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ABSTRACT Emiliania huxleyi virus strain M1 (EhVM1), a large double-stranded DNA
virus from the family Phycodnaviridae, was isolated from an Emiliania huxleyi bloom
during a mesocosm experiment in Raunefjorden, Bergen, Norway. Here, we report its
complete genome, composed of one full contig.

Emiliania huxleyi is a unicellular alga that forms massive blooms that cover vast oce-
anic ranges. E. huxleyi blooms are routinely infected by the Emiliania huxleyi virus

(EhV), leading to their demise (1). EhV is a large, double-stranded DNA virus from the
family Phycodnaviridae (2). Here, we report the complete genome sequence of EhV
strain M1 (EhVM1), which was isolated from an E. huxleyi bloom during a mesocosm
experiment in Bergen, Norway (3, 4). To isolate EhV strains from the natural environ-
ment, water from the induced blooms in mesocosm bags (3) was filtered through a
GF/C filter and stored at 4°C.

This water was used to inoculate E. huxleyi cells and conduct plaque assays for viral
isolation, according to the methods described previously for EhV86 (5). Visible plaques
were excised on day 4 postinfection and placed in a fresh E. huxleyi CCMP374 culture.
Once the culture cleared, the lysate was used for two consecutive plaque assay rounds.
Cultures (100 mL) of E. huxleyi CCMP374 were grown to exponential phase and then
infected with EhVM1. Once the culture cleared, the lysate was filtered to eliminate cell
debris, and the viruses were concentrated using a 100-kDa Amicon filter. DNA was
extracted from the virions by a conventional phenol-chloroform method (6). The DNA
concentration and quality were measured using Qubit and NanoDrop analyses. Library
preparation was performed according to the Pacific Biosciences (PacBio) microbial mul-
tiplexing protocol for one Sequel single-molecule real-time (SMRT) Cell (7). Polymerase
reads were demultiplexed to subreads and assigned to EhVM1 using SMRT Link analy-
sis (Table 1). Highly accurate circular consensus sequence (CCS) reads were generated
from subreads using SMRT Link with default parameters; all tools were run with default
parameters unless otherwise specified.

Three draft EhVM1 assemblies were constructed by (i) SMRT Link microbial assem-
bly using an expected genome size parameter of 1 Mbp, (ii) Canu assembly (8) with
both CCS reads and subreads as the input, and (iii) SPAdes assembly (9) with CCS reads
as the input. A final version of the genome was assembled from the three draft assem-
blies using GFinisher (10). Circularization of the genome was confirmed with CCS reads
that spanned both ends. The GC content of the genome was calculated via an in-house
script. The genome sequence of EhVM1 consists of one circular contig of 411,976 bp,
longer than the EhV86 genome (407 kbp [5]), with an average GC content of 40.32%.
Coding DNA sequences (CDSs) longer than 100 amino acids were predicted using
GeneMarkS (11) with the virus sequence type parameter. Additional CDSs were pre-
dicted using Prodigal (12). tRNAs were predicted with tRNAscan-SE v2.0 (13) and were
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analyzed by the RNAcentral (14) web server for verification. We predict that the EhVM1
genome contains 489 CDSs, more than EhV86 (472 CDSs [5]), and 6 tRNA genes.

Data availability. The complete genome sequence of EhVM1 has been deposited
in GenBank under the accession number OM339720. PacBio sequence reads have been
deposited in the NCBI Sequence Read Archive (SRA) under the BioSample accession
number SAMN24818830. The complete record is available in the NCBI BioProject data-
base under the accession number PRJNA796183.
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TABLE 1 Sequencing data

Parameter Finding for EhVM1
No. of polymerase reads 6,520
No. of subreads 5.6E14
No. of subread bases 2.9E18
No. of CCS reads 2,995
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