzed by 2-way

ANOVA (sex x treatment). Fos responses were analyzed by 3-way repeated measures ANOVA

(sex and condition as between measures and brain area as repeated measure). All conditions

yielded area as a main effect, and second level ANOVAs were run for each brain area indepen-

dently. Fisher’s LSD post hoc was used to determine groups that differed from control. Tukey’s

post hoc was used in RNAScope experiment. N for all behavior and Fos experiments was esti-

mated by power analysis and variance observed in previous experiments with CTA behavior

and Fos analysis of multiple brain regions [120–122, 124, 167–170]. Individual differences

shown in estrous cycle and USVs to illustrate individual variability in behavior.
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