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Autism spectrum disorder (ASD) is a neurodevelopmental disorder that results in social-
communication impairments, as well as restricted and repetitive behaviors. Moreover,
ASD is more prevalent in males, with a male to female ratio of 4 to 1. Although
the underlying etiology of ASD is generally unknown, recent advances in genome
sequencing have facilitated the identification of a host of associated genes. Among
these, synaptic proteins such as cell adhesion molecules have been strongly linked with
ASD. Interestingly, many large genome sequencing studies exclude sex chromosomes,
which leads to a shift in focus toward autosomal genes as targets for ASD research.
However, there are many genes on the X chromosome that encode synaptic proteins,
including strong candidate genes. Here, we review findings regarding two members of
the neuroligin (NLGN) family of postsynaptic adhesion molecules, NLGN3 and NLGN4.
Neuroligins have multiple isoforms (NLGN1-4), which are both autosomal and sex-
linked. The sex-linked genes, NLGN3 and NLGN4, are both on the X chromosome
and were among the first few genes to be linked with ASD and intellectual disability (ID).
In addition, there is a less studied human neuroligin on the Y chromosome, NLGN4Y,
which forms an X-Y pair with NLGN4X. We will discuss recent findings of these neuroligin
isoforms regarding function at the synapse in both rodent models and human-derived
differentiated neurons, and highlight the exciting challenges moving forward to a better
understanding of ASD/ID.
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INTRODUCTION

Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental disorder affecting one
in 54 children in the United States. ASD is characterized by deficits in communication and social
interaction (Miles, 2011; Fombonne, 2013). Intellectual disability (ID) is characterized by deficits
in intellectual functioning and adaptive behavior thus limiting an individual’s ability to thrive
independently (Raymond, 2006; Lubs et al., 2012; Ellison et al., 2013). Interestingly, both ASD
and ID are more prevalent in males (Geschwind, 2011; Miles, 2011; Werling and Geschwind, 2013;
Werling et al., 2016), although this strong sex bias in ASD remains unclear. It is notable that a subset
of ASD-associated genes are located on the X chromosome indicating that the sex chromosomes
may play a role in at least some of the sexual dimorphism in these disorders.

Autism spectrum disorder is divided into two categories: syndromic and nonsyndromic.
Syndromic ASD is defined as a condition in patients who already have an existing neurological
disorder. For example, a subset of patients with Fragile-X syndrome, tuberous sclerosis, or Rett
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syndrome display phenotypes that are attributed to ASD (Singh
and Eroglu, 2013; Geschwind and State, 2015). Nonsyndromic
ASD accounts for ASD cases that are not linked to any
neurological disorders. Before the advancement of next-
generation sequencing (NGS), genetic researchers focused on
finding rare genetic variants in ASD and ID pedigrees to link
genes to these disorders, which led to the association of the
neuroligins NLGN3 and NLGN4X to ASD/ID (Jamain et al.,
2003; Laumonnier et al., 2004). Other notable genes identified
through rare de novo mutations and recessive inheritance
mutations include SHANK3, CNTNAP2, NRXN1, PTEN, FMR1,
and TSC1 (Geschwind and State, 2015). Although these cases
are rare, functional and genetic studies definitively showed
their link with ASD and ID. With NGS becoming cheaper
and easier to access, genome wide association studies (GWAS)
and whole exome sequencing (WES) studies became the major
approaches used to identify common and rare variants for
ASD/ID. Large cohort studies continue to identify more genes
associated with ASD/ID, including genes that are important in
chromatin modification, transcriptional regulation, or are FMRP-
associated, embryonically expressed, or affect synaptic function
(Sanders et al., 2012; Yu et al., 2013; De Rubeis et al., 2014;
Iossifov et al., 2014). Although NGS has dramatically accelerated
the identification of new risk genes, it is important to mention
that NGS studies often ignore the sex chromosomes due to the
limitations for statistical analysis (Wise et al., 2013; No Author
List, 2017).

The neuroligin (NLGN) family of postsynaptic cell adhesion
molecules have emerged as important factors regulating neuronal
development and synaptic transmission. There are five members
of the NLGN family in humans and other primates: NLGN1, 2,
3, 4X, and 4Y (Bemben et al., 2015b; Jeong et al., 2017; Südhof,
2017, 2018). However, in rodents, there are only four members:
NLGN1, 2, 3, and 4-like (Bolliger et al., 2001, 2008). NLGNs
have an isoform-specific localization: NLGN1 is localized to
excitatory synapses, NLGN2 at inhibitory synapses, and NLGN3
is at both (Chih et al., 2005; Chubykin et al., 2007; Bemben et al.,
2015b). Interestingly human NLGN4X is localized at excitatory
synapses, whereas mouse NLGN4-like is at glycinergic synapses
(Hoon et al., 2011; Bemben et al., 2015a; Chanda et al., 2016;
Marro et al., 2019). NLGN4X and NLGN4Y were historically
grouped together and assumed to have the same function due to
their almost identical sequence identity. However, recent findings
show that a single amino acid difference in NLGN4Y results in
a trafficking deficit leading to decreased surface expression and
synaptic function (Nguyen et al., 2020).

Neuroligins are highly dynamic, regulated via
posttranslational modifications and protein–protein interactions.
NLGN1 is phosphorylated by calcium/calmodulin-dependent
protein kinase 2 (CaMKII), protein kinase A (PKA), and tyrosine
kinases to regulate its function at excitatory synapses (Bemben
et al., 2013; Giannone et al., 2013; Letellier et al., 2018; Jeong
et al., 2019). Furthermore, a recent paper established that
NLGN1-mediated synaptogenic properties are mediated by
interacting with Kalirin7, a Rho guanine nucleotide exchange
factor (GEF) (Paskus et al., 2019, 2020). Phosphorylation of
NLGN2 affects binding with inhibitory scaffolding proteins, thus

regulating its function at inhibitory synapses (Poulopoulos et al.,
2009; Antonelli et al., 2014; Nguyen et al., 2016). NLGN3 can be
cleaved by proteases to reduce its function at synapses (Bemben
et al., 2019). Interestingly, the extracellular cleaved fragment
of NLGN3 has been identified as a potent mitogen in brain
cancer (Venkatesh et al., 2015, 2017). Lastly, NLGN4X can be
phosphorylated by protein kinase C (PKC) to enhance excitatory
synapses (Bemben et al., 2015a). Together, NLGNs comprise an
important class of proteins that are dynamic and have multiple
functions at synapses.

Of the NLGN family, NLGN3, NLGN4X, and NLGN4Y are
sex-linked with NLGN3 and NLGN4X on the X-chromosome
and NLGN4Y on the Y-chromosome. Early genetic studies using
a family pedigree of ASD/ID probands associated NLGN3 and
NLGN4X with ASD/ID (Jamain et al., 2003; Laumonnier et al.,
2004) (Tables 1, 2). Interestingly, the majority of cases for
NLGN3- and NLGN4X-associated ASD/ID are males. In this
review, we provide an overview of the current literature of sex-
linked NLGNs functions and their links to ASD/ID.

NLGN3 AND ASD

The first link between ASD and NLGN3 was revealed from a case
study of ASD patients. Jamain et al. (2003) identified a missense
mutation in a Swedish family with two affected brothers, one with
ASD and the other with Asperger’s syndrome. They showed that
both probands contain a missense mutation in NLGN3 (NLGN3
R451C), which encodes an arginine instead of a cysteine at amino
acid 451 within the extracellular domain (ECD) of NLGN3. The
NLGN3 R451C mutant displays a decrease in surface expression
compared to WT, and is retained in the ER by binding to the
chaperone protein BiP (Chih et al., 2004; Comoletti et al., 2004;
De Jaco et al., 2006). Unlike the human specific NLGN4X, NLGN3
is highly conserved across mammals, facilitating the development
of knock-in (KI) mouse models to study how NLGN3 mutations
affect behavior.

In agreement with molecular studies, the NLGN3 R451C
KI mouse displays a significant (∼90%) decrease in protein

TABLE 1 | ASD-associated NLGN3 variants.

Variants Sex Inheritance
pattern

Primary
Phenotype

Additional
Comments/References

P104Qfs42X N/A N/A ASD Kenny et al. (2014)

R195W N/A De novo ASD Iossifov et al. (2014)

V306M N/A Maternal ASD Jiang et al. (2013)

V321A M Maternal ASD Yu et al. (2013)

N390X N/A Maternal ASD Yuen et al. (2017)

G426S F De novo ASD Xu et al. (2014)

W433X M Maternal ASD McRae et al. (2017)

R451C M Maternal ASD Jamain et al. (2003)

P514S M × 2 Maternal ASD Quartier et al. (2019)

R597W M × 3 Maternal ASD Quartier et al. (2019);
Redin et al. (2014)

R617W M × 2 Maternal ASD/ID Redin et al. (2014)

T632A N/A Maternal ASD Blasi et al. (2006)
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TABLE 2 | ASD-associated NLGN4X variants.

Variants Inheritance Pattern Sex Primary Phenotype Additional Comments/References

G84R Maternal M ASD Asymptomatic mothers (Xu et al., 2014)

R87W De novo M ASD Zhang et al. (2009)

P94L N/A N/A N/A GeneDX submitted on ClinVar with unknown significance

G99S Maternal F ASD Mother also has learning disability. A brother also has
learning disability (Yan et al., 2005)

M ASD Mother also has learning disability. Sibling of above
(Yan et al., 2005)

R101Q Maternal M ASD Nguyen et al. (2020)

V109L Maternal M ID Nguyen et al. (2020)

Q162K De novo F ASD Xu et al. (2014)

L211X N/A N/A Anxiety, ADHD, Cerebral palsy Yuen et al. (2017)

Q274X Maternal M ADHD Yuen et al. (2017)

A283T Maternal M ASD Xu et al. (2014)

Q329X Maternal M ASD Yu et al. (2013)

K378R Maternal M ASD Pampanos et al. (2009)

M ASD Yan et al. (2005)

396X frameshift 1186t Maternal 2 × M Asperger’s syndrome/ASD Jamain et al. (2003)

V403M Maternal M ASD Have both affected and unaffected siblings (Xu et al., 2014)

429X (nt1253del(AG) Maternal 13 × M ASD/ID Laumonnier et al. (2004)

V454_A457X De novo M ID Martínez et al. (2016)

V522M De novo N/A TD Wang et al. (2018)

R704C Maternal M ASD Unaffected sister (+/−) (Yan et al., 2005)

R766Q Maternal M ASD Yu et al. (2013)

levels compared to WT. Interestingly, the NLGN3 R451C
mutant demonstrated a synaptic transmission gain-of-function
phenotype, and these effects are synapse specific. Although the
NLGN3 R451C KI mice have reduced protein levels, NLGN3
R451C mice, but not NLGN3 KO mice, display an increase
in inhibitory synapses as measured by VGAT and gephyrin
immunoreactivity. Furthermore, a concomitant increase in
mIPSCs frequency in somatosensory cortex was observed in
NLGN3 R451C mice, but not NLGN3 KO mice (Tabuchi et al.,
2007). In addition, NLGN3 R451C leads to impaired inhibitory
synaptic transmission in PV-neurons in KI animals, unlike
the NLGN3 KO; however, both mouse lines show enhanced
inhibitory synaptic transmission in cholecystokinin basket cells
(Földy et al., 2013). Horn and Nicoll (2018) also provide
additional evidence of the synapse-specific function of NLGN3 by
showing that knocking down NLGN3 using miRNA specifically
affected IPSCs recorded from somatostatin neurons, but not
from PV-neurons. In addition, NLGN3 R451C mice, but not
NLGN3 KO mice, have a striking phenotype at glutamatergic
synapses. In the CA1 region of the hippocampus, NLGN3 R451C
mice display an increase in excitatory synaptic transmission
(Etherton et al., 2011). Along with this observation, Etherton
et al. (2011) saw an increase in dendritic complexity and NMDAR
protein levels in NLGN3 R451C mice. In contrast, NLGN3
R451C mice display impaired synaptic transmission at the calyx
of Held synapses. Furthermore, Zhang et al. (2017) elegantly
demonstrated that the synaptic effect of NLGN3 on the calyx
of Held synapses is only observed when NLGN3 is deleted
late, but not early, in development. Lastly, NLGN3 R451C KI

mice and NLGN3 KO mice share a common synaptic defect at
striatal synapses; the deletion or KI of NLGN3 in D1 neurons,
but not D2 neurons, results in a decrease in mIPSCs frequency
(Rothwell et al., 2014). Taken together, the NLGN3 R451C
mutation differentially alter synaptic function depending on
neuron and synapse type.

Behavioral analyses of NLGN3 R451C KI mice revealed a
deficit in social interaction and an enhancement in spatial
learning; however, these findings were not reproduced in a
separate independent study, likely due to differences in mouse
strains or behavioral protocols (Tabuchi et al., 2007; Chadman
et al., 2008; Jaramillo et al., 2014; Lakhani et al., 2019). Another
phenotype of ASD is repetitive behavior; and, interestingly, the
NLGN3 R451C KI and NLGN3 KO mice share this phenotype
despite differences in social interaction and spatial memory
paradigms (Rothwell et al., 2014; Burrows et al., 2015). Indeed,
NLGN3 R451C KI and NLGN3 KO mice both have an enhanced
ability to stay on an accelerated rod (Chadman et al., 2008;
Rothwell et al., 2014). Importantly, the repetitive behavior of
NLGN3 mutants is due to dysfunction of D1-dopamine receptor-
expressing medium spiny neurons, but not D2 neurons. Taken
together, the ASD phenotypes of NLGN3 R451C KI and NLGN3
KO mice are circuit- and neuron-specific. Further investigations
into which circuits affect the social interaction, spatial memory,
and social memory phenotypes in NLGN3 R451C and NLGN3
KO are needed to better understand the mechanisms driving
these behavioral deficits in ASD.

Studies in NLGN3 R451C KI and NLGN3 KO mice
highlighted a need to better understand the physiological

Frontiers in Synaptic Neuroscience | www.frontiersin.org 3 August 2020 | Volume 12 | Article 33

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-12-00033 August 7, 2020 Time: 19:3 # 4

Nguyen et al. X-Linked Neuroligins and Neurodevelopmental Disorders

function of NLGN3. For example, a striking observation in
NLGN3 R451C KI mice is a ∼90% reduction in protein levels,
while displaying both gain-of-function and loss-of-function
phenotypes depending on the type of synapses. Different synaptic
phenotypes induced by the single point mutation, NLGN3
R451C, suggest that WT NLGN3 normally functions in a
context-dependent manner. Indeed, context-dependent function
of NLGNs has been reported in which excitatory synapses are
regulated by the relative expression of NLGN1. For example,
NLGN1 KO mice display similar spine density as WT animals,
but when NLGN1 KO neurons are co-cultured with WT neurons,
the NLGN1 KO neurons show a reduction in spine density
(Kwon et al., 2012). Applying this model of competition to
NLGN3 R451C KI mice to explain the gain-of-function observed
in this animal is worthy of investigation. It is also important
to carefully study NLGN3 function throughout development.
Zhang et al. (2017) demonstrated reduced synaptic transmission
at the calyx of Held synapse when NLGN3 is deleted late, but not
early, in development. They further showed that when NLGN3 is
conditionally knocked out in early development, cerebellin-1 can
compensate for the lack of NLGN3.

NLGN4X AND ITS LINK TO ASD

Divergence of NLGN4
Of the ASD-associated genes identified from human genetic
screens, NLGNs are of particular interest due to their important
function at synapses. Early genetic studies on the X chromosome
indicated that a deletion at Xp22.3 was found in ASD/ID
probands (Thomas et al., 1999; Zinn et al., 2007). Interestingly,
NLGN4X is located within this region. Although disease-
associated mutations in NLGNs are relatively rare, rigorous
genetic studies using probands’ pedigrees have established a
causal link between NLGN4X and ASD/ID (Table 2).

Because NLGN4X is a human-specific gene, the discovery of
mouse NLGN4-like was exciting because it allowed the study
of NLGN4 in rodents to probe its role in ASD/ID. Although,
there have been enormous advances in the field regarding the
synaptic function of NLGN1-3, there are still many gaps in our
understanding of the NLGN4 isoforms, which is complicated
due to their unusually rapid divergence in humans and rodents.
In humans, NLGN4 is sex-linked, and NLGN4X and NLGN4Y
combine to form an X-Y gene pair. However, in mice, NLGN4
exists as a pseudo-autosomal gene often referred to as NLGN4-
like. In addition, Maxeiner et al. (2020) observed that mouse
NLGN4-like undergoes rapid evolution resulting in changes in
protein sequence. Sequence alignment of NLGN4X with NLGN4-
like shows seven insertions in NLGN4-like across both the
ECD and intracellular domain (ICD). Interestingly, NLGN4
from the rodent infra-orders castorimorpha, hystricomorpha, and
sciuromorpha retains similarity to human NLGN4X, whereas
the rodent infra-order myomorpha, which includes mice, do
not. Thus far NLGN4 has not been identified in rats (Bolliger
et al., 2008; Maxeiner et al., 2020). Sequence alignment of
mouse NLGN4-like, human NLGN4X, and NLGN4Y shows
that NLGN4-like only shares ∼60% sequence identity with

NLGN4X/4Y, whereas NLGN4X shares ∼97% sequence identity
with NLGN4Y (Figure 1). A decade of research later, it is now
clear that the human and rodent NLGN4 genes do not share the
same function as previously assumed.

Human and Mouse NLGN4
Human NLGN4X was first cloned almost two decades ago. In
the initial studies, NLGN4X was shown to be expressed and
processed in a similar fashion to that of NLGN1. NLGN4X,
like NLGN1, is glycosylated, traffics to the cell surface, and can
bind to PSD-95 (Bolliger et al., 2001). Furthermore, NLGN4X
is found at excitatory synapses. NLGN4X overexpression in
mouse hippocampal neurons increases dendritic spine density,
but it decreases mEPSCs frequency and amplitude (Chanda
et al., 2016; Zhang et al., 2009). However, exogenously expressed
human NLGN4X in rat hippocampal slices in combination
with NLGN1-3 microRNA to knockdown endogenous NLGN1-3
showed an increase in spine density and a concomitant increase
in both AMPAR- and NMDAR-mediated EPSCs (Bemben et al.,
2015a). The difference between these two sets of experiments
is the presence of endogenous NLGN1-3. It is unclear whether
NLGN4X can form heterodimers with NLGN1-3 in vivo,
although NLGN4X has been shown to form heterodimers with
NLGN1 (Poulopoulos et al., 2012). Further investigation into this
subject can provide a better understanding of the function of
endogenous NLGN4X at synapses.

Using differentiated neurons from human induced pluripotent
stem cells (iPS cells), NLGN4X was shown to colocalize
with VGLUT and PSD-95, revealing NLGN4X localization at
excitatory synapses (Marro et al., 2019). However, in NLGN4X
KO differentiated neurons, Marro et al. (2019) did not observe
any changes in either EPSCs or IPSCs. It is important to note
that although differentiated human neurons from iPS cells can
be useful, these differentiated neurons are not fully mature and
are lacking NMDARs, a key component of excitatory synapses
(Zhang et al., 2013; Quadrato et al., 2017; Marro et al., 2019).

In contrast to NLGN4X, mouse NLGN4-like functions at
inhibitory synapses. Localization experiments in mice show
that NLGN4-like is at glycinergic inhibitory synapses where it
colocalizes with glycine receptors and gephyrin, but not PSD-
95 in brainstem, spinal cord, and retina. Moreover, NLGN4-like
KO mice were shown to have deficits in glycinergic synaptic
transmission (Jamain et al., 2008; Hoon et al., 2011; Zhang et al.,
2018). In addition, NLGN4-like also functions at GABAergic
synapses (Hammer et al., 2015; Unichenko et al., 2018). In
KO NLGN4-like mice, GABAergic synaptic transmission is
impaired in hippocampal CA3 region (Hammer et al., 2015).
Together, NLGN4-like primarily acts at inhibitory synapses,
either glycinergic or GABAergic, whereas human NLGN4X acts
at excitatory synapses.

NLGN4-like KO mice were generated over a decade ago and
have been characterized extensively. However, the behavioral
data have been complicated. For instance, NLGN4-like KO mice
were first characterized as having a deficit in social interaction
and vocalization (Jamain et al., 2008; El-Kordi et al., 2013; Ju
et al., 2014); however, another study using the same NLGN4-
like KO mice did not find any deficit in social interaction or
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FIGURE 1 | Alignment of NLGN4. Alignment of mouse and human NLGN4s and their conservation.

vocalization (Ey et al., 2012). Although NLGN4-like KO mice
provide insights into how this protein may function at synapses,
because human NLGN4X and mouse NLGN4-like are divergent,
there should be caution in linking mouse NLGN4-like studies
with NLGN4X-associated neurodevelopmental disorders.

Lastly, NLGNs are dynamically regulated through
posttranslational modifications (Bemben et al., 2015b; Jeong
et al., 2017). Similar to NLGN1 and NLGN2, posttranslational
modifications have an important role in regulating NLGN4X
function (Bemben et al., 2015b; Jeong et al., 2017). NLGN4X is
phosphorylated by PKC at T707 (Bemben et al., 2015a). Unlike
CaMKII phosphorylation of NLGN1, PKC phosphorylation
of NLGN4X does not increase its trafficking to the surface.
However, phosphorylated NLGN4X T707 does lead to increases
in spine density and aggregation of the excitatory synapse
markers VGLUT and PSD-95 (Bemben et al., 2013; Bemben
et al., 2015a). In addition, analyses of the NLGN4X phospho-
mimetic mutation, T707D, reveal significant enhancement
of both AMPAR and NMDAR EPSCs compared to WT
(Bemben et al., 2015a). How phosphorylated NLGN4X is able
to increase excitatory synaptic strength will require additional
investigation to reveal the precise mechanisms underlying
synaptic potentiation. This topic would benefit from techniques

that allow the characterization of spatiotemporal dynamics
of PKC phosphorylation of NLGN4X in vivo. Furthermore,
NLGN4X T707 is conserved in mouse NLGN4-like, but it
is unclear whether this residue is phosphorylated in mouse
NLGN4-like. Would the phosphorylation of this conserved
threonine residue in mouse NLGN4-like enhance synaptic
transmission as it does in human NLGN4X? Investigation on the
mechanism of phosphorylation and the enhancement of synaptic
transmission is a worthy topic to study.

NLGN4X AND ASD/ID

Jamain et al. (2003) first established NLGN4X as causative genes
for ASD/ID through screening patients with ASD and Asperger’s
syndrome, and identified a frameshift mutation (1186insT) in
NLGN4X, which leads to a premature stop codon at amino
acid 396. Interestingly, in addition to the two probands, their
mother also carries the mutation, but does not display any
autistic symptoms (Jamain et al., 2003). The most convincing
case for NLGN4X as an ASD/ID risk gene is from a study
following a French family with a nonsense mutation in NLGN4X.
Laumonnier et al. (2004) observed a 2-base-pair deletion in

Frontiers in Synaptic Neuroscience | www.frontiersin.org 5 August 2020 | Volume 12 | Article 33

https://www.frontiersin.org/journals/synaptic-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/synaptic-neuroscience#articles


fnsyn-12-00033 August 7, 2020 Time: 19:3 # 6

Nguyen et al. X-Linked Neuroligins and Neurodevelopmental Disorders

NLGN4X that resulted in a stop codon at position 429. By
documenting the clinical data from this large family, Laumonnier
et al. (2004) observed that 13 males with the nonsense mutation
were diagnosed with ASD, ID, or pervasive neurodevelopmental
disorders, whereas female carriers were unaffected. This finding
is remarkable in showing that this mutation in NLGN4X follows
an X-linked recessive pattern. Many subsequent studies have
linked NLGN4X with neurodevelopmental disorders, and the
recurrent theme is that the majority of affected probands are
males (Table 2).

Along with frameshift and nonsense mutations, many disease-
associated missense mutations have been identified in NLGN4X.
How might these missense mutations affect NLGN4X function?
A missense mutation was identified in two ASD probands
resulting in a substitution of an arginine residue to tryptophan
(NLGN4X R87W). The NLGN4X R87W variant displays a
profound deficit in NLGN4X surface expression, which leads to
hypofunction of the protein due to decreased synaptogenesis.
Furthermore, expression of NLGN4X R87W results in increased
synaptic strength when overexpressed in neurons on a WT
background (Zhang et al., 2009). It is puzzling why a variant that
failed to induce synaptogenesis on a null background can still
enhance synaptic function. Interestingly, a cluster of NLGN4X-
associated variants has been identified near the NLGN4X R87W
that also display a deficit in surface expression (Nguyen et al.,
2020). Because these NLGN4X-associated variants are in the
ECD, it is of interest to investigate their ability to bind to
neurexin. Using the solved structure of NLGN4X, it was shown
that ASD-associated mutations, such as NLGN4X G99S, are
located outside of the neurexin binding domain (Fabrichny
et al., 2007). These data suggest the observed phenotype
from the cluster of NLGN4X-associated mutations is due to a
deficit in trafficking.

Another NLGN4X rare variant that has garnered much
attention is a substitution in the ICD from arginine to cysteine,
NLGN4X R704C (Yan et al., 2005). As discussed above, NLGN4X
is phosphorylated by PKC at T707 resulting in an increase in
spine numbers and EPSCs (Bemben et al., 2015a). Interestingly,
there were significant deficits in phosphorylation of NLGN4X
T707 in the NLGN4X R704C variant, and the effects mediated
by phosphorylation were abolished (Bemben et al., 2015a). In a
separate study, Chanda et al. (2016) expressed NLGN4X R704C
in cultured mouse neurons on a WT background and observed
an increase in both NMDAR and AMPAR EPSCs compared to
WT. Interestingly, neither study observed a change in surface
trafficking. The discrepancy in these studies likely results from
differences in experimental design, chiefly whether to include or
exclude endogenous NLGN1-3. Taken together, NLGN4X R704C
displays profound differences, compared to WT, in regulation of
excitatory synapses. Using human differentiated neurons from
NLGN4X R704C KI hiPSCs, Marro et al. (2019) observed an
increase in EPSCs compared to WT. In addition, NLGN4X
R704C was shown to increase binding with GluA1, but not PSD-
95 (Marro et al., 2019), again revealing that this rare variant has
multiple functional effects.

With the advances in stem cell research, it is now possible
to study how different NLGN4X variants function in human

neurons. Although studies taking this approach provide attractive
new tools to study endogenous NLGN4X and its variants, there
are pitfalls that needs to be addressed. Use of differentiated
neurons from hiPSCs is still in its infancy and synaptic activity
from these neurons does not represent the full endogenous
nature of a synapse. For instance, it has been shown that
differentiated neurons using single transcription expression
models lack NMDA receptors (Zhang et al., 2013; Quadrato et al.,
2017; Wang et al., 2017; Nehme et al., 2018). These neurons
can express NMDARs if, and only if, they are allowed to grow
for a long period of time (35+ days). Even so, to date, there
is little biochemical evidence that NMDARs are present under
these differentiation protocols. For the study of neuroligins, this
is particularly problematic as they have been shown to directly
interact with NMDARs via their ECDs (Budreck et al., 2013).
Thus, although stem cell and differentiation technology are
attractive and can be a powerful tool to study human neurons
and diseases, a better understanding of the PSD in these neurons
is needed before it can be used with great confidence as a model
to study synaptic transmission.

NLGN4X AND NLGN4Y

Until recently, the studies on human specific NLGN4s have
focused on NLGN4X. However, it is important to explore
the function of NLGN4Y as well. NLGN4X and NLGN4Y
are remarkably conserved with only 19 amino acid differences
between them. Due to this high sequence conservation, the
two proteins have been assumed to have the same function
(Bemben et al., 2015b; Südhof, 2018); however, this hypothesis
had not been experimentally examined until recently. Because
NLGN4X/Y are sex-linked genes, an important consideration is
the sex-bias in the expression of NLGN4X. Outside of the pseudo
autosomal regions (PARs), some genes on the X chromosome
can escape X-inactivation thus providing an imbalance of gene
dosage between males and females (Carrel and Willard, 2005;
Skuse, 2005; Helena Mangs and Morris, 2007; Tukiainen et al.,
2017). Interestingly, there are Y-linked genes that are homologs
to X-linked genes that escaped X-inactivation in order to balance
the gene dosage in males. Furthermore, these X-Y gene pairs
have been shown to have an important function in transcription,
translation and protein stability (Bellott et al., 2014; Cortez et al.,
2014; Hughes and Page, 2015). Together, these studies reveal
an important role for genes on the Y chromosome other than
sex determining genes. Indeed, comparison of NLGN4X and
NLGN4Y expression in males and females reveals interesting
differences. In a large transcriptomic study, NLGN4Y was shown
to express only in males, as expected; however, NLGN4X was
shown to express at similar level between males and females
(Kang et al., 2011; Trabzuni et al., 2013). To complicate the issue
further, a separate study reported that incomplete X-inactivation
exists in mammals, and NLGN4X partially escapes (Carrel and
Willard, 2005; Berletch et al., 2011). Interestingly, in a study using
different tissues to study X-inactivation, NLGN4X expression is
higher in the cortex in female vs. male (Tukiainen et al., 2017).
Although gene expression of NLGN4X and NLGN4Y has been
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FIGURE 2 | NLGN4X and NLGN4Y function. Schematic for differential trafficking of NLGN4X vs NLGN4Y. NLGN4X can traffic to the surface and induce excitatory
synapses. Furthermore, phosphorylation of NLGN4X by PKC drastically enhances excitatory postsynaptic currents (EPSCs). In contrast, NLGN4Y cannot traffic to
the surface, thus decreasing EPSCs through binding with other NLGNs.

compared, research comparing NLGN4X and NLGN4Y protein
function has lagged behind.

Although it was reasonable to hypothesize that NLGN4X
and NLGN4Y served the same function due to their high
sequence homology (97%), this hypothesis had never been tested.
Interestingly, many ASD/ID variants have been identified in
NLGN4X (Jamain et al., 2003; Laumonnier et al., 2004; Yan
et al., 2005; Volaki et al., 2013; Xu et al., 2014; Bemben et al.,
2015a; Chanda et al., 2016), whereas only one missense mutation
has been identified in NLGN4Y (Yan et al., 2008). Furthermore,
ASD/ID-associated mutations in NLGN4X selectively affect
more males than females, and the reason for this male bias
is unknown. This strong male bias observation in NLGN4X-
associated diseases, prompted us to focus on NLGN4Y. If
NLGN4Y and NLGN4X are functionally redundant, then there
should not be a male bias in NLGN4X-associated diseases.

To explore the function of NLGN4Y, in a recent study,
we directly compared NLGN4X and NLGN4Y and found that
NLGN4Y cannot traffic to the surface to induce synapses
(Nguyen et al., 2020). Furthermore, the differential trafficking
observed between NLGN4X and NLGN4Y is due to an amino
acid difference at position 93, with proline for NLGN4X and

serine for NLGN4Y. Indeed, the NLGN4Y S93P mutant was
able to efficiently traffic to the surface and induce synapses.
Interestingly, there is a cluster of disease-associated NLGN4X
variants surrounding the critical amino acid in NLGN4X. Upon
analysis, these variants phenocopied the NLGN4Y trafficking
deficit and cannot induce synapses (Figure 2).

What is the function of NLGN4Y if it cannot get to the surface?
Nguyen et al. (2020) demonstrated that NLGN4Y can oligomerize
with NLGN1, 2, 3, and 4X and reduce their surface trafficking. In
addition, exogenously expressed NLGN4Y on a WT background
decreased mEPSCs suggesting NLGN4Y acts to inhibit NLGN1-
3 function. However, this study relies on exogenously expressed
NLGNs in heterologous cells or rat hippocampal neurons. What
the role is for endogenous NLGN4Y in human neurons is an
important lingering question.

CONCLUSION

With the advances in NGS technologies, a wide variety of
genes have been associated with ASD/ID. However, many of
these studies have ignored the sex chromosomes due to the
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additional expense and a lack of statistical power. However,
historically many genes on the X-chromosome have been linked
to ASD/ID by evaluating proband pedigrees. NLGN3 and
NLGN4X, both on the X chromosome, were among the first
genes associated with ASD/ID. Although NLGN3 and NLGN4X
variants only occur in a small population of ASD/ID cases,
studies using NLGN3 and NLGN4 mouse models have provided
many insights into how disruptions in NLGN3 and NLGN4
function contribute to ASD/ID phenotypes. With advances in
stem cell and neuronal differentiation, it is now possible to
study NLGN3 and NLGN4X variants using human iPSCs to
explore the causality between disruption in sex-linked NLGNs
and ASD/ID by examining endogenous human neuroligins.
Although neuronal differentiation is an exciting new technology
to further our understanding of the human brain, differentiated
neurons from human iPSCs are still relatively immature. Further
improvement in the technologies to develop reliable mature
neurons will be of paramount importance going forward.
In addition, the unexpected revelations from the study of

NLGN4X and NLGN4Y highlight the need to investigate the
often-ignored Y-chromosome. Although many facets of the
sex-linked NLGNs have been characterized, many important
questions remain unanswered and provide a fertile topic for
future investigation into synaptic regulation and to develop
therapeutic treatments.
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