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Abstract

While influences of Pavlovian associations on instrumental behaviour are well

established, we still do not know how motor actions affect the formation of

Pavlovian associations. To address this question, we designed a task in which

participants were presented with neutral stimuli, half of which were paired

with an active response, half with a passive waiting period. Stimuli had an 80%

chance of predicting either a monetary gain or loss. We compared the

feedback-related negativity (FRN) in response to predictive stimuli and

outcomes, as well as directed phase synchronization before and after outcome

presentation between trials with versus without a motor response. We found a

larger FRN amplitude in response to outcomes presented after a motor

response (active trials). This effect was driven by a positive deflection in active

reward trials, which was absent in passive reward trials. Connectivity analysis

revealed that the motor action reversed the direction of the phase

synchronization at the time of the feedback presentation: Top-down

information flow during the outcome anticipation phase in active trials, but

bottom-up information flow in passive trials. This main effect of action was

mirrored in behavioural data showing that participants preferred stimuli

associated with an active response. Our findings suggest an influence of neural

systems that initiate motor actions on neural systems involved in reward

processing. We suggest that motor actions might modulate the brain responses

to feedback by affecting the dynamics of brain activity towards optimizing the

processing of the resulting action outcome.
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1 | INTRODUCTION

Associative learning is generally divided into two distinct
subtypes: Pavlovian learning—the formation of associa-
tions between stimuli—and instrumental learning—the

formation of associations between actions and their out-
comes. While Pavlovian and instrumental learning are
understood as relatively independent processes
(Fanselow & LeDoux, 1999; Ivlieva & Ivliev, 2014), there
is also evidence for interaction between them. Reward-
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associated cues can enhance instrumental responding
(Cartoni et al., 2016), while aversive Pavlovian associa-
tions can facilitate avoidance behaviour (Lewis
et al., 2013). There is evidence that certain actions are
more amenable to Pavlovian conditioning than others:
participants find it easier to learn a Go-response to obtain
rewards and a No-Go-response to avoid punishment than
vice versa (Guitart-Masip, Huys, et al., 2012; Swart
et al., 2017). Thus, there is evidence for a directed con-
nection between the two types of associative learning,
such that established Pavlovian associations can influ-
ence instrumental actions (Guitart-Masip, Huys,
et al., 2012; Swart et al., 2017). However, we still do not
know about influences in the opposite direction, that is,
whether actions affect the formation of Pavlovian
associations.

The influence of Pavlovian associations on instru-
mental behaviour is shown in two phenomena com-
monly observed in conditioning paradigms. First,
conditioned stimuli in instrumental reward learning
tasks can eventually become conditioned (or secondary)
reinforcers (Skinner, 1951; Williams, 1994). That is, the
stimulus associated with a reward takes on rewarding
properties itself. Second, as mentioned above, existing
Pavlovian associations can affect instrumental learning,
as conditioned stimuli generally facilitate behaviour in
line with the expected reward or punishment. This phe-
nomenon is referred to as Pavlovian-to-instrumental
transfer (Cartoni et al., 2016) and has played a crucial
role in our understanding of instrumental behaviour. For
example, observations of instrumental-to-Pavlovian
transfer in animal models play a crucial role in current
models of addiction (Robinson & Berridge, 2001). Yet,
many classical conditioning paradigms contain instru-
mental elements in the form of active reward consump-
tion, or avoidance responses against expected
punishment, for example, freezing. Indeed, it has been
argued that in the context of research on addiction, evi-
dence for true Pavlovian-to-instrumental transfer is
scarce, given the instrumental confounds present in clas-
sical conditioning paradigms (Lamb et al., 2016). Thus, it
will be crucial to better understand bidirectional influ-
ences between the two types of learning.

A first step towards understanding the impact of a
motor action on Pavlovian learning is understanding its
impact on the processing of rewards and punishment
outcomes. Previous studies investigated feedback-guided
learning using the feedback-related negativity (FRN) as a
measure of outcome processing (Burnside et al., 2019;
Donkers et al., 2005; Miltner et al., 1997; Yeung
et al., 2005), thought to emerge from the anterior cingu-
late cortex (ACC) and to reflect prediction error or con-
flict processing (San Martín, 2012). Previous studies

suggest that the FRN is sensitive to the behavioural rele-
vance of an outcome: FRN amplitudes tend to be larger
for outcomes over which participants had control
(e.g., by making an active choice between two or more
competing responses), than for outcomes which are due
to chance (Li et al., 2011), or in forced-choice situations
(Yeung et al., 2005). Similarly, Zhou and colleagues
(Zhou et al., 2010) found enhanced FRN and P300 ampli-
tudes when participants chose to change a previous deci-
sion, compared with trials in which they opted to stick
with their initial choice. This suggests that changes of
mind enhance outcome monitoring similarly to manipu-
lations increasing control over action outcomes.
Together, these studies suggest that the need for instru-
mental learning enhances outcome monitoring. They do
not, however, allow for conclusions regarding how the
action itself affects outcome monitoring, nor the impact
of motor actions on Pavlovian learning, as in these stud-
ies, participants always made an active response, whether
or not they made an active choice.

Other studies introduced passive conditions: they
observed reduced (Yeung et al., 2005) or less specific
(Burnside et al., 2019) FRN amplitudes, suggesting an
impact of passivity on outcome monitoring. However,
they lacked a control condition in which participants per-
formed an action in the absence of choice (Burnside
et al., 2019), or used blocked designs, in which partici-
pants were presented with series of passive trials (Yeung
et al., 2005). Such passive blocks could have plausible
effects on participants’ attention, as they did not have to
respond for prolonged periods. Thus, we cannot deter-
mine whether outcome processing is affected by the per-
formance of a motor action itself, or by attentional
processes related to task engagement.

We addressed this gap by designing a task in which
active and passive trials are mixed randomly, and in
which participants are presented with neutral stimuli
predicting high probabilities of either winning or losing
money. Crucially, in this task passive trials included no
motor response, and active trials included a motor
response in the absence of choice. This allowed for the
direct investigation of the impact of motor behaviour
itself on outcome processing.

Given the FRN has been widely associated with out-
come monitoring and reinforcement learning (San
Martín, 2012), in this study we focused on FRN ampli-
tude as a core measure of the neural processing of reward
and punishment. If performing an action enhances out-
come monitoring, this should be reflected in a stronger
FRN in active, compared with passive trials. If this, in
turn, is related to stronger associative learning, a stronger
FRN should also be observed for active predictor stimuli,
compared with passive predictors (Liao et al., 2011;
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Walsh & Anderson, 2011). We also expect that if making
an action enhances associative learning, participants
should show the strongest preference towards active
stimuli.

To further understand how actions might affect antic-
ipation and processing of outcomes, we compared the
directed phase synchronization between trials with and
without actions. Directed phase synchronization mea-
sures enable measuring how different areas communicate
and in which direction. Using the direction of the phase
synchronization, we can infer the nature of the synchro-
nization involved, for example, bottom-up versus top-
down (Nolte et al., 2008). Previous studies looking at per-
formance monitoring connectivity patterns observed
changes in phase synchronization between different
brain areas in the theta frequency band (L�opez
et al., 2019; Luft et al., 2013; van de Vijver et al., 2011).
The direction of the information flow was found to
reverse after feedback is presented (Luft et al., 2013). In
this study, we explored the possibility of action changing
the direction of information flow before and after the out-
comes were presented. We adopted an exploratory
approach (nonparametric cluster permutation) because,
due to the lack of studies on Pavlovian learning and
directed phase synchronization, we could not precisely
predict the specific electrode pairs and direction of
synchronization.

2 | METHODS

2.1 | Participants

Eighty-six participants took part in the study (13 male,
age 18–26, mean age = 20.5), but data from six partici-
pants was lost due to technical failure. Participants were
reimbursed for their time either with course credit
(1 credit per 15 min), or payment (£7.50 per hour). Partic-
ipants were predominantly University students, all were
resident in the United Kingdom and fluent English
speakers. All procedures were approved by the local
ethics committee.

2.2 | Experimental design and statistical
analysis

This study used a randomized within-subject experimen-
tal design, comparing the amplitude of the FRN between
active and passive trials. Active and passive trials were
randomized on a trial-wise basis. A paired-samples t-test
was used to compare the FRN amplitude between the
two conditions. For analysis of neural and behavioural

responses to predictive stimuli, 2 � 2 repeated measures
analyses of variance (ANOVAs) with the within-subject
factors Action (active vs. passive) and Valence (high
probability of Win vs. Loss) were used.

2.3 | Tasks

The main task was a probabilistic learning task
(Figure 1). At the beginning of each trial, participants
saw a picture of a safe. The safe could either be closed
(active condition) or open (passive condition). On top of
the safe, a symbol taken from the Japanese Hiragana sys-
tem was displayed. In the active condition, participants
were instructed to press the space bar with their right
hand to ‘open the safe’. After the button press, a fixation
cross was shown for 0.5–1 s, before the outcome was
shown for 1 s. In the passive condition, an open safe with
the symbol on top was displayed for 1 s, and participants
were instructed not to respond. This was followed by a
fixation cross for 0.5–1 s and the outcome for 1 s. The
outcome was either ‘�40’ displayed in red, or ‘+50’ dis-
played in green, representing a corresponding loss or win
of 40 or 50 monetary points, respectively. An imbalanced
value of loss versus win outcome was chosen to ensure
participants remained motivated throughout the task,
rather than being frustrated by losses continually offset-
ting win outcomes. The intertrial interval varied between
1.5 and 2 s, to prevent impact of motor responses them-
selves on the neural signature of outcome processing. If
participants responded within the 1-s presentation of a
passive stimulus, a red cross was presented in the centre
of the screen for 1 s, and the trial repeated.

Symbols were distinct for active and passive trials,
and predictive of outcomes in a probabilistic manner.
Thus, one symbol (‘active good’) was always shown on
top of a closed safe, and was followed by a win outcome
in 80% of trials. Another symbol (‘active bad’) was always
shown on top of a closed safe and was followed by a loss
outcome in 80% of trials. Two different symbols were
associated with an 80% probability of win and loss in pas-
sive trials, respectively (‘passive good’ and ‘passive bad’).
Assignment of symbols to conditions was counterba-
lanced across participants.

The task consisted of four blocks of 60 trials each
(15 trials per condition and block; 60 trials per condition
in total). Within each block, trials of the four conditions
were mixed randomly. Each block lasted about 5 min.
The same four symbols were used in blocks one and two.
In blocks three and four, a separate set of four symbols
was used. This was done to endure participants were
learning throughout the task, rather than getting too
familiar with the same symbols presented for four blocks.
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Participants were instructed to pay attention to their
wins and losses, as they would receive their resulting
earnings at the end of the experiment. They were further
instructed that this was not a reaction time task, and that
rather than trying to respond fast, they should ensure
high accuracy, that is, only responding to active stimuli,
and not responding to passive stimuli.

After the probabilistic learning task, participants per-
formed a forced choice task, during which in each trial,
they were shown two of the symbols from the learning
task, without an underlying safe. The two symbols were
shown to the left and right of the screen centre, and par-
ticipants were asked to indicate which symbol they liked
better, by pressing a left or right button correspondingly,
using their left and right index fingers. In the first half
of the task, symbols from blocks one and two of the
probabilistic learning task were shown. In the second
half of the task, symbols from the third and fourth block
were shown. Each possible stimulus combination
(e.g., ‘active-good’ – ‘passive-bad’) was shown 10 times.
Thus, the maximum number a participant could choose
one symbol type (e.g., ‘active good’) was 30. Besides the
chosen symbol being highlighted by a surrounding
rectangle for 1 s, participants received no feedback in
this task, and their choices did not contribute to their
overall payoff.

2.4 | Procedures

Upon arriving in the laboratory, participants were given
a study information sheet and completed an informed
consent form. They were then brought into a shielded
EEG cabin, where they sat in front of a standard com-
puter monitor and keyboard. After setup of the EEG cap

and electrodes, participants were provided with written
instructions for the probabilistic learning task. Once the
task was started, the experimenter waited outside the
EEG cabin, monitoring EEG signal and participant
responses. In between task blocks, participants were
given a chance to have a short break if desired.

After the probabilistic learning task, participants
received written instructions for the forced choice task,
and were shown the correct response keys on the key-
board. The experimenter left the EEG cabin whilst the
participant completed the task.

Once the forced choice task was finished, participants
completed other tasks unrelated to the current study,
including creativity tasks and personality questionnaires.
As these were always completed after the tasks of inter-
est, they are not further explained here.

After completion of all tasks and removal of the EEG
cap and electrodes, participants were debriefed, reim-
bursed for their time at a rate of £7.50 per hour, and
received the monetary gains from the probabilistic learn-
ing task (£2.40). Task payoff was fixed across participants,
as they experienced the same number of win and loss
trials.

2.5 | EEG recording

Continuous EEG signal was measured throughout the
probabilistic learning task, using a 32-channel active elec-
trode BioSemi system. The signal was recorded at
1000 Hz and offline referenced against the average of two
electrodes placed on the earlobes. To monitor eye move-
ments, four electrodes were placed on the participant’s
face: To the outside of the left and right eye, and above
and below the left eye.

F I GURE 1 Task outline. (a) Active trial

with Loss outcome. (b) Passive trial with Win

outcome (safe image: freepik.com)
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2.6 | EEG analysis

A highpass filter of 0.5 Hz was applied to the continuous
EEG data. Independent component analysis was used to
identify and remove eye-movement related artefacts. For
ERP analysis, data were then lowpass filtered at 20 Hz,
and segmented into epochs of �100 to 1000 ms time-
locked to the presentation of outcomes, as well as to the
stimulus presentation. Data were baseline corrected to
the prestimulus period. Epochs with excessive noise were
automatically identified and removed using a voltage
threshold of �80 μV. For directed synchronization ana-
lyses, data were lowpass filtered at 50 Hz and segmented
into epochs of �500 to 2500 ms time-locked to outcome
presentation, without baseline correction. Epochs with
excessive noise were automatically identified and
removed using a voltage threshold of �80 μV. Partici-
pants with >30% of rejected epochs were excluded from
data analysis.

2.7 | ERP analysis

For outcome-locked ERPs, based on the Loss-Win differ-
ence wave for the grant average across active and passive
trials, we visually identified the FRN peak at 302 ms at
electrode FZ. We computed the average amplitude per
condition for the time window 280-320 ms after outcome
presentation. For analysis of the FRN, we calculated the
Loss-Win difference of those averages, separately for
active and passive trials. As outcome-locked ERPs did not
differ between trials with predicted win and predicted
loss (see Table S1), we combined both trial types for FRN
analysis. For analysis of the stimulus-locked ERP, we
used the same time window at electrode FZ, testing for
differences in amplitude between the four conditions
(‘active-bad’, ‘active-good’, ‘passive-bad’, ‘passive-
good’).

2.7.1 | Directed connectivity analysis

We measured the phase slope index (PSI) (Nolte
et al., 2008) to estimate the synchronization between the
electrodes in the theta frequency band (4–8 Hz). The PSI
estimates synchronization between two signals by esti-
mating the slope of the phase of their cross-spectrum.
The PSI is sensitive to noninstantaneous functional rela-
tions between the signals. We calculated the PSI in two
time windows based on the presentation of the outcome:
�0.3 to 0 s (prestimulus phase) and 0 to 0.3 s following
the outcome presentation.

2.7.2 | Nonparametric cluster permutation
on the PSI network

Because we did not have a clear hypothesis regarding
the electrode pairs that could be affected by the action,
we adopted a data-driven exploratory approach (Maris &
Oostenveld, 2007) on the connectivity space (connectiv-
ity matrices). To reduce potential biases introduced by
multiple comparisons and distribution assumptions of
parametric tests, the difference distribution for active
versus passive conditions was constructed in a data-
driven manner using randomizations combined with a
network-based clustering criterion for the t-statistic
extraction (Zalesky et al., 2010). The network-based sta-
tistic controls for family-wise error rate offering a sub-
stantial gain in power by considering the topological
characteristics of the graph assuming that a biologically
relevant effect on the network cannot be isolated to sin-
gle or disconnected edges. Meaningful clusters need to
show strongly connected components (connected to each
other). We first calculated the statistical difference for
each brain edge (Active vs. Passive trials in loss trials),
discarding absolute t-values lower than 2. Then, the sur-
vived edges were clustered in strong connected compo-
nents (SCCs; partition into subgraphs with the property
of having at least one path between all pairs of nodes)
depending on whether they reflect identical effects (sepa-
rate clusters for positive and negative edges). Subse-
quently, difference distribution curves of the condition
differences were estimated using 1000 permutations by
randomly shuffling the condition labels. In each itera-
tion, we performed a sum of the t-scores within each
cluster and kept the maximum (absolute value) cluster
score as the cluster t-statistic. The t-critical values were
then calculated to align with the significance level of .05
(two-tailed). Clusters formed by the actual labels with t-
score exceeding the t-critical values were finally identi-
fied following an SCC-wise inference on the difference
distribution. To avoid problems with the signs (because
the PSI is a directional measure), for each significant
contrast (t-value >2), we considered whether the link
was associated with increased connectivity in active or
passive trials by looking at the highest absolute PSI value
(e.g., if a PSI value is significantly lower in the passive
condition, it does not mean the active condition had
higher connectivity because it is possible that the value
was negative). This procedure enabled us to separate
negative and positive clusters which were due to
increased connectivity in active versus passive trials. This
enabled us to build a larger t-distribution and compare
each of those clusters (Active > Passive/Passive > Ac-
tive) against the permutated distribution. To test whether
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the clusters observed generalized to the win trials, we
extracted the PSI values of the electrode pairs forming
the cluster observed using the loss trials (if significant)
in the win trials in each condition. Because the win trials
were not used in the nonparametric cluster permutation,
this was a way of cross-validating our analysis, especially
because in this case, we were not interested in the differ-
ences between win and loss trials (we also tested the dif-
ference in PSI between win and loss trials to validate our
contrasts).

2.8 | Analysis of behavioural data

To assess whether participants showed a significant pref-
erence for any of the four symbol categories (active-good;
active-bad; passive-good; passive-bad), we conducted
2 � 2 ANOVA on the choice frequency values, with the
within-subject factors Action (active vs. passive stimuli)
and Valence (stimuli predicting a high chance of Win
vs. Loss).

3 | RESULTS

Data from eight participants were excluded due to signal
noise (>30% of trials rejected during artefact detection).
Thus, data from 72 participants were included in the
analyses.

For the remaining datasets, the mean rejection rate
was 10.25 trials, which was distributed evenly across con-
ditions (2.4, 2.3, 2.7 and 2.8 trials on average for Win-pas-
sive, Loss-passive, Win-active and Loss-active,
respectively).

3.1 | Outcome-locked ERPs

For the 280- to 320-ms time window, we found a signifi-
cant difference between FRN amplitudes for passive and
active conditions (t71 = 2.4, p = .021), with a stronger
FRN amplitude in active (M = �1.6, SD = 2.9) compared
with passive (M = �.7, SD = 3.4) trials (Figure 2a).

To better understand the effects underlying the
reduced FRN in passive trials, we analysed the ampli-
tudes for Win and Loss trials separately. This showed a
significantly reduced amplitude for Win trials in the pas-
sive (M = 2.4, SD = 3.8) compared with the active condi-
tion (M = 3.5, SD = 3.6, t71 = 3.1, p = .003, corr.
p = .006). Amplitude for Loss trials did not differ signifi-
cantly between passive (M = 1.7, SD = 2.8) and active
conditions (M = 1.9, SD = 3.3, t71 = .6, p = .563;
Figure 2b).

For an overview of comparison of FRN amplitudes
between active and passive trials across all electrodes, see
Table S2 and Figure S1.

3.2 | Stimulus-locked ERPs

Analysing the same FRN time window as above (280–
320 ms at electrode FZ) for stimulus-locked ERPs in a
2 � 2 repeated measures ANOVA (with the factors
valence and action) showed a main effect of action
(F71,1 = 57.0, p < .001, ηp

2 = .445), and no effect of
valence (F71,1 = .1, p = .803 ηp

2 = .001), nor a
valence * action interaction (F71,1 = 2.3, p < .132
ηp

2 = .032). This was due to a negative amplitude which
was reduced (i.e., less negative) in active (M = �.7,
SD = 3.5) compared with passive trials (M = �2.7,
SD = 3.4, t71 = 7.6, p < .001; Figure 3).

3.3 | Directed connectivity results

We conducted two separate cluster permutation analyses
comparing the PSI on the theta band in active and pas-
sive trials, one in each of these two different time-
windows: immediately before (�300 ms to the outcome)
and after the outcome was presented (0 to 300 ms).
Because we were not interested in the differences
between winning or losing, we conducted the nonpara-
metric cluster permutation on the losing trials and tested
whether they generalized to the winning trials. This is
also justified by the fact that the type of outcome (positive
or negative) was not found to influence directed connec-
tivity in previous work (Luft et al., 2013).

For both win and loss trials, we found two significant
clusters in the period immediately before the outcome
was presented: one with a cluster which was higher dur-
ing active trials (Figure 4a), and one which was higher
during passive compared with active trials (Figure 4b)
during losses and during wins. During losses, the active
cluster (t-statistic = 289.18, t-critical = 95.62, p = .0105)
shows strong modulations from the prefrontal regions to
the posterior sensory regions. Interestingly, the passive
trials cluster shows the opposite direction: flow from
mid-posterior to frontal areas (t-statistic = 287.29,
t-critical = 95.62, p = .0110). To test whether the differ-
ences between active and passive trials replicated in the
win trials, we extracted the PSI values of the significant
connections for each cluster separately and compared the
values using a t-test. We found that our findings repli-
cated to the win trials as the PSI in the connections of
cluster 1 (Active) was significantly higher for active
(M compared with passive trials (t71 = 2.594, p = .012,
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Cohen’s d = 0.501) whereas the connections of cluster
2 presented higher PSI for passive compared with active
trials (t71 = 2.198, p = .031, Cohen’s d = 0.259). Further-
more, we checked whether there was a difference
between loss and win trials in relation to the PSI values
of each cluster and observed no significant difference for
both active (t71 = 1.392, p = .168) and passive clusters
(t71 = �0.195, p = .846). We conducted the same cluster
permutation analysis on the post-outcome window (0 to
300 ms), but we did not find any significant cluster
between active and passive trials (p > .1).

3.4 | Behavioural choice data

Behavioural data were lost for one participant, so 71 par-
ticipants are included in these analyses. The 2 � 2
ANOVA showed a main effect of Action (F1,70 = 5.5,
p = .022, ηp

2 = .073), but no main effect of Valence
(F1,70 = .5, p = .473, ηp

2 = .007) and no Action * Valence
interaction (F1,70 = .1, p = .711, ηp

2 = .002). The main
effect of Action was based on a slight preference for
active symbols (M = 32.1 and 27.9 respectively,

SD = 7.5). The difference in preference for active minus
passive symbols was not correlated with the difference in
FRN amplitude between active and passive trials
(r = .003, p = .982).

4 | DISCUSSION

In this study, we examined the effect of performing a
motor action on the neural processing of trial outcomes,
on the processing of predictive stimuli, and on directed
phase synchronization before and after the trial out-
come. The FRN was enhanced for outcomes following
actions, in the absence of instrumental choice. For pre-
dictive stimuli, we found a main effect of performing a
motor action on both neural processing and behavioural
preference, regardless of stimulus valence. Furthermore,
we found that the action was associated with a shift
in the direction of phase synchronization just before
the outcome was presented: Actions were associated
with an increase in flow from frontal to posterior
areas whereas passive trials presented the opposite
pattern.

F I GURE 2 Outcome-locked

event-related potentials.

(a) Feedback related negativity

(difference wave Loss � Win

outcome) for active and passive

conditions at electrode

FZ. (b) Condition-wise event-related

potentials time-locked to outcome

presentation, at electrode

FZ. (c) Topographic maps for

outcome-locked event-related

potentials averaged across 280- to

320-ms post-outcome presentation
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4.1 | Making an action enhances the
neural processing of win, but not loss,
outcomes

Previous studies have shown that the FRN amplitude is
increased when participants make a meaningful choice,
or believe that they have active control over action out-
comes (Li et al., 2011; Yi et al., 2018). These findings can
be interpreted as evidence for the FRN being sensitive to
the behavioural relevance of an outcome: outcome pro-
cessing is enhanced when it is informative for the value
of future actions. Here, we show that beyond such effects
linked to instrumental learning, the neural processing of
outcomes is enhanced by the mere act of performing a
motor action, in the absence of instrumental control. In
our task, participants pressed a single key, thus they had
no choice over which action to perform, and no control
over the valence of the outcome. Nevertheless, FRN
amplitude was increased in trials in which participants
made a button press, compared with completely passive
trials.

Our findings significantly expand the findings of
Yeung et al. (2005), who showed similar effects using a
blocked design. Their observation of reduced FRN ampli-
tude in passive blocks, however, can be easily explained
by reduced task engagement in prolonged periods of

passivity. Our task was specifically designed to avoid pro-
found differences in attention between task conditions.
Several explanations for the effects observed here are
possible.

One possibility is that performing any kind of motor
action acutely enhances general attention towards subse-
quent environmental events in a top-down manner. Our
task, mixing active and passive instructions on a trial-
wise basis, was designed to prevent general effects of pro-
longed passivity on attention. Thus, any effects of passive
versus active trials on attentional processes would be a
short-lived, action-driven process.

Our connectivity findings are in line with the notion
that performing a motor action is linked to transient
changes in attention. In active trials, following the button
press and preceding outcome presentation, we observed
directed information flow from prefrontal areas to parie-
tal and occipital areas, consistent with the post-response
pattern observed previously (Luft et al., 2013). This sug-
gests top-down modulation of visual areas in preparation
for outcome presentation considering the evidence that
top-down processes are initiated in the frontal to poste-
rior areas (Buschman & Miller, 2007). In contrast, in pas-
sive trials, information flow was reversed, from posterior
to frontal areas. Thus, information flow during the out-
come anticipation phase in passive trials was in line with

F I GURE 3 Stimulus-locked event-related

potentials. (a) Condition-wise event-related

potentials time-locked to stimulus presentation,

at electrode FZ. (b) Topographic maps for

stimulus-locked event-related potentials

averaged across 280- to 320-ms post-outcome

presentation
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preparation for bottom-up processing of incoming stim-
uli. Notably, these effects of reversed information flow for
active and passive trials were specific to the preoutcome
phase and were similar for win and loss trials. This differ-
ence in flow direction preceding the outcome presenta-
tion may suggest that the action might change the state
of the brain before receiving the feedback, making it
more receptive to it.

Our ERP findings showed action-related enhance-
ment of outcome processing specifically for win trials.
ERPs for loss outcomes did not differ between active and
passive trials. Such a valence-specific enhancement of
outcome processing is not in line with general attentional
effects. However, we cannot fully exclude the possibility
that passive trials decreased attention sufficiently to

reduce reward processing, without affecting loss proces-
sing. Nevertheless, given the trial-wise randomization of
passive and active conditions, such attentional effects
would need to be immediate and short-lived, in line with
the core interpretation of our findings that making an
action acutely facilitates reward processing.

An alternative explanation considering the valence-
specific nature of the effects observed here is based on
the overlap in neural systems involved in action initiation
and reward processing. Both processes involve an activa-
tion of dopaminergic systems (da Silva et al., 2018;
Schultz, 1998). Administration of levodopa leads to a gen-
eral facilitation of motor actions, as well as to a specific
enhancement of preparation for actions expected to lead
to a reward in striatum and ventral tegmental area

F I GURE 4 Cluster and topography of the phase slope index. (a) Significant cluster connections during active compared with passive

trials (left hand side) and the topography of the PSI during active trials. (b) Significant cluster connections during passive compared with

active trials (left hand side) and the topography of the PSI during passive trials (right hand side). Only loss trials were used for this analysis
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(Guitart-Masip, Chowdhury, et al., 2012). Thus, expecta-
tion of reward appears to facilitate dopaminergic firing
underlying action preparation. We suggest that in turn,
dopaminergic firing associated with action preparation
might enhance subsequent neural responses to rewarding
events. Such an overlap is in line with existing findings
on biases in instrumental learning, suggesting that
action-win associations are learned more easily than
action-no-loss associations (Guitart-Masip, Huys, et al.,
2012; Swart et al., 2017). Crucially, our findings suggest
that these effects are bi-directional: not only do existing
Pavlovian associations bias stimulus–response learning,
but neutral motor actions bias the processing of subse-
quent outcomes towards stronger responses to rewards.

Alternatively, inhibiting motor responses in the pas-
sive trials may have suppressed neural responses to
rewards. With the current design, it is difficult to distin-
guish whether making an action facilitates reward pro-
cessing, or inhibiting an action suppresses reward
processing. Future studies could try to distinguish
between the two by increasing the delay between the
condition cue (active/passive) and the motor action itself,
or by introducing different types of action requiring
stronger or weaker motor responses. However, this would
need to be carefully balanced against the risk of inducing
task disengagement in passive trials, which the current
task was designed to avoid.

4.2 | Processing of active versus passive
cues

Contrary to our hypotheses, we did not observe FRN-type
responses to predictive cues. Rather, a strong negative
deflection was observed in response to passive cues,
regardless of whether they predicted win or loss out-
comes. Thus, the neural representation of an upcoming
motor action—or suppression thereof—dominated over
neural responses based on stimulus valence. This was
mirrored in behavioural choice data, with participants
showing stronger liking towards active compared with
passive cues, regardless of their associated valence.
Importantly, in this task active and passive stimuli were
presented simultaneously and position (left/right) on the
screen was counterbalanced. Thus, participants had to
select the corresponding motor response whether they
chose an active or passive stimulus, such that preference
for active stimuli could not be explained by participants
having learned during the main task, to initiate a motor
response whenever an active stimulus was presented. It
should be noted that while we asked participants to
choose which of two stimuli they liked better, this was
presented within a forced choice paradigm. Thus, we

cannot distinguish between ‘liking’ and ‘wanting’
responses as proposed for reward-based control of behav-
iour (Berridge & Robinson, 2016). It is plausible that if
the behavioural effects observed here are driven by an
association of cues with action-based dopaminergic fir-
ing, the preference for active cues was based on motiva-
tional ‘wanting’ responses, which are dependent on
dopaminergic firing, rather than affective ‘liking’.

This main effect of action on subjective cue valence is
in line with a previous study showing that faces consis-
tently paired with NoGo-responses are evaluated as less
trustworthy (Kiss et al., 2008). Interestingly, this study
also showed that faces evaluated as less trustworthy eli-
cited stronger NoGo-related N200 amplitudes. Thus,
these findings are in line with our suggestion of bidirec-
tional links between motor behaviour and valence pro-
cessing: negative stimuli are inherently linked to
response suppression (and, as shown by Swart
et al., 2017, positive stimuli are linked to action initia-
tion); in turn, pairing a stimulus with action inhibition
facilitates negative associations formed with that stimu-
lus, whereas, as our data suggest, performing an action
enhances the subjective value of that stimulus.

In contrast to our findings, some studies have observed
FRN responses to predictive cues (Liao et al., 2011;
Walsh & Anderson, 2011). However, one of these used
predictive cues that were identical to the subsequent sig-
nals for win versus loss (Liao et al., 2011). Thus, this find-
ing does not clearly show an FRN response to predictive
cues per se but might reflect a lack of differentiation
between the first (predictive) and second (outcome) cue.
While an FRN-like response to a predictive cue was also
observed by (Walsh & Anderson, 2011), this cue was pre-
ceded by an active choice, and thus may have been pro-
cessed as an action outcome in itself. In our study,
predictive cues were superimposed on the stimuli instruct-
ing an active response versus passive waiting. It is possible
that strong neural markers of behavioural activation ver-
sus inhibition masked FRN-type effects. Thus, consider-
ing previous findings and our current data, it remains to
be shown whether FRN shows a true shift from outcomes
to predictive cues during associative learning.

4.3 | Implications and outlook

If supported by future studies, the mechanisms suggested
here can be of great relevance to our understanding of
addiction, in particular of behavioural addictions such as
problematic gambling. Specific action-based enhance-
ment of the neural processing of win outcomes, but not
loss outcomes, could explain the highly addictive proper-
ties of games such as slot machines. In these games,
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outcomes are directly preceded by actions such as pulling
a lever or pressing a button, and frequent players appear
relatively resilient to repeated losses, with their behav-
iour driven by infrequent wins. Problematic gambling is
disproportionally associated with playing slot machines
or slot-machine like video games (MacLaren, 2016),
rather than, for example, playing the lottery, which has
much longer gaps between the gambling action and the
outcome (Bakken et al., 2009).

The proposed mechanisms also have implications for
our understanding of substance-based addiction, and
merit further research into the role of active drug con-
sumption. Habit-based theories of addiction emphasize
the role of drug-related behaviour in acquiring and main-
taining addiction (Lipton et al., 2019). In turn, models
focused on incentive salience focus on drug-related
behaviour as the consequence of Pavlovian associations
(Berridge & Robinson, 2016). What remains to be shown,
is whether the rewarding properties of the drug itself are
enhanced by active consumption (i.e., self-administra-
tion). While most drugs of abuse are self-administered,
such understanding could have great implications for
drug administration in medical settings, as well as for
therapeutic approaches towards addiction.

4.4 | Limitations

A key limitation of the current study is that predictive
cues were not presented outside the task context. Future
studies should include a passive stimulus viewing phase
after the reward learning task, to measure the neural
response to predictive cues alone. Further, our measure
of stimulus preference was limited to an explicit measure
of forced choice, which did not allow distinction between
affectively driven preference, and motivationally driven
approach behaviour.

Another limitation of our task was that in the passive
condition, the open safe appeared to be empty. If this
may have prompted expectations of a loss outcome, we
would expect this to enhance the neural response to
(more unexpected) win outcomes, in line with prediction
error accounts of FRN amplitude (San Martín, 2012).
However, we cannot exclude the possibility that the
opposite occurred, and seeing an apparently empty safe
reduced participants’ sensitivity to win outcomes.

Given the homogeneity of our sample (85% female;
88% between 18 and 22 years of age), we did not test for
gender or age effects. We did not record handedness, as
we were not studying lateralized motor effects. Future
studies should consider such effects in more heteroge-
neous samples.

Finally, the imbalance in win versus loss outcomes in
this task may have affected the overall amplitude of
outcome-locked ERPs (although the impact of outcome
magnitude on FRN amplitude is disputed; San Martín,
2012). However, as this imbalance was identical for active
and passive trials, it is unlikely to have played a signifi-
cant role in the core effects discussed here.

5 | CONCLUSIONS

In this study, we showed that performing a simple motor
action, in the absence of choice, modulates top-down
information processing during the outcome anticipation
phase, and selectively enhances the neural processing of
rewards. While we found no evidence of a shift in FRN
from outcomes to predictive symbols, symbols associated
with an active response acquired stronger preference
properties than symbols associated with passive waiting.
Our results suggest a close link between motor control
and reward processing.
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