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Abstract

Cancer origin determination combined with site-specific treatment of metastatic cancer

patients is critical to improve patient outcomes. Existing pathology and gene expression-

based techniques often have limited performance. In this study, we developed a deep neural

network (DNN)-based classifier for cancer origin prediction using DNA methylation data of

7,339 patients of 18 different cancer origins from The Cancer Genome Atlas (TCGA). This

DNN model was evaluated using four strategies: (1) when evaluated by 10-fold cross-

validation, it achieved an overall specificity of 99.72% (95% CI 99.69%-99.75%) and sensi-

tivity of 92.59% (95% CI 91.87%-93.30%); (2) when tested on hold-out testing data of 1,468

patients, the model had an overall specificity of 99.83% and sensitivity of 95.95%; (3) when

tested on 143 metastasized cancer patients (12 cancer origins), the model achieved an

overall specificity of 99.47% and sensitivity of 95.95%; and (4) when tested on an indepen-

dent dataset of 581 samples (10 cancer origins), the model achieved overall specificity of

99.91% and sensitivity of 93.43%. Compared to existing pathology and gene expression-

based techniques, the DNA methylation-based DNN classifier showed higher performance

and had the unique advantage of easy implementation in clinical settings. In summary, our

study shows that DNA methylation-based DNN models has potential in both diagnosis of

cancer of unknown primary and identification of cancer cell types of circulating tumor cells.

Introduction

Identification of cancer origins is routinely performed in clinical practice as site-specific treat-

ments improve patient outcomes [1–4]. While some cancer origins are easy to be determined,

others are difficult, especially for metastatic and un-differentiated cancer. Cancer origin deter-

mination is typically carried out with immunohistochemistry panels on the tumor specimen

and imaging tests, which need considerable resources, time, and expense. In addition, patho-

logic-based procedures have limited accuracy (66–88%) in determining the origins of meta-

static cancer [5–8].

Several gene expression- or microRNA-based molecular classifiers have been developed to

identify cancer origin. A k-nearest neighbor classifier based on 92 genes showed an accuracy
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of 84% in identifying primary site of metastatic cancer via cross-validation [9]. Pathwork, a

commercially available platform based on similarity score of 1,550 genes between cancer tissue

and reference tissue, achieved an overall sensitivity of 88%, an overall specificity of 99% and an

accuracy of 89% in identifying tissue of origin [10, 11]. A decision-tree classifier based on 48

microRNA showed an accuracy of 85–89% in identification of cancer primary sites [12, 13],

and an updated version, the 64-microRNA based assay, exhibited an overall sensitivity of 85%

[14, 15]. A recent support vector machine-based classifier that integrated gene expression and

histopathology showed an accuracy of 88% in known origins of cancer samples [16]. Though

these molecular platforms have shown better performance in identifying tissue of origin as

compared to pathology-based methods, gene expression- or microRNA-bases classifiers are

not easy to be implemented in clinic setting partially due to the instability of RNA [17, 18]. In

addition, these classifiers have performance of<90% accuracy, which may further limit their

wide adoption in clinical settings [17]. Hence, it is desirable to develop higher performance

prediction tools for cancer origin determination, which can also be easily implemented in clin-

ical settings.

DNA methylation is a process by which methyl groups are added to the DNA molecule and

70–80% of human genome is methylated [19]. It has been shown that DNA methylation is

established in tissue specific manner during development [20, 21]. Though the genomes of

cancer patients exhibit overall demethylation, tissue specific DNA methylation markers might

be conserved [21]. Indeed, a random forest-based cancer origin classifier using DNA methyla-

tion was reported to achieve a performance with 88.6% precision and 97.7% recall in the vali-

dation set [18], which demonstrated the usefulness of methylation data in cancer origin

prediction. Recently, deep learning technologies have rapidly applied to the biomedical field,

including protein structure prediction, gene expression regulation, behavior prediction, dis-

ease diagnosis and drug development [22, 23]. Studies show that deep learning-based models

often achieved higher performance than traditional machine learning methods (e.g. random

forest and support vector machine, etc.) in many settings, such as gene expression inference

[24], transcript factor binding prediction [25], protein-protein interaction prediction [26],

detection of rare disease-associated cell subsets [27], variant calling [28], clinic trial outcome

prediction [29], among others. In this study, we trained and robustly evaluated a high-perfor-

mance cancer origin predictive model by leveraging the large amount of DNA methylation

data available in The Cancer Genome Atlas (TCGA) and the recent developments in deep neu-

ral network learning techniques. We demonstrated that our model performed better than tra-

ditional pathology- or gene expression-based models as well as methylation-based random

forest prediction model.

Materials and methods

Datasets

DNA methylation data (Illumina human methylation 450k BeadChip) and clinical informa-

tion of 8,118 patients across 24 tissue types were obtained from in GDC data portal [30] using

TCGAbiolink (Bioconductor package, version 2.5.12) [31]. We excluded six tissue types with

less than 100 cases in TCGA to build robust cancer origin classifier. The final data include

DNA methylation data and clinical information from 7,339 patients of 18 cancer origins.

TCGA data were used for both cancer origin classifier training and evaluation, which were

randomly and stratified split into training set (n = 4,403), development set (n = 1,468) and test

set (n = 1,468) (Fig 1).

In order to evaluate the classifier trained on TCGA dataset using independent data, we

obtained 11 DNA methylation datasets (Illumina 450k platform) from Gene Expression
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Omnibus (GEO) [32] using GEOquery (Bioconductor package, version 2.42.0) [33]. A total of

581 cancer patients covering 10 cancer origins were obtained and the information for each

dataset was described in Table 1.

The third DNA methylation data are from 1001 cancer cell lines, which were reported in a

large-scale study [34] and deposited in GEO (GSE68379). These cell lines are not treated with

Fig 1. Distribution of cancer samples in TCGA by tissue of origin. A total of 7339 patients were randomly and stratified split into train,

dev and test sets according to 60:20:20.

https://doi.org/10.1371/journal.pone.0226461.g001

Table 1. Characteristics of GEO datasets.

GEO ID Disease Cancer origin Cancer type Num. of patients

GSE77871 Adrenocortical carcinomas Adrenal gland Primary 18

GSE78751 Triple negative breast cancer Breast Primary, metastatic 23

12

GSE101764 Colorectal cancer Colorectal Primary 112

GSE38268 Head and Neck Squamous Cell Carcinoma Head and neck Primary 6

GSE89852 hepatocellular carcinomas Liver Primary 37

GSE49149 Pancreatic cancer Pancreas Primary 167

GSE112047 Prostate cancer Prostate Primary 31

GSE38240 Prostate cancer Prostate Primary, metastatic 2

6

GSE73549 Prostate cancer Prostate Metastatic 18

GSE86961 Papillary thyroid cancer Thyroid Primary 82

GSE52955 Urology cancer Kidney, Bladder, prostate Primary 17, 25, 25

https://doi.org/10.1371/journal.pone.0226461.t001
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any drug or compound and DNA methylation data were obtained from Illumina 450K Bead-

Chip platform. We used this dataset as a case study, i.e., applying our DNN-based tissue classi-

fier to identify the tissue sources of these cancer cell lines. After excluding cancer cell lines

whose tissue sources are not covered in our classifier, a total of 391 cell lines from 11 tissue

sources were used in this study. Fig 2 shows distribution of these cancer cell lines by tissue

sources.

Feature selection

Only the training data (n = 4,403) from TCGA were used for feature selection. Currently, Illu-

mina 450K and 27K are two commonly used platforms for genome wide analysis of DNA

methylation, which measure DNA methylation of around 450K and 27K CpG sites respec-

tively. DNA methylation level of CpG site is expressed as beta value using the ratio of intensi-

ties between methylated and unmethylated alleles. Beta value is between 0 and 1 with 0 being

unmethylated and 1 fully methylated. All data we used in this study are from 450K platform.

In order to reduce the dimensionality while at the same time making the set of features back-

compatible with those from 27K platform, we reduced CpG sites to 27K for 450K derived sam-

ples by extracting 27K probes from 450K data as the probes used in 450K platform include all

probes in 27K platform. To further remove the noise in the data, we used one-way analysis of

variance (one-way ANOVA) to filter the CpG sites whose beta values are not significantly dif-

ferent (p> 0.01) among different tissues, resulting in 18,976 CpG sites. Then we used the

Tukey’s honest significance difference (Tukey’s HSD) test to remove the CpG sites that the

Fig 2. Distribution of cancer cell lines by tissue source.

https://doi.org/10.1371/journal.pone.0226461.g002
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maximal difference of their mean beta values among all tissues is less than 0.15. Tukey’s HSD

is a multiple comparison procedure to find means that are significantly different from each

other. It’s essentially a t-test that controls family-wise error rate, which is commonly used for

post hoc test for ANOVA [35]. The results from Tukey’s HSD test are pairwise tissue compari-

sons with statistical significance and mean difference. Here, we used the pairwise tissue test

results to obtain the maximal difference of the mean beta value among all tissues. Tukey’s HSD

test resulted in 10360 CpG sites that were used for the input layer of neural network.

Training a deep neural network (DNN) model for cancer origin

classification

We used DNA methylation data from training set (n = 4,403) to build a DNN model to predict

cancer origins. Tensorflow [36], an open source framework to facilitate deep learning model

training, was used for this purpose. Four well-established techniques were used to optimize the

training process, including weight initialization by Xaiver method [37], Adam optimization

[38], learning rate decay and mini-batch training. Xaiver method can efficiently avoid gradient

disappearance/explosion that random initialization may bring. Adam, a combination of Sto-

chastic Gradient Descent with momentum descendent [39] and RMSprop [40], makes training

process faster. Exponential learning decay (decay every 1,000 steps with a base of 0.96) was

used to improve model performance. Training was performed in 128 mini-batch of 30 epochs

to efficiently use the data.

We employed multilayer perceptron (MLP) to construct the neuron network. Three hyper-

parameters (learning rate, number of hidden layer and hidden layer unit) were optimized

according to development set performance (1,468 patients with the same distribution of cancer

origins as training set). Three learning rates (α = 0.001, 0.01 and 0.1), three hidden layers

(L = 2, 3, 4) and three hidden layer units (N = 32, 64, 128) were tested. We used grid search

strategy to optimize these parameters and the best combination according to development set

performance is α = 0.001, L = 2 and N = 64.

Validating and testing DNN-based cancer origin prediction model

We used four strategies to evaluate the performance of the DNN cancer origin classifier: (1)

evaluation in the10-fold cross-validation in training dataset to obtain overall specificity, sensi-

tivity, PPV and NPV as well as corresponding confidence intervals of this model; (2) evalua-

tion in the hold-out testing dataset to obtain both the overall model performance and tissue-

wise performance; (3) evaluation in the subset of metastatic cancer samples nested in testing

dataset to assess the performance of the model in predicting the primary sites of metastatic

cancer, which are often more difficult to be identified in clinical practice and more clinically

relevant; (4) evaluation in independent datasets from GEO to test the robustness and gener-

alizability of this DNN model. Metrics including specificity, sensitivity, positive predictive

value (PPV) and negative predictive value (NPV) were reported. Receiver Operating Charac-

teristic curve (ROC curve) was also calculated for each test data performance.

Source code, data availability, and reproducibility

Source code used in this study is publicly available in a Github repository (https://github.com/

thunder001/Cancer_origin_prediction). We also shared a Jupyter Notebook to replicate all the

machine learning experiments from data processing, model building and optimization to

model evaluation. To execute this notebook, the environment needs to be firstly created

according to a YAML file available in Github. In addition, we also created a Docker image
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available in Docker hub (https://hub.docker.com/r/thunder001/cancer_origin_prediction),

where you can download it and run the container directly on your computer.

Results

The overall performance of the DNN-based cancer origin classifier in

10-fold cross-validation setting

We used DNA methylation data of 7,339 patients from TCGA across 18 primary tissues to

train and test a DNN-based cancer origin classifier. The sample distribution in different cancer

origins were shown in Fig 1. The final DNN architecture consists of one input layer (10,360

neurons), two hidden layers (64 neurons each layer) and one output layer (18 neurons) that

represents 18 cancer origins (Fig 3).

Evaluated in a 10-fold cross-validation setting, the model achieved an overall precision

(positive predictive value, PPV) of 0.9503 (95% CI:0.9373–0.9633) and recall (sensitivity) of

0.9259 (95% CI:0.9187–0.9330) respectively. In addition, this model also achieved a high speci-

ficity of 0.9972 (95% CI:0.9969–0.9975) (Table 2).

DNN-based cancer origin classifier shows high performance in testing

dataset

We tested the classifier using test dataset, which includes 1,468 samples with similar distribu-

tion with training set (Fig 1). Cancer origin classification and a confusion matrix for all

Fig 3. Schematic representation of DNN architecture of cancer origin classifier.

https://doi.org/10.1371/journal.pone.0226461.g003
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samples were shown in S1 and S2 Tables respectively. Model performance metrics were shown

on Table 3. The specificity and negative predictive value (NPV) in individual cancer origin

prediction were consistently higher than 0.99. The overall precision (PPV) and recall (sensitiv-

ity) reached 0.9608 and 0.9595 respectively. For many cancer tissue origin predictions, includ-

ing brain, colorectal, prostate, skin, testis, thymus and thyroid, this DNN model achieved a

precision of 100% (Table 3) and an average AUC of 0.99 (Fig 4).

There are some variations in precision and recall in different cancer origin predictions. The

lowest performance occurred in esophagus origin prediction with a precision of 0.7579 and a

recall of 0.7410. A total of 10 of 39 esophagus origins were incorrectly predicted as stomach

origins (S1 and S2 Tables). Given that esophagus is a broad area, if a tumor is located at the

border of stomach and esophagus, it might be difficult for the classifier to distinguish these

two tissues. In addition, tissues from adjacent regions may have similar methylation profiles so

that the methylation-based prediction model has difficulty in differentiating cancers with adja-

cent origins (e.g., esophagus vs stomach).

Table 2. DNN model performance using 10-fold cross validation of training data.

Mean SD CI (95%)

Specificity 0.9972 0.0001 0.9969, 0.9975

Sensitivity (Recall) 0.9259 0.0032 0.9187, 0.9330

PPV (Precision) 0.9503 0.0057 0.9373, 0.9633

NPV 0.9973 0.0001 0.9970, 0.9976

PPV: positive predictive value; NPV: negative predictive value.

https://doi.org/10.1371/journal.pone.0226461.t002

Table 3. DNN model performance in test set.

CANCER ORIGIN SPECIFICITY SENSITIVITY (RECALL) PPV (PRECISION) NPV

AG 0.9993 0.9787 0.9787 0.9993

BLADDER 0.9986 0.9878 0.9759 0.9993

BRAIN 1.0000 1.0000 1.0000 1.0000

BREAST 0.9977 1.0000 0.9810 1.0000

COLORECTAL 1.0000 0.9861 1.0000 0.9993

ESOPHAGUS 0.9909 0.7410 0.7579 0.9902

HN 0.9971 0.9099 0.9619 0.9927

KIDNEY 0.9993 1.0000 0.9925 1.0000

LIVER 0.9993 0.9851 0.9851 0.9993

LUNG 0.9984 0.9740 0.9894 0.9961

PANCREAS 0.9979 1.0000 0.9167 1.0000

PROSTATE 1.0000 1.0000 1.0000 1.0000

SKIN 1.0000 1.0000 1.0000 1.0000

SOFT TISSUE 0.9993 0.9825 0.9825 0.9993

STOMACH 0.9921 0.9375 0.8721 0.9964

TESTIS 1.0000 1.0000 1.0000 1.0000

THYMUS 1.0000 0.8889 1.0000 0.9979

THYROID 1.0000 1.0000 1.0000 1.0000

OVERALL 0.9983 0.9595 0.9608 0.9983

PPV: positive predictive value; NPV: negative predictive value; AG: Adrenal Gland; HN: Head and Neck

https://doi.org/10.1371/journal.pone.0226461.t003
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DNN-based cancer tissue classifier shows high performance in determining

the origins of metastasized cancers

We evaluated the performance of the classifier in determining the origins of metastatic cancers

that nested in our test data. Our data contained 701 samples from distantly metastasized can-

cers and 558 of them have been used for model development. We then used remaining 143

samples from 12 cancer origins with various sample sizes for evaluation (Fig 5A). Cancer ori-

gin predictions and corresponding confusion matrix were shown in S3 and S4 Tables. Model

performance metrics and ROC curves were shown in Table 4 and Fig 5B. Consistently, DNN

model showed robust high performance in predicting metastatic cancer origins.

We noticed that performance metrics in several cancer origin predictions were poor: a pre-

cision of 0.22 for esophagus origin prediction, a precision of 0.67 for liver origin prediction

and a recall of 0.67 for lung prediction. The poor performance in these three cancer origin pre-

dictions may be due to small sample size. As mentioned above, metastatic cancer samples com-

prise only a small subset of test dataset in TCGA, the majority of which are primary tumors.

Only 2, 2 and 3 metastatic cancer samples from esophagus, liver and lung origin respectively

were included in test dataset (Fig 5A). The classifier mis-classified 6 out of 60 head and neck

cancers as esophagus origin and 1 of 3 of lung cancers as liver cancers (S4 Table). Due to small

sample sizes for esophagus, liver and lung cancers, a few mis-classifications had significant

impacts on the precision metrics.

Fig 4. AUCs for individual cancer origin prediction in TCGA test set.

https://doi.org/10.1371/journal.pone.0226461.g004
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Fig 5. Performance of the DNN-based cancer origin classifier in metastatic cancer samples from TCGA test set.

(A) Distribution of metastatic cancer samples by tissue of origin. (B) AUCs for individual cancer origin prediction.

https://doi.org/10.1371/journal.pone.0226461.g005
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DNN-based cancer tissue classifier shows high performance in independent

testing datasets

The DNN model was trained using DNA methylation data from TCGA. We then tested it in

independent datasets of 11 data series consisting of 581 tumor samples covering 10 tissue ori-

gins downloaded from Gene Expression Omnibus (GEO). The sample distribution was shown

in Fig 6A and cancer origin predictions were listed in S5 Table. Evaluated using these indepen-

dent datasets, the DNN model achieved high performance with an overall precision and recall

of 98.69% and 93.43% respectively (Table 5). High performance was also achieved in individ-

ual cancer origin predictions (Table 5) with an average AUC of 0.99 (Fig 6B). Importantly, the

model achieved 100% accuracy in predicting the origins of metastatic cancers in these datasets,

including 24 prostate cancer that metastasized to bone, lymph node or soft tissue and 12 breast

cancer that metastasized to lymph node (see Table 1 for these samples).

Application of DNN-based cancer tissue classifier in predicting cancer cell

type

We next investigate how cancer tissue-trained classifier can be used in cancer cell type predic-

tion. DNA methylation data from 391 cancer cell lines covering 11 tissue sources were

obtained from a large-scale study [40]. Applying our classifier into these cancer cell lines, we

obtained overall accuracy, precision and recall is 0.8104, 0.8613 and 0.8255 respectively

(Table 6). The overall AUC achieves 0.98 (Fig 7). Predicted tissue resource for individual can-

cer cell line was listed in S7 Table.

Similarly, we noticed variation of model performance for individual cancer cell types. Both

precisions and recalls are high in prediction of cancer cell types derived from Brain, Breast,

Colorectal, Head and Neck and Skin. However, recall is relatively high in prediction of cancer

cell lines from Liver (0.8571) but precision is low (0.4444). Further examining confusion

matrix (S8 Table), we found this is caused by mis-prediction of lung cancer cell line as liver

cancer cell line. Likewise, precision is high in prediction of pancreatic cell lines (0.9091) but

recall is low (0.4167), which is mainly caused by mis-prediction of pancreatic cell lines as stom-

ach and esophagus (S8 Table).

Table 4. DNN model performance in metastatic cancer samples.

CANCER ORIGIN SPECIFICITY SENSITIVITY (RECALL) PPV (PRECISION) NPV

ADRENAL GLAND 1.0000 1.0000 1.0000 1.0000

BLADDER 1.0000 0.9643 1.0000 0.9914

BREAST 0.9929 1.0000 0.7500 1.0000

COLORECTAL 1.0000 1.0000 1.0000 1.0000

ESOPHAGUS 0.9504 1.0000 0.2222 1.0000

HEAD AND NECK 1.0000 0.8833 1.0000 0.9222

KIDNEY 1.0000 1.0000 1.0000 1.0000

LIVER 0.9929 1.0000 0.6667 1.0000

LUNG 1.0000 0.6667 1.0000 0.9929

PANCREAS 1.0000 1.0000 1.0000 1.0000

STOMACH 1.0000 1.0000 1.0000 1.0000

THYROID 1.0000 1.0000 1.0000 1.0000

OVERALL 0.9947 0.9595 0.8866 0.9922

PPV: positive predictive value; NPV: negative predictive value.

https://doi.org/10.1371/journal.pone.0226461.t004
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Fig 6. Performance of the DNN-based cancer origin classifier in GEO dataset. (A) Distribution of cancer samples

obtained from GEO by tissue of origin. (B) AUCs for individual cancer origin prediction.

https://doi.org/10.1371/journal.pone.0226461.g006
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Discussion

We developed a deep neural network model to predict the cancer origins based on large

amount of DNA methylation data from 7,339 patients of 18 different cancer origins. By com-

bining DNA methylation data with deep learning algorithm, our caner origin classifier

achieved high performance as demonstrated in four different evaluation settings. Compared

with Pathwork, a commercially available cancer origin classifier based on gene expressions

[10], our DNN model showed higher precision (95.03% vs 89.4%) and recall (92.3% vs 87.8%)

and comparable specificity (99.7% vs 99.4%). Compared with DNA methylation-based ran-

dom forest model, our DNN model achieved higher PPV (precision) (95.03% in cross valida-

tion and 96.08% in test vs 88.6%) and comparable specificity, sensitivity and NPV. In addition,

we showed that our DNN model is highly robust and generalizable as evaluated in an indepen-

dent testing dataset of 581 samples (10 cancer origins), with overall specificity of 99.91% and

sensitivity of 93.43%. Therefore, high performance both in primary and metastatic cancer ori-

gin prediction and the potential for easy implementation in clinical setting make the methyla-

tion-based DNN model a promising tool in determining cancer origins.

Table 5. DNN model performance using independent cancer samples (GEO).

CANCER ORIGIN SPECIFICITY SENSITIVITY (RECALL) PPV (PRECISION) NPV

ADRENAL GLAND 1.0000 0.7778 1.0000 0.9929

BLADDER 1.0000 1.0000 1.0000 1.0000

BREAST 0.9963 0.9714 0.9444 0.9982

COLORECTAL 1.0000 0.9643 1.0000 0.9915

HEAD AND NECK 1.0000 0.8333 1.0000 0.9983

KIDNEY 1.0000 1.0000 1.0000 1.0000

LIVER 0.9945 1.0000 0.9250 1.0000

PANCREAS 1.0000 0.8084 1.0000 0.9283

PROSTATE 1.0000 1.0000 1.0000 1.0000

THYROID 1.0000 0.9878 1.0000 0.9980

OVERALL 0.9991 0.9343 0.9869 0.9907

PPV: positive predictive value; NPV: negative predictive value.

https://doi.org/10.1371/journal.pone.0226461.t005

Table 6. DNN model performance in cancer cell type prediction.

CANCER CELL TYPE SPECIFICITY SENSITIVITY (RECALL) PPV (PRECISION) NPV

BLADDER 0.9946 0.7778 0.8750 0.9893

BRAIN 1.0000 0.7959 1.0000 0.9716

BREAST 0.9942 0.8958 0.9556 0.9855

COLORECTAL 0.9942 0.9333 0.9545 0.9914

HEAD AND NECK 1.0000 0.8421 1.0000 0.9833

KIDNEY 0.9889 0.9355 0.8788 0.9944

LIVER 0.9602 0.8571 0.4444 0.9945

LUNG 0.9842 0.6267 0.9038 0.9174

PANCREAS 0.9973 0.4167 0.9091 0.9632

SKIN 0.9826 1.0000 0.8868 1.0000

TESTIS 0.9974 1.0000 0.6667 1.0000

OVERALL 0.9903 0.8255 0.8613 0.9810

https://doi.org/10.1371/journal.pone.0226461.t006
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DNA methylation is established in tissue specific manner and conserved during cancer

development [21], which makes DNA methylation profile a very useful feature in cancer origin

prediction. Deep neural networks (DNNs) excels in capturing hierarchical features inherent in

many complicated biological mechanisms. Our study indicates that the trained DNN model

may be able to capture hierarchical patterns of cancer origins from the DNA methylation data.

While Interpretation of deep learning-based models is a rapidly developing field and we expect

that our model can be explained in a meaningful way in the future.

Our DNN model has potential in predicting origins of Cancer of Unknown Primary origin

(CUP). CUP is a sub-group of heterogenous metastatic cancer with illusive primary site even

after standard pathological examination [41]. It is estimated that 3–5% metastatic cancers are

CUP and the majority of CUP patients (80%) have poor prognosis with overall survival of

6–10 months [41]. Identifying primary site of CUP poses challenges for treatment decisions in

clinical practice. Currently, intensive pathologic examination still leaves 30% of them unidenti-

fied [42, 43]. High performance of our DNA methylation-based DNN model may provide an

opportunity in this scenario when pathology-based approach fails. However, compared to

pathologic examination, DNA methylation-based DNN prediction models has limited

interpretability due to the “black-box” nature of deep learning methods and our limited under-

standing of the mechanistic connections between DNA methylation and cancer origins. We

envision that a hybrid approach innovatively combining existing pathological examinations

with DNA methylation-based prediction may offer both interpretability and high prediction

power.

Fig 7. AUCs for individual cancer cell type prediction.

https://doi.org/10.1371/journal.pone.0226461.g007
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Due to the limited CUP data in both TCGA and GEO, we currently are unable to test the

DNN models in predicting the origins of CUP. Our future direction is to collaborate with hos-

pital to collect DNA methylation data from CUP patients to test our model. One challenge is

to obtain the true primary sites for these patients. Due to unknown property of CUP, true pri-

mary sites may be established in later cancer development [18]. Another is through the post-

mortem examination of patients since 75% of primary sites of CUP were found in autopsy

[44].

Another potential usage of our model is to determine the tissue source or cell type of circu-

lating tumor cells (CTCs). CTCs are cells that are shed from primary and metastatic tumors

into blood. The enumeration of CTCs is shown an independent prognostic biomarker of over-

all survival in breast cancer and characteristics of CTCs has shown predictive role of CTCs for

patient response to therapy [45, 46]. Role of CTCs in non-invasive diagnosis of cancer also

emerges [47, 48]. However, identification its tissue source or tumor type is challenging. Zou J

et al has developed eTumorType, which is based on Copy Number Variation (CNV) and

shows promising in diagnosis of tumor type of CTCs [49]. We here applied our DNA methyla-

tion-based model into cancer cell type identification and our model shows relatively high per-

formance with overall specificity of 0.9903 and overall sensitivity of 0.8255 for 11 cancer types

(Table 6). CTCs may have different property from cancer cell lines and we expect that our

model can be directly tested in CTCs when sufficient DNA methylation data are available. We

are aware that the cell types our model can identified are still limited and performance also

varies in different cancer types. Further improvements of our model are warranted.

One limitation of this study is that small sizes of metastatic cancers in our data. Two

resources of metastatic cancer were used in this study: TCGA and GEO. TCGA has 701 meta-

static cancer samples (12 tissues) with available methylation data from Illumina Human Meth-

ylation 450K platform. While the model achieved an overall specificity of 99.47% and

sensitivity of 95.95% in cross-validation using TCGA data, we were unable to robustly test it

using independent dataset since methylation data of metastatic cancers is limited in GEO. Fur-

ther independent validation of our DNN-based model in predicting origins of metastatic can-

cers, especially poorly differentiated or undifferentiated metastatic cancer samples, is needed.

Conclusion

We developed a DNN-based cancer origin classifier using large-scale of DNA methylation

data. This model shows high performance in predicting cancer tissue origins of solid tumors.

We also demonstrated the model can be used for cancer cell type identification. In summary,

the DNA methylation-based DNN models has potential in diagnosing cancer origin of CUP as

well as identifying cancer cell type of CTCs.
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