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Abstract

Entomophthoralean fungi are insect pathogenic fungi and are characterized by their active

discharge of infective conidia that infect insects. Our aim was to study the effects of temper-

ature on the discharge and to characterize the variation in the associated temporal pattern

of a newly discovered Pandora species with focus on peak location and shape of the dis-

charge. Mycelia were incubated at various temperatures in darkness, and conidial discharge

was measured over time. We used a novel modification of a statistical model (pavpop), that

simultaneously estimates phase and amplitude effects, into a setting of generalized linear

models. This model is used to test hypotheses of peak location and discharge of conidia.

The statistical analysis showed that high temperature leads to an early and fast decreasing

peak, whereas there were no significant differences in total number of discharged conidia.

Using the proposed model we also quantified the biological variation in the timing of the

peak location at a fixed temperature.

Introduction

Fungi are important as biological control agents, and their effect is due to their infective spores

[1]. The mechanisms for spore releases differ among fungal taxons, one mechanism is shooting

off spores as found in fungus order Entomophthorales, which are insect and mite pathogens.

Conidia are the infective units of entomophthoralean fungi, and for the majority of species

they are actively discharged [2]. The large conidia (mostly between 15 and 40 microns in

length) in Entomophthorales demands high energy to be discharged. The spore discharge

mechanism for entomophthoralean fungi allow fungi to convert elastic energy into kinetic

energy, ensuring that spores are discharged at sufficient speeds.

The infection success depends, among other things, on the attachment of the discharged

conidium after landing on host cuticle [3]. The conidia of entomophthoralean fungi are dis-

charged with fluid from the conidiophore, which further assist the conidium to stick to host

cuticle after landing [4, 5]. Once the conidia of entomophthoralean fungi are discharged from
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the conidiophores they have a short longevity [6, 7]. Fig 1 shows a conidium of Pandora sp., a

species from Entomophthorales isolated from an infected Psyllid in 2016 [8].

The temporal pattern of conidial discharge from infected and dead hosts have been studied

for several species of Entomophthorales belonging to the genera Entomophthora, Entomo-
phaga, Pandora and Zoophthora [5, 9–12]. The studies show the same overall pattern: after a

lag phase of a few hours after the death of the host, conidial discharge is initiated. Depending

on host species, fungus species, and temperature, the peak in discharge intensity will be

reached within one or two days, thereafter the intensity drops although conidia may still be

produced and discharged several days after death of the host. In principle the same pattern

appears when conidia are discharged from in vitro cultures. Here the starting point will be

when a mycelium mat, which has been grown on nutritious solid medium, is transferred onto

for example moist filter paper or water agar, from where conidial discharge will be initiated.

The conidial discharge of different species of Entomophthorales is affected by temperature in

relation to the intensity and the total number of discharged conidia [10, 13–15].

It is essential to study mechanisms of spore discharge in insect pathogenic fungi [16], effects

of environmental factors on spore discharge and also, modelling of spore dispersal in the field

[17]. As pointed out by [17], there is a need for more studies on spore discharge and the

modelling of dispersal in order to understand natural ecosystem functioning and in order to

develop more biological control based on fungi. It is, however, a methodological challenge to

study patterns at a quantitative level over time of conidial discharge in Entomophthorales

since the system is very dynamic and conidia are sticky. People have therefore used various

methods to collect and count discharged conidia. In [18] different methodologies applied to

entomophthoralean fungi are reviewed, and a common trait is that the setup should as much

Fig 1. The mycelium of Pandora sp. from Cacopsylla sp. with a primary conidium on top of a conidiophore and a

discharged primary conidium (insert in upper left corner). The length of conidia of Pandora sp. is 15.6-23.3 μm [8].

https://doi.org/10.1371/journal.pone.0215914.g001
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as possible reflect the natural condition, where insects are killed and thereafter initiate dis-

charge of conidia. Different laboratory setups have been used for obtaining discharged conidia

counted on glass slides referring to specific time intervals and/or different distances [5, 10, 19].

The data treatments in studies on conidial discharge are mostly rather simple and include for

example calculations of mean and standard deviation for replicates, pairwise comparisons or

analysis of variance, and a description in words about peak of intensity and length of period

with conidial discharge. While these methods are valid and may offer a fair background for

conclusions, they nevertheless do not make use of the total biological information in the study.

Statistical modelling of temporal variation in biological systems using

functional data

For biological processes that progress over time, we may like to think in terms of idealised sys-

tems with a clear time-dependent profile. However, it is often the case that different instances/

replications of such processes show some variation in timing. Within statistics, this variation is

commonly referred to as temporal variation or phase variation.

The usual interpretation of temporal variation is biological time; that is, the clock of the

underlying biological system is out of synchronization with the idealised system (this may be

for various reasons), but it is the same underlying processes that are taking place. A common

example is puberty for boys: healthy boys enter the pubertal stage, which has some common

characteristics for all boys, at some point, but when that happens more exactly varies consider-

ably between individuals.

Inferring the effect of biological time obviously requires replications of the same experi-

ment, and when the underlying structure is a continuous process, such data is naturally han-

dled within the framework of functional data analysis (FDA) [20]. The use of FDA will allow

us to estimate sharply defined curves and to estimate and adjust for the variation in peak

position [21]. We believe that the effects of temporal variation are sometimes neglected in the

biological sciences, something which can lead to weak or in worst cases even misleading con-

clusions [21].

There are various approaches to modelling functional data with temporal variation (mis-

aligned functional data). We intend to follow the novel methodology of [22], which we will

refer to as the pavpop model (Phase and Amplitude Variation of POPulation means). This

methodology has been used in different applications with great success [23, 24]. The main idea

of [22] is simultaneous modelling of amplitude and temporal variation, where temporal varia-

tion is modelled as a spline interpolation of a latent Gaussian variable that represents temporal

deviation from the idealised system. For a review of methods for handling misaligned func-

tional data, we refer to [22, 23].

Whereas classification is often part of papers on misaligned functional data, inference in

form of hypothesis testing has got little attention in misaligned functional data. In general,

inference in functional data is not easy and requires either strong parametric assumptions,

which can be wrong, or the use of non-parametric tests, which can be computationally

difficult.

Purpose and content of this study

Overall, we aimed at getting a better understanding of the temporal progression of conidial

discharge in entomophthoralean fungi by applying dedicated methods from functional data

analysis (FDA). To the authors’ knowledge, FDA has not been applied to this kind of studies

before, this is a secondary aim of this study. The novelty of this work is also the extension and

application of the pavpop model to discrete data, which are generated from an unobserved
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biological system with temporal progression. We consider inferential questions, which is new

to this methodology as well. In a more broad context, this can be seen as combining the pav-

pop model with generalized linear models. In this application we use a negative binomial

response model; the appendix describes various other response models.

In this study, discharge of Pandora conidia (Fig 1) as a function of time was studied at dif-

ferent temperatures. We hypothesize that high temperature leads to an early and fast decreas-

ing peak when looking at (the intensity of) conidial discharge, whereas a low temperature

leads to a late and more slowly decreasing peak, and that a low temperature leads to a higher

total production of conidia in the first 120 hours, as compared with higher temperatures.

Methods

Experiment and data collection

A detailed description of the data collection can be found in [25].

We used an isolate of Pandora sp. (KVL16-44). It is an insect pathogenic fungus found first

time in 2016 in Denmark on Cacopsylla sp. (Hemiptera). The conidia have typical Pandora
morphology, including mononucleate conidia [8]. The fungus is however a new, yet unde-

scribed species based on molecular sequencing [8], and we will therefore in our paper use the

name Pandora sp.

Mycelium production. The fungus was grown on Sabouraud Dextrose Agar (SDA) sup-

plemented with egg yolk and milk [18] in Petri dishes (55 mm diameter). To produce fresh

material mycelium mats were transferred to new petri dishes and incubated at 18.5˚C in dark

conditions for 20 days. Using mycelial mats has the advantage, compared to use fungus killed

insects, that conidia production can be syncronized more precisely.

Conidia production. Filter papers of 18 x 18 mm, moistened with 0.75 ml of autoclaved

water, were placed in the center of lids of petri dishes (34 mm diameter). Four squares of 5 x 5

mm mycelium mats were cut from the same mycelium mat 20 mm away from the centre of

the Petri dish and put upside down in the edges of the moist filter papers. All lids were put on

the counter parts of the empty Petri dishes and they were kept in three different temperatures

(12.0, 18.5 and 25.0˚C) in complete darkness at 100% RH. The mycelium mats were facing

downwards. For each temperature, five replicates were made.

Conidia discharge over time. To measure the conidial discharge a small stripe of Parafilm

with a cover slip (18 x 18 mm) on top was placed inside the lower part of each petri dish. The

dishes were then placed in incubators (12.0, 18.5 and 25.0˚C) for 30 min. The cover slips were

placed underneath the four mycelium mats. The cover slips were removed immediately after-

wards, and the conidia laying on the slip were stained with lactic acid (95%). This procedure

was repeated every eight hours for 120 h, which meant that in total, we obtained observations

from 16 time points. The lower parts of the Petri dishes were cleaned with ethanol (70%) and

demineralised water every eight hours to ensure that primary conidia did not discharge sec-

ondary conidia on the cover slips. The conidia were counted in each of the four corners of the

cover slips. In total, we got four observations per time-point, replicate and temperature (4

counts � 5 replicates � 16 time-points � 3 temperatures = 960 observations). Conidia on cover

slips were counted with the aid of a light microscope (Olympus Provis) at x 400 magnification.

Statistical modelling

We consider a set of N = 15 latent mean curves, u1; . . . ; uN : ½0; 1� ! R from J = 3 treatment

groups. The mean curves are assumed to be independently generated according to the
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following model

unðtÞ ¼ yf ðnÞðvnðtÞÞ þ xnðtÞ; n ¼ 1; . . . ;N ð1Þ

where f maps curves into treatment groups. That is, to each subject corresponds a fixed effect

θj, which is perturbed in time by vn and in amplitude by xn, both assumed to be random. The

temporal perturbation vn is usually referred to as a warping function.

To each curve corresponds a set of discrete observations ðtn1; yn1Þ; . . . ; ðtnmn
; ynmn

Þ 2 ½0; 1� � Y
where ðtn1; . . . ; tnmn

Þ are mn pre-specified time points and Y � R is the sample space for the

observations.

We assume that the observations conditionally on the latent mean curves are independently

generated from an exponential family with probability density function

pðyjZÞ ¼ bðyÞ exp ðZ � y � AðZ; yÞÞ; Z 2 R; y 2 Y ð2Þ

where η is the value of the latent mean curve at a given time, and y is the canonical statistic for

the observations. A and b are functions defining the exponential family. We assume that A(η,

y) is two times continuous differentiable in η with the property that A00
Z
ðZ; yÞ > 0 for all η and

y, and we assume that all hyperparameters describing A and b are known and fixed before-

hand. More details on response models can be found in the appendix.

The amplitude variation xn is assumed to be a zero-mean Gaussian process. The fixed

effects θn are modelled using an appropriate spline basis, and the warping functions vn are

parametrised by Gaussian variables wn 2 R
mw such that wn = 0 corresponds to the identity

function on [0, 1]. More details on fixed effects and phase variation can be found in the

appendix.

Estimation in this model is presented in the appendix. Estimation is a major challenge, as

direct estimation is not feasible due to the large number of latent variables. Furthermore,

unlike [23], the response is not Gaussian, which require additional considerations. We propose

to use a twofold Laplace approximation for doing approximate maximum likelihood estima-

tion; details on the Laplace approximation are found in the appendix.

Data analysis

As described in the data collection section, data consist of 960 observations (4 counts � 5 repli-

cates � 16 time-points � 3 temperatures) inN0. The largest count was 211, and a large fraction

of the counts was zero.

Samples no. 7 and no. 13 effectively terminated the discharge of conidia after 48 and 40

hours, respectively, and therefore measurements from these samples were cancelled after these

hours.

Response model. A popular choice for modelling count data from biological experiments

are Poisson models. This is backed by a strong theoretical reasoning; using our data as an

example, one would expect that while the fungi are placed in the incubators, they would inde-

pendently discharge conidia at random and at a constant rate. This would be a typical example

of a Poisson process.

However, a unique feature of the data set was the four samples taken from each batch used

for conidia count, which can reasonably be assumed to be independent and identically distrib-

uted conditionally on the latent curve u. By comparing sample means and sample variances

across the 240 measurements, this allowed us to assess if data was in reasonable agreement

with a Poisson model or overdispersed relative to this. As indicated in Fig 2, data was clearly

overdispersed; the Poisson model corresponds to the dotted line.

Statistical modelling of conidial discharge of entomophthoralean fungi
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Because data was overdispersed, we instead fitted an unstructured negative binomial regres-

sion model with common rate r to the data instead. This was in good concordance with data:

the estimated rate was r0 = 4.658, and the dashed line in Fig 2 indicates the corresponding

mean/variance relation. This value was fixed and used in the subsequent analysis.

Having estimated the dispersion, the counts at individual measurements were added for the

subsequent analysis as the sum of counts is a sufficient statistic for our model. The sum of

independent and identically distributed negative binomial random variables is again negatively

binomially distributed; the rate parameter r is multiplied by the number of counts; thus we got

r = 4 � r0 = 18.63. The summed counts are displayed in Fig 3.

Model for mean curves. Time was rescaled to the unit interval such that t = 0 corre-

sponded to 0 hours and t = 1 corresponded to 120 hours. Warping functions were modelled as

increasing cubic (Hyman filtered) splines with mw = 7 equidistant internal anchor points with

extrapolation at the right boundary point. The latent variables wn were modelled using a

Matérn covariance function with smoothness parameter α = 3/2 and unknown range and scale

Fig 2. Sample variance as a function of sample means across measurements. Dashed line is fit using a NB(4.66)-model; dotted line

is fit using a Poisson model Each sample consisted of four observations.

https://doi.org/10.1371/journal.pone.0215914.g002
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parameters. This corresponds to discrete observations of an integrated Ornstein-Uhlenbeck

process. This gave a flexible, yet smooth, class of possible warping functions which also take

into account that the internal clocks of individual fungi could be different at the end of the

experiment.

Population means θcold, θmedium, θwarm were modelled using natural cubic splines with 11

basis functions and equidistant knots in the interval [0, 1]. Natural cubic splines are more reg-

ular near boundary points than b-splines which reduce the effect of warping on estimation of

spline coefficients.

Amplitude covariance was modelled using a Matérn covariance function with unknown

range, smoothness and scale parameters; details are provided in the appendix.

Hypotheses. We define ‘peak location’ as the time with maximal condidial discharge, and

‘peak decrease’ as the average decrease in discharge between ‘peak location’ and end of the

experiment:

peak locationj ¼ arg max yj; peak decreasej ¼
max ðyjÞ � yjð120hÞ

120h � peak locationj

Note that this is defined on log-scale, so peak decrease should be interpreted as a relative

decrease of conidial discharge.

One can qualitatively assess the hypotheses without strict definitions, but in order to do sta-

tistical inference, a mathematical definition is needed. We remark that here we consider popu-

lation means; temporal variation may also affect peak location for individual fungi.

Fig 3. Summed counts of conidia for the individual fungi as functions of time, color-coded according to temperature.

https://doi.org/10.1371/journal.pone.0215914.g003
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Results

Predicted mean trajectories for u, evaluated at observed time points, along with population

means are displayed in Fig 4. We observe a slightly odd behaviour around t = 0. This is an arti-

fice; most observations around t = 0 are zero. When the predicted values of u are exp-trans-

formed, these are mapped into almost-zero values. In concordance with our hypothesis, the

three population means are clearly separated and fit well into what we expected: θwarm peaks

first and has the highest peak; θmiddle is in-between and θcold peaks latest and has a smaller and

more slowly decreasing peak.

Predicted warping functions are displayed in Fig 5. The scale parameter for the warp covari-

ance was estimated to be 0.026; this corresponds to a standard deviation of around 3.1 hours

on temporal displacement, or a 95% prediction interval of roughly 6 hours.

The results in Fig 5 are closely connected with those in Fig 4: a vertical change in Fig 5 cor-

responds to a horisontal change in Fig 4. One may interpret the trajectories in Figs 4 and 5 as

smoothing of the data: Fig 3 shows the raw data counts; Fig 4 displays the smoothed curves,

which are our predictions of the intensity of conidial discharge (the underlying biological

quantity of interest) for individual fungi; and finally Fig 5 displays the corresponding predic-

tions of the biological times.

The trajectory for an individual fungus is of little interest by itself as that fungus is confined

to this experiment. However, when the trajectories are viewed together, they illustrate the vari-

ation on population level allowing us to assess variation between individual fungi from the

same treatment group, and also to compare this to fungi from other treatment groups.

Discharge of conidia above certain levels

For practical applications it is relevant to know when the intensity of conidia discharges

reaches a given level and for how long this happens. Although one conidium is enough to

infect an insect [26], the chance of a conidium landing on an insect is small. Therefore we

chose a range from low to very high discharge of conidia. The lowest threshold was 0.5 and the

Fig 4. Predicted trajectories for u (dashed lines). Left is on model scale, right is exp-transformed (same scale as the observations). Thick lines indicate

estimated population means.

https://doi.org/10.1371/journal.pone.0215914.g004
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largest threshold was 5.5 with a step size of 0.5. One step corresponds to an increase in conidia

discharge of� 65%. Using the results of the analysis, we simulated trajectories of u from the

model. For a given trajectory and threshold, we measured the first time this threshold was

reached, and for how long u remained above this level.

The results are seen in Fig 6. There are generally large variations, but we see that fungi at

low temperatures are consistently slower at reaching the threshold. It should be noted that the

duration is only counted until end of experiment (120 h) so the actual duration values for cold

fungi could be larger when viewed over a longer time span.

Total conidia discharge

The total number of discharged conidia by individual fungi is displayed in Table 1. Looking at

the numbers, there is a decrease in total conidia count towards higher temperatures, also when

discarding samples 7 and 13, which terminated discharge of conidia during the experiment.

However, a one-way anova test gave a p-value of 0.075 (excluding samples 7 and 13), and

pairwise Wilcoxon tests and a Kruskal-Wallis test gave even larger p-values. So while it is evi-

dent that temperature has an effect on conidia discharge as a function of time, we are not able

to detect a significant effect of temperature on the total amount of conidia discharged within

the first 120 h.

Inference for population means

Following the approach outlined in the appendix, we estimated the information matrices for

the spline coefficients, Icold, Imedium, Iwarm. The information matrices themselves are of little

interest, but following Berstein-von Mises theorem, the information matrix can be used to

quantify uncertainty and standard error for any given value of θ, see Fig 7. We have much

more uncertainty for small values of θ. This is as expected; small values of θ corresponds to few

conidia counts and thus only little data to estimate from. The pointwise standard errors for θ
in regions with large counts are around 0.20-0.25 or 20-25% when exp-transformed.

Fig 5. Predicted warp functions. Left panel: deviations from the identity. Right panel: resulting warping functions. Black line indicates the identity, ie.

no temporal deviation.

https://doi.org/10.1371/journal.pone.0215914.g005
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Peak location and decrease

Using the standard error estimates from the previous section, we made inference on the loca-

tion and decrease of peaks. This was done by simulating from the approximate distributions of

the estimators. 1000 simulations were used, results are in Table 2. As we expected, θcold peaked

late, around 70h after start, while the fungi stored at higher temperatures peaked much earlier.

We observed a large and skewed 95% confidence interval for peak location of θmedium, even

containing the similar confidence interval for θwarm. Regarding the second element, peak

decrease, we saw a roughly linear relationship between temperature and decrease. The confi-

dence interval for θwarm is broader than the other confidence intervals; this is due to the lack of

Fig 6. Left: First time conidial discharge intensity reaches given threshold according to the model, for different thresholds. Some trajectories did not

reach given thresholds and have been omitted from the corresponding boxplots. Right: Duration that conidial discharge intensity is above given

threshold. Blue: 12.0˚C, Green: 18.5˚C, Red: 25˚C.

https://doi.org/10.1371/journal.pone.0215914.g006

Table 1. Sums of discharged conidia. � indicate fungi that terminated discharge of conidia during the experiment.

cold medium warm

1575 2003 1742

2019 902� 1764

1921 1510 787�

2019 1991 1470

2323 1720 1769

https://doi.org/10.1371/journal.pone.0215914.t001
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data for small values of θ, cf. Fig 7. However, all confidence intervals are clearly separated at a

95% level, and we can firmly conclude that lower temperatures leads to a more slowly decreas-

ing peak, with the consequence of increasing the duration of high conidial discharge.

Credibility of hypotheses. By comparing the approximate distributions of the estimators,

we assessed the credibility of the hypotheses stated in the data analysis section. This was done

by pairwise comparison of estimators using q ¼ Pðf ðX̂Þ < f ðŶ ÞÞ, where f ðX̂Þ and f ðŶ Þ were

sampled independently under the posterior distributions of the parameter functions, e.g.

f(X) = peak(θcold) and f(Y) = peak(θmiddle).

Identical posterior distributions of f ðX̂Þ and f ðŶ Þ implies q = 0.5, so small or large values of

q are evidence against the hypothesis f(X) = f(Y). Results are shown in Table 3. Apart from

peak(θmiddle) = peak(θwarm), all q-values are very close to one. As a result, our analysis very

strongly supports that higher temperatures lead to faster decreasing peaks, and that a low tem-

perature gives a late peak in comparison to middle and high temperatures.

Fig 7. Left: Pointwise evaluations of 1.96 � I−1, where I is the information matrix. Right: Corresponding pointwise confidence intervals.

https://doi.org/10.1371/journal.pone.0215914.g007

Table 2. Approximate 95% confidence intervals for peak location (left) and peak decrease (right). Units are hours after start of experiment and %/h, respectively.

2.5% Estimate 97.5% 2.5% Estimate 97.5%

cold 66.0 70.7 73.7 cold 1.29 2.10 2.99

medium 32.7 43.8 46.6 medium 4.14 5.07 5.98

warm 33.7 35.1 36.1 warm 6.78 8.94 11.42

https://doi.org/10.1371/journal.pone.0215914.t002

Table 3. Pairwise comparisons of hypotheses with credibility values.

hypothesis q

peak(θcold) = peak(θmiddle) 1.00

peak(θcold) = peak(θwarm) 1.00

peak(θmiddle) = peak(θwarm) 0.108

slope(θcold) = slope(θmiddle) 0.9999

slope(θcold) = slope(θwarm) 1.00

slope(θmiddle) = slope(θwarm) 0.9993

https://doi.org/10.1371/journal.pone.0215914.t003
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Robustness of statistical analysis

Leave-one-out-analysis. To assess the uncertainty and robustness of the parameter esti-

mates, a leave-one-out analysis was performed: One observation (or in our case, one curve) is

removed from the data set, and the model is fitted to the reduced data set. This is done for all

N observations in turn, and the results are compared in the end. These estimates should prefer-

ably not differ by much; this is called robustness; lack of robustness is an indication of overfit-

ting, that is too many features or variables are included in the model. Robustness is related to

generalised cross-validation; see e.g. [27] for a reference.

As our model is highly non-linear and consists of several layers, each with different

parameters, it was of interest to study the robustness. As seen in Table 4 we got a fairly large

spread on the amplitude covariance parameters. However, this can be explained by the many

kinds of variation in data; it is more relevant that the mean curves are very robust (see Fig 8),

as the population means are main interest of this study. The explanation behind the large

spreads observed in beginning is that large negative values are mapped into almost-zero

values.

Table 4. Parameter estimates and leave-one-out results. Note: An upper bound of 10 for the Matérn-smoothness was used in the analysis.

Parameter nb-dispersion rangeamp smoothnessamp scaleamp rangewarp scalewarp

Lower bound 4.40 0.314 2.30 0.0066 0.072 0.023

Estimate 4.66 0.458 7.21 0.072 0.083 0.026

Upper bound 5.21 0.523 10.0 0.084 0.691 0.034

https://doi.org/10.1371/journal.pone.0215914.t004

Fig 8. Pointwise estimates, and upper and lower bounds for leave-one-out analysis.

https://doi.org/10.1371/journal.pone.0215914.g008
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Discussion

With the applied statistical methods, we were able to characterize the temporal patterns of

conidial discharge to a much better degree than previous studies, and we characterized the var-

iation between individual fungi at the same temperature (i.e. of the same population). With a

95% prediction interval of roughly 6 hours, the temporal variation is too little for changing the

overall shapes, but still large enough to be important for the analysis and to shift the peaks for

individual fungi significantly.

Good statistical methods are essential when analysing biological systems with a temporal

pattern, and allow researchers to get a better interpretation of data. Advanced statistical meth-

ods are not always better than simple ones, but the applied methods should be able to capture

all essential variations in data. The presented model accounts for all these variations, which is a

major advantage to previous methods. We believe this model to be more realistic compared to

other models used in similar studies.

Examples of statistical analyses (some using the pavpop model) of other biological systems,

where a model of the temporal variation was essential for the data analysis and interpretation

of results, include electrophoretic spectra of cheese [28], growth of boys [23] and hand move-

ments [23, 24].

In this study we demonstrated the flexibility of the pavpop model by successfully fitting to a

complete different kind of data: namely discrete data with many zeros, where a Gaussian

approximation would be unreasonable. With this success, there is reason to believe that this

framework would work well in applications with other commonly used response models, for

example binary response models (logistic regression).

Having several counts per measurement allowed us to look into response models. The Pois-

son model was invalidated, so we applied a negative binomial model instead. This is also rele-

vant for similar/future studies: a negative binomial distribution gives rise to larger standard

errors on estimates than a corresponding Poisson model. Thus, if one naïvely applies a Poisson

model, where a negative binomial model is correct, this increases the risk of making type I

errors.

There were some non-robustnesses in the estimation, but given the comparatively small

amount of data, this is adequate. The robustness analysis can be used to asses which parame-

ters are identifiable in practice. Although some of the variance parameters were not well iden-

tified, the dispersion parameter, average temporal deviation and population means were found

to be robust.

We were not able to detect significant differences in total number of discharged conidia

in this study. However, the fungi stored at 12˚C were still discharging many conidia at

t = 120h, so there is good reason to believe that there would have been significant differences

if a longer time span had been used; the authors have data that supports this, too. In a

study conducted on mycelial mats of Pandora neoaphidis over 168 h this could be observed:

At 25˚C the mycelium mats produced less primary conidia compared to mycelium mats

incubated at 10, 15 or 20˚C [14]. Aphid cadavers infected by P. neoaphidis discharged simi-

lar numbers of primary conidia at temperatures between 5 and 25˚C in the first 24 hours

[13].

On the other hand, we detected significant differences in peak location and shape: high

temperature leads to an early peak but fast decreasing intensity of conidial discharge compared

to low temperature. Other authors also found an earlier peak and faster decreasing intensity of

conidial discharge at 25˚C compared to lower temperatures in other species of fungi, but the

position of the peak and decrease of conidial discharge intensity was not statistically analysed

[15, 19]. Our findings agree with those of [15]; lower temperature leads to longer durations of
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conidial discharge. When the host population is large, the chance of a conidium landing on a

host is larger and there is no advantage of prolonging the conidial discharge [15].

Our work can also be seen in the perspective of disease forecasting and fungal pathogen

modelling [29, 30], where good models for spore discharge are an important ingredient, and

we believe there is an important potential (in this direction) for future research.

Biological control

There is an important plant protection perspective in this study as the fungus considered in

this study has a high virulence against insects from the genus Cacopsylla (Hemiptera, Psylli-

dae). Psyllids harm fruit trees by sucking from the leaves, and furthermore, the species C. picta
can transmit plant diseases Candidatus (Ca.) Phytoplasma pyri to pear trees and Ca. Phyto-

plasma mali to apple trees, causing large economic losses [31]. There is an ongoing effort to

reduce the usage of chemical pesticides for controlling psyllids in fruit and to switch to alterna-

tive control methods [25, 32].

The effects of temperature on temporal pattern of conidial discharge are important in prac-

tical applications and for the potential of this species as a biocontrol agent. The most important

factor is the duration of intense conidial discharge, thus we believe the biocontrol potential to

be largest at cold temperatures; the effect is illustrated in Fig 7. To get a better understanding

of the environmental tolerance of a fungus regarding conidial discharge, experiments includ-

ing fluctuating temperature, different relative humidity and light levels need to be conducted.

Furthermore, the conidial discharge from insect cadavers can be measured to get a better

understanding of the development of epizootics in the field. The presented statistical frame-

work will likely be of great benefit for future data analysis of any experiments in which conidial

discharge is measured over time.

Appendix

Statistical estimation

Direct estimation in the statistical model (1) and (2) is not feasible due to the large number of

latent variables. Furthermore, unlike the setup in [23], the response is not Gaussian, which fur-

ther complicate estimation. One solution would be to use MCMC methods, which are gener-

ally applicable. However, we propose to use a double Laplace approximation for doing

approximate maximum likelihood estimation.

This actually consists of a linearisation around the warp variables wn followed by a Laplace

approximation on the discretised mean curves u; un ¼ funðtnkÞg
mn
k¼1

for n = 1, . . ., N. When

these approximations are done at the maximum posterior values of (wn, un), this is equivalent

to a Laplace approximation jointly on (wn, un).

The main difference from the estimation procedure of [23] is the non-trivial addition of a

second layer of latent variables, u.

Posterior likelihood. To perform Laplace approximation, we need the mode of the joint

density of observations and latent variables; this can be found by maximising the posterior

likelihood for the latent variables.

The joint posterior negative log-likelihood for sample n is proportional to

L ¼ ½
Xmn

k¼1

AðunkÞ � unkynk� þ
1

2
ðγwn
� unÞ

>S� 1

n ðγwn
� unÞ þ

1

2
w>n C

� 1wn ð3Þ

where γwn
denote the vector fyf ðnÞðvðtnk;wnÞÞg

mn

k¼1
. Spline coefficients for the fixed effects are

indirectly present in the posterior likelihood through gwn
; more details follow below. It should
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be noted that under relatively mild assumptions, minimizing (3) for a fixed w is a convex opti-

mization problem.

Likelihood approximation. To approximate the likelihood, we firstly linearise around w0

to approximate p(u) with a Gaussian distribution and secondly we make a Laplace approxima-

tion of the joint linearised likelihood.

The linearization around w0 to approximate the likelihood for density the mean curves, p
(un), is described in detail in [22, 23]. The result of doing this is a Gaussian approximation of

the latent u, ie. un�
D

~un where ~un � Nðrn;VnÞ. rn and Vn are obtained from the Taylor approxi-

mation of u around the posterior maximum w0
n; for details we refer to [22, 23].

In general, the Laplace approximation of an integral on the form
R

Rd e
f ðxÞ dx around the

mode x0 of f is given by

ð2pÞ
d=2
j � f 00ðx0Þj

� 1=2ef ðx0Þ ð4Þ

where | − f00(x0)| is the determinant of the Hessian of −f, evaluated in x0. This approximation is

exact if f is a second-order polynomial, and generally the approximation is directly related to

the second-order Taylor approximation of f at x0.

Up to some constants, which do not depend on the parameters, the likelihood for a single

curve in the linearised model is given by the following integral, which we want to approximate:

Llin
n /

Z

Rmn
jVnj

� 1=2 exp �
1

2
ðun � rnÞ

>V � 1

n ðun � rnÞ þ
Xmn

k¼1

ynku
0

nk � AðunkÞ

 !

dun ð5Þ

Assuming u0
n to be the maximum of the posterior likelihood (3), one can show that the neg-

ative logarithm of the Laplace approximation around ðu0
n;w

0
nÞ is given by:

1=2 log j~Snj þ
Xmn

k¼1

ðAðu0

nkÞ � ynku
0

nkÞ þ pðu0

nÞ

where ~Sn ¼ V � 1
n þ 2diagðA00ðu0

nÞÞ and p(�) is the negative log-density for a Nðr0
n;VnÞ-distribu-

tion. By assumption, A00ðu0
nkÞ > 0, so j~Snj > jVnj

� 1
.

The total log-likelihood for all observations is then approximated by

XN

n¼1

log j~Snj þ log jVnj þ ðu
0

n � rnÞ
>V � 1

n ðu
0

n � rnÞ þ 2
Xmn

k¼1

ðAðu0

nkÞ � ynku
0

nkÞ

" #

ð6Þ

Inference. We propose to use alternating steps of (a) estimating spline coefficients for the

fixed effects and predicting the most likely warps and mean curves by minimizing the posterior

log-likelihood (3) and (b) estimating variance parameters from minimizing the approximated

log-likelihood (6).

Fixed effects and phase variation

Fixed effects are modelled using a spline basis that is assumed to be continuously differentia-

ble, e.g. a Fourier basis or B-spline bases. A typical choice for non-periodic data would be B-

splines; we have used natural cubic splines in the data application. Fixed effects are estimated

using the posterior likelihood (3). For a fixed value of wn, γwn
is a linear function of the spline

coefficients, and thus the optimal value can be found using standard linear algebra tools.
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Phase variation is modelled by random warping functions vn = v(�, wn):[0, 1]! D, parame-

trized by independent zero-mean Gaussian variables wn 2 R
mw . v : ½0; 1� � Rmw ! D is a suit-

able spline interpolation function, such that v(�, 0) is the identity on [0, 1].

The latent trajectories vn are modelled as deviations from the identity function at pre-speci-

fied time points ðtkÞ
mw
k¼1

, subject to a Hyman filtered, cubic spline interpolation for insuring

monotonicity, vn(tk)� tk + wnk. A more detailed discussion of modelling phase variation using

increasing spline functions can be found in [23].

Uncertainty for fixed effects. As our model is highly non-linear, we cannot expect

to find closed-form expressions for the uncertainty of the parameter estimates. Further-

more, the latent variables complicate assessment of uncertainty as these are uncertain

themselves.

A standard quantifier for assessing uncertainty in statistical models is the information
matrix, which can be approximated by the second-order derivative of the log-likelihood

at the MLE. However, directly using (6) would underestimate the information, as (6)

depend on the optimal value of the posterior likelihood (3), which itself is a function of

parameters.

Let cj denote the spline coefficients which determine the population mean θj for treatment

group j. cj is determined from the posterior likelihood L = L(c, u, w), given in Eq 3. As u and w
are latent, it would be wrong to use the second derivative of L for the information matrix;

instead we use the second derivative of f(c) = L(c, u(c), w(c)), where u and w are viewed as func-

tions that map c into the max-posteriors of u and w given c.
This will more correctly ensure that the uncertainty of u and w is taken into account when

estimating the information matrix. Furthermore, positive definiteness of L00 will imply positive

definiteness of f00.

Response models

In the application presented in this paper we assume that (y|u) follows a negative binomial dis-

tribution. There are various choices of response models, a list of important ones are stated

below. Note that not all exponential families fits naturally with our methodology; y|u must be

well-defined for all u 2 R.

Binary response. For binary responses, the sample space is Y ¼ f0; 1g. If we define

p: = P(Y = 1|η), and set A(η) = log(1+ eη), we get that η = log(p) − log(1 − p), the canonical link

function for regression models with binomial response.

Poisson model. For the Poisson model we have Y 2 N0 where A(η) = eη. The conditional

mean satisfies E[Y|η] = eη, and by inverting this relation we get η = log E[y|η], the canonical

link function.

Negative binomial model. Negative binomial distributions are often viewed as overdis-

persed versions of Poisson models. Let the rate parameter r> 0 be given such that V[Y|η] = E
[Y|η]+ E[Y|η]2/r; the limit r!1 corresponds to the Poisson model.

We get AðZ; yÞ ¼ ðr þ yÞ log 1þ eZ
r

� �
and A00ðZ; yÞ ¼ ðyþ rÞ reZ

ðrþeZÞ2
. Unlike the Poisson and

binomial models, the link function A depends on y, but it is easily seen that A(η, y) approxi-

mates eη in the limit r!1.

Normal distribution with known variance σ2. For normal distributions we have Y 2 R.

By setting ~Y ¼ Y=s2, then A(η) = η2/2σ2, E½~Y jZ� ¼ Z=s2, and E[Y|η] = η. This is the most

basic response model, and the one used in [22]. [22] use a different formulation and also treats

σ2 as an unknown parameter. The Laplace approximation becomes exact when using normal

distributions, simplifying estimation to become the approach used in [23].
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Matern covariance function

The Matérn covariance function is commonly used in functional data analysis and spatial sta-

tistics. It is given by

fs;a;kðs; tÞ ¼ s2
21� a

GðaÞ

ajs � tj
k

� �a

Ka

ajs � tj
k

� �

; s; t 2 R ð7Þ

where Kα is the modified Bessel function of the second kind. Here σ is the scale parameter, α is

the smoothness parameter and κ is the range parameter.

Supporting information

S1 File. Zipped data file. The zip file contains the data used for the analysis. Please see

Description.txt for use.
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