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Abstract 
This study was conducted to quantify the trend in dengue notifications in the country in 
2017 and to explore the possible determinants. Annual nation-wide dengue notification 
data were obtained from the National Disease Surveillance of Ministry of Health of 
Indonesia. Annual incidence rate (IR) and case fatality rate (CFR) in 2017 and the previous 
years were quantified and compared. Correlations between annual larva free index (LFI), 
implementation coverage of integrated vector management (IVM), El Niño Southern 
Oscillation (Niño3.4), Dipole Mode Index (DMI), Zika virus seropositivity and the percent 
change in IR and CFR of dengue were examined. The change of dengue IR and CFRs were 
mapped. In 2017, dengue IR was declined by 71% (22.55 per 100,000 population) 
compared to 2016 (77.96 per 100,000 population) while the CFR was slightly reduced 
from 0.79% to 0.75%. Reduction in IR and CFR occurred in 94.1% and 70.1% out of 34 
provinces, respectively. The trend of dengue IR seems to be influenced by Niño3.4 but 
there is no clear evidence that Niño3.4 is the main reason for dengue reduction in 2017. It 
is difficult to elucidate that the reduction of dengue in 2017 was associated with previous 
Zika outbreaks. In conclusion, there was a significant reduction on dengue notifications in 
Indonesia in 2017. Further investigation is needed to look at the role of climate on the 
decline of dengue IR at finer temporal scale. In addition, study on the role of cross-
protective immunity generated by Zika infection on dengue incidence is also warranted.  

Keywords: dengue, Zika, larva free index, Niño3.4, vector management 

Introduction 
Arboviruses are a group of viruses transmitted by arthropods, mainly mosquitoes and ticks and 
among them, dengue virus (DENV), chikungunya virus (CHIKV) and Zika virus (ZIKV) are 
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considered the most epidemiologically important viruses globally [1, 2]. DENV and ZIKV belong 
to Flavivirus genus while CHIKV belong to Alphavirus. Dengue, the most important mosquito-
borne viral disease in humans [3], is caused by infection of any of four serotypes of DENV (DENV-
1 to DENV-4) and it has a wide spectrum of clinical symptoms from mild flu-like syndrome 
dengue fever (DF), dengue hemorrhagic fever (DHF) to the life-threatening dengue shock 
syndrome (DSS) [4]. Dengue  is the most common arbovirus infection worldwide, with a 30-fold 
increased incidence in the past 50 years [5] and over 50% of the world’s population is now at risk 
for DENV infection [6].  

Dengue and chikungunya are endemic in Indonesia [7, 8]. Since the first dengue cases 
reported in Jakarta and Surabaya in 1968, all four DENV serotypes have circulated in at least 433 
(84.7%) districts and more than 200 million people are at risk of infection  [9]. Currently, 
Indonesia reports the highest average number of dengue cases in Asia, with frequent epidemic 
cycles [10, 11]. Recent studies found that half of children become infected with DENV at least once 
by the age of 5 years old [10, 12]. It is estimated that 30 million dengue infections occur in 
Indonesia annually [13] with approximately 1% case fatality rate (CFR) [14]. Over the 50-years 
period, there was a sharp increase in the annual incidence rate (IR) of DHF in Indonesia, from 
just 0.05 cases per 100,000 person-years in 1968 to 77.96 cases per 100,000 person-years in 2016 
[7].  

In 2013, a Zika outbreak occurred in French Polynesia, followed by outbreaks in New 
Caledonia, Cook Islands, and Easter Island in 2014 and in Vanuatu, Solomon Islands, Samoa, and 
Fiji in 2015 [15]. In May 2015, ZIKV infection was reported for the first time in the Americas 
(Brazil) [16], and it rapidly spread across countries and territories on the American continent; to 
date, Zika has been reported in 86 countries around the globe  [17]. Zika cases were not reported 
in Indonesia so far. However, case reports from travelers [18, 19] and molecular virology studies 
[20, 21] provide evidence that ZIKV is present in the country. A serological study also found that 
9.1% out of 662 children aged 1-4 years were ZIKV seropositive in 2014 [22]. These data indicate 
that ZIKV have been circulating in Indonesia. The introduction of Zika in Indonesia has increased 
the transmission complexity of endemic of arboviruses in the country. This is due not only in 
respect of the potential misclassification of Zika and dengue diagnoses - due to similar clinical 
presentations [23] - but also considering cross-immunity among these arboviruses [24, 25]. 

Since 2010, a continuous surveillance study has been conducted using Western Australia 
(WA) travelers as sentinels to monitor the transmission dynamics of DENV and other arboviruses 
in Asia Pacific, including in Indonesia [26]. Among WA travelers diagnosed with dengue, 
approximately 80% originated in Indonesia [26]. Since 2014, the annual average of dengue in WA 
travelers was above 400 cases [27]. In 2017, however, a significant decrease of dengue cases was 
noticed in the WA travelers with 67.6% reduction compared to 2016. A significant decrease of 
dengue cases imported to Taiwan from Indonesia was also noticed [28]. The recent reports 
indicated a sharp reduction of dengue in the Americas in 2017 [25, 29]. The aim of this study was 
to investigate details situation of dengue in Indonesia in 2017 and to explore the possible factors 
associated with the reduction. 

Methods 
Dengue and potential factor data 
Data on dengue notification were retrieved from the National Disease Surveillance, the 
Directorate General of Disease Prevention and Control of the Indonesian Ministry of Health 
(MoH). In Indonesia, reporting of DHF by Community Health Centres (Pusat Kesehatan 
Masyarakat, Puskesmas) and public or private hospitals to district health authorities is 
mandatory within 72 hours of diagnosis. Details of DHF case definition and case ascertainment 
used in this surveillance have been published elsewhere [11]. In brief, the surveillance system uses 
the World Health Organization (WHO) dengue classification system, which classifies 
symptomatic dengue into DF, DHF and DSS [30]; only DHF and DSS are reported in this 
surveillance system [11]. In this study, data of DHF and DSS from the surveillance were defined 
as dengue infection. To estimate the annual incidence rate per 100,000 population, national and 
annual population data were obtained from the Indonesia Bureau of Statistics.  
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Additionally, the annual report for larva free index (LFI) and the number of districts that 
implemented integrated vector management (IVM) were obtained from the MoH. LFI is the 
percentage of house free larvae over the total number of houses that are assessed. Every year, as 
part of vector surveillance, the MoH collects data on national LFI. The IVM is an approach of 
vector control that includes a combination of strategies, such as: a) mechanical or physical 
control; b) biological control such as using predator fish, bacterial or genetically modified 
organisms (e.g., sterile insect, Wolbachia infection); c) modification and manipulation of 
breeding sites and usage of nets; and d) chemical strategy such as using indoor residual spraying, 
space spray (fogging) and larvicide. 

In addition to entomological and control measures, regional climate data - including indices 
of the El Niño Southern Oscillation (ENSO) (indicated by Niño3.4) and Indian Ocean Dipole 
(IOD) (indicated by Dipole Mode Index [DMI]) - for the period of 2005-2017 were also collected. 
ESNO is a periodic fluctuation in sea surface temperature (SST) and the air pressure of the 
overlying atmosphere across the equatorial Pacific Ocean; Niño3.4 is defined comprising portions 
of Niño regions 3 and 4 (5oN, 5oS, 120oW and 170oW) [31, 32]. IOD is defined by the difference in 
SST between a western pole of western Indian Ocean (50oE-70oE and 10oS-10oN) and an eastern 
pole in the eastern Indian Ocean south of Indonesia (90oE-110oE and 10oS-0oN) [33, 34]; DMI is 
the gradient of different of IOD. Previous studies have shown correlations between ENSO-IO5D 
variability and dengue incidence [35-37]. Monthly Niño3.4 and DMI were retrieved from the 
Earth System Research Laboratory of the National Oceanic and Atmospheric Administration 
(NOAA) [38] and from the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) 
[39], respectively. For the purpose of analysis, the monthly Niño3.4 and DMI were averaged into 
yearly.  

To explore the correlation between dengue notification and Zika occurrence in Indonesia, 
data for Zika seropositivity which collected from another study [22] were used. In Indonesia, the 
first evidence of Zika circulation was reported in 2012-2013 [18, 19]; in 2015, Zika virus (ZIKV) 
was isolated from local inhabitant for the first time in Indonesia [40]. In 2014, a study was 
conducted to assess Zika seropositivity among 662 children aged between 1–4 years from 14 
provinces in Indonesia [22]. Zika seropositivity was measured using a plaque reduction 
neutralization test (PRNT) that could differentiate ZIKV neutralizing antibodies from those 
produced in response to DENV infection. Zika seropositive defined by sample that neutralized 
ZIKV only at PRNT90 or had a PRNT90 titer >4-fold higher for ZIKV than for any DENV [22].  We 
assume that the ZIKV seropositivity from the study represents the provincial seroprevalence of 
anti-ZIKV antibodies. 

Data analysis  
The annual IR and CFR of notified dengue in 2017 and previous years were calculated. The annual 
IR was determined by dividing the number of new cases by the size of the population at risk based 
on MoH data and was expressed as the number of cases per 100,000 inhabitants. CFR was 
calculated as the number of deaths associated with infection divided by the total number of cases 
and expressed as a percentage (%). To investigate geographical change in dengue morbidity, both 
IRs and CFRs in 2016 and 2017 were mapped using ArcGIS software [41] and the percent changes 
of IR and CFR of dengue for each province were calculated.  

To explore possible factors associated with the reduction of notified dengue incidence, the 
associations between LFI, percent change in number of districts implementing IVM, Niño3.4 and 
DMI and dengue incidence were examined. Correlations between LFI, Niño3.4, DMI and annual 
IR and CFR of dengue were assessed using Spearman’s rank correlation (ρ), based on data 
distribution analysis using Shapiro-Wilk test. Correlation between Zika seropositivity and dengue 
IR and CFR assessed using Spearman’s rank or Pearson’s correlation (r). Significance was set at 
p-value <0.05. The distribution of percent change of provincial IVM coverage and percent change 
of IR and CFR between 2016 and 2017 were mapped. In addition, the association between the 
magnitude of Zika infection and percent change of dengue notification were also explored.  
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Results  
Decline of dengue in Indonesia in 2017  
Data indicated a sharp decline of dengue notifications in Indonesia in 2017. Dengue cases 
decreased 66.5% from 204,171 in 2016 to 68,407 in 2017. The number of deaths associated with 
dengue decreased from 1,598 (2016) to 493 (2017), approximately 69%. The incidence of notified 
dengue decreased from 77.96 (2016) to 22.55 (2017) per 100,000 inhabitants (71.07%) while CFR 
reduced from 0.79% (2016) to 0.75% (2017). The temporal distribution of dengue incidence and 
CFR in the past five decades is presented in Figure 1.    

 
Figure 1. Incidence rate (per 100,000 person years) and case fatality rate (%) of dengue in 
Indonesia from 1968 to 2017. 

The reduction of incidence of dengue was observed in 94.1% (32 out of 34) of Indonesian 
provinces, ranging from 4.0% in Aceh to 87.9% in West Sulawesi (Figure 2). There were two 
provinces that experienced an increase in dengue incidence: West Kalimantan (335.3%) and West 
Papua (51.5%). CFR was reduced in 70.1% (24 out of 34) provinces, ranging from 4.2% (East Java) 
to 100% (Maluku, Kepulauan Bangka Belitung, North Maluku and West Sulawesi) (Figure 2). 
In contrast, the CFR of dengue was increased in nine provinces, with the highest increase in East 
Nusa Tenggara (140.0%).  

In 2017, a total of 24 (67.6%) provinces experienced a decline in both dengue IR and CFR. 
However, there were some provinces with unique dynamics of IR and CFR in 2017. For instance, 
West Papua province experienced an increase in both IR (55.2%) and CFR (100%). The number 
of cases of dengue increased from 105 to 163 cases while the mortality increased from 0 to 2 
deaths in 2016 and 2017, respectively. Differently, West Kalimantan experienced an increase in 
IR but had a decrease in CFR. Dengue incidence increased by more than 3-fold from 2016 to 2017, 
while the CFR dropped by 14.7%. Although there were 9 (26.4%) provinces reporting increased 
CFR during 2017, only 84 deaths in total were reported from those provinces, accounting for 
approximately 17% of total reported deaths associated with dengue infection in 2017. In Bali, the 
IR declined significantly but there was no change in CFR. 

The percent change in IR and CFR of notified dengue from 2016-2017 were mapped. 
Reductions of dengue IR were observed in all major islands of Indonesia (Figure 3). Two 
provinces that had significant increase in incidence were located in Kalimantan and Papua Island, 
while the reduction of CFR was less obvious and there was no pattern of CFR reduction in 
Indonesia during 2017 (Figure 4). However, increase CFR was observed in two provinces in 
Papua Island (West Papua and Papua) and East Nusa Tenggara.  
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Figure 2. (A) Provincial incidence rates (per 100,000 inhabitants) and (B) case fatality rates (%) 
of dengue in 2016 and 2017 and their percent changes in 2017 compared to 2016.  

Exploring the potential determinants of dengue reduction  
Potential factors associated with the reduction of notified dengue IR and CFR in Indonesia in 
2017 were explored and discussed. Factors including vector density, LFI, number of provinces 
implemented IVM, Niño3.4, DMI, and Zika seropositivity were assessed. 

Larva free index and dengue 
Our hypothesis was that the decline incidence of dengue was associated with an increase in LFI 
in Indonesia. LFI is one of the national indicators of vector control used by Indonesian MoH. The 
national target of LFI is over 95%. There was an increase in LFI percentage in 2017 compared to 
2016 from 47.6% to 67.6%. However, this study found there was no significant correlation either 
between LFI and dengue IR or between LFI and dengue CFR in the national scale (ρ=0.42; 
95%CI: -0.09, 0.76, p=0.144 and ρ=0.33; 95%CI: -0.20, 0.71, p=0.266, respectively) (Figure 5).  
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Figure 3. Spatial distribution of provincial incidence rates of dengue in 2016 (A), 2017 (B) and 
their change percentages in 2017 compared to 2016 (C).  

Integrated vector management and dengue 
In 2016, 50% of Indonesian districts implemented IVM; this number increased to 60.7% in 2017 
[42, 43]. In 2016, the province with the highest percentage of districts that implemented IVM 
approach in Indonesia was DI Yogyakarta (100%) while the lowest was Riau province (8.3%). In 
2017, there were five provinces achieving 100% coverage of IVM implementation, in which all 
districts from these provinces applied IVM for dengue control. This includes Aceh, East 
Kalimantan, South Kalimantan, Central Sulawesi and DKI Jakarta provinces. While Riau had the 
lowest IVM coverage in 2017, the percentage increased to 16.7% compared to 2016. More than 
half (61.7%) of provinces in Indonesia had increase in the IVM coverage, ranging from 4.5% to 
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266.6%. However, there was no significant change observed in the remaining 12 (35.3%) 
provinces (Figure 6).  
 

 
Figure 4. Spatial distribution of provincial case fatality rate of dengue in 2016 (A) and 2017 (B) 
and their change percentages in 2017 compared to 2016 (C). 
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Figure 5. The annual larva free index (LFI), incidence rate and case fatality rate of dengue in 
Indonesia, 2005-2017.  

 
Figure 6. Percent change of IVM coverage, dengue incidence and CFR of each province in 
Indonesia, 2017.  

It was expected that increase of IVM coverage would be associated with a decrease of IR and 
CFR. Therefore, the correlation between the percent change of IVM coverage and IR and CFR of 
dengue in 2017 were calculated. Results showed that there was no significant correlation between 
the IVM coverage and dengue incidence (ρ=0.04; 95%CI: -0.25, 0.33, p=0.808) and CFR in 
Indonesia (ρ=0.151; 95%CI: -0.15, 0.42, p=0.394).   

The distribution of percent change of IVM coverage of each province and percent change of 
IR and CFR of dengue at province-level in 2017 compared to 2016 are presented in Figure 7. 
There was no clear pattern between changes in IVM coverage and change in IR and CFR of 
dengue. 
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Figure 7. Map of province-level percent change of integrated vector management (IVM) coverage 
and incidence rate (A) and case fatality rate (B) of dengue in Indonesia in 2017 compared to 2016.  

Regional climate and dengue  
In this study, correlations between Niño3.4, DMI and IR of dengue for 13 years (2005-2017) were 
calculated. Fluctuation of Niño3.4, DMI and IR of dengue between 2015 and 2017 are shown in 
Figure 8. Our data suggested there were no strong statistically significant correlation between 
both Niño3.4 (ρ=0.023, p=0.939) and DMI (ρ=-0.361, p=0.226). However, data from 2009-2017 
indicated that the rise of dengue incidence seemed to be influenced by Niño3.4. For instance, an 
increase in Niño3.4 index in 2009 and 2015 might have influenced an increase in dengue 
incidence in the year of 2010 and 2016, respectively (Figure 8). A similar pattern was also 
observed for DMI and IR of dengue. 
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Figure 8. Temporal trend of Niño3.4, DMI and dengue incidence in Indonesia (2005-2017). 
Associations between Niño3.4 and dengue incidence (upper panel) and between DMI and dengue 
incidence (lower panel) suggest changes of both regional climatic variables followed by changes 
in dengue incidence although there was no significant correlation.  

Cross-immunity by previous ZIKV infection and dengue 
During 2014, 662 serum samples were collected from healthy 1–4-year-old children from 14 
provinces in Indonesia and were tested for ZIKV seroprevalence using plaque reduction 
neutralization test (PRNT) [22]. The prevalence of anti-ZIKV antibodies is presented in Table 1. 
Zika infections were confirmed in 11 out of 14 provinces and ranged between 4.5% and 18.2%. All 
11 provinces with Zika positive cases had decrease in dengue IR (ranging between 38.72% and 
78.27%) and 9 of them also had decrease in dengue CFR in 2017. Three provinces with no 
evidence of ZIKV infection also had decrease in dengue IR in 2017. However, there was no 
significant correlation between the Zika seropositivity in 2014 and both IR and CFR of dengue in 
2017, ρ=0.186; 95%CI: -0.31, 0.60, p=0.523 and r=-0.276; 95%CI: -0.66, 0.22, p=0.339, 
respectively.  
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Table 1. The magnitude of ZIKV seropositivity (2014) and percent change of IR and CFR of 
dengue in 14 provinces in Indonesia  

Province Confirmed ZIKV seropositive* Percent change** 
 Percentage  Case/total IR CFR 
Jambi 18.2 4/22 -66.73 -36.67 
Central Tengah 18.2 16/88 -48.89 -16.22 
West Sumatra 13.6 3/22 -38.72 -37.78 
DKI Jakarta 10.6 7/66 -74.00 2.38 
East Java 9.0 10/111 -68.16 -4.29 
Lampung 8.7 2/23 -36.26 -6.06 
Banten 8.7 2/23 -78.27 -30.17 
West Java  8.5 13/153 -73.03 -27.03 
South Sumatra 4.5 1/22 -62.85 -26.15 
East Kalimantan 4.5 1/22 -68.16 -4.29 
Southeast Sulawesi  4.5 1/22 -74.55 53.13 
Aceh 0.0 0/22 -4.02 -41.77 
Bali 0.0 0/22 -79.46 0.00 
South Sulawesi 0.0 0/22 -77.65 18.87 
*Serum samples that neutralized ZIKV only or had a PRNT90 titre >4-fold higher for ZIKV than for any 
DENV 
**Percent change in 2017 compared to 2016 

Discussion 
There was a significant decline of dengue in Indonesia in 2017. The reduction in dengue IR and 
CFR occurred in most provinces in Indonesia. Compared to 2016, in 2017 the incidence was 
substantially reduced (from 77.96 to 22.55 cases per 100,000 inhabitants) while the fatality rates 
were slightly reduced from 0.79% to 0.75%. Although this study indicates that the reduction of 
dengue incidence was much more obvious than CFR, these findings should be interpreted 
carefully. Since 2008, the fatality rates due to dengue infection in Indonesia were less than 1% 
and small changes on the number of deaths in a province will increase the CFR significantly. For 
example, in 2017, only two deaths associated with dengue were reported in Papua Barat province, 
but this increased the CFR up to 100% because no death was reported in 2016. In addition, 
although there were 9 (26.4%) provinces reporting increase in dengue CFR during 2017, the total 
deaths from these provinces were 84 only accounting for approximately 17% dengue related 
deaths. 

There was no a clear single factor associated with the reduction of dengue incidence and 
fatality rates in 2017. A previous study discussed three hypotheses that might be related with the 
reduction of dengue in Americas [25]: (a) changes in epidemiological surveillance systems; (b) 
changes in the density and competencies of vectors; and (c) cross-immunity generated by the 
simultaneous circulation of several arboviruses. In the present study, we attempted to explore the 
associations between entomological indicator (LFI), existing control measures (IVM), regional 
climate and the occurrence of Zika and dengue incidence. Changes in epidemiological 
surveillance systems are unlikely to be the leading factor associated with the reduction of dengue 
cases in Indonesia in 2017. Based on the Indonesian MoH report [42], no change of 
epidemiological surveillance systems in both case definition or notification system occurred in 
the county in 2017 compared to previous years, which is true for both dengue and chikungunya. 
The Indonesia MoH suggests that the reduction may partly be associated with the existing 
national community-based program called “Gerakan 1 Rumah 1 Jumantik”, in which one family 
member is trained to be an inspector or ‘Jumantik’ and is responsible for monitoring vector 
breeding sites regularly in their house [42]. This program is one of the strategies within IVM. 
However, this did not explain the reductions in all regions because the program was launched in 
2016 [43] and the program is not widely implemented in Indonesia [42]. Our findings also 
indicates that there was no strong correlation between the IVM coverage and changes of IR and 
CFR of dengue in Indonesia in 2017. This suggests to other factors that could better explain the 
reduction of dengue incidence in 2017.  
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Our initial data suggested that changes of annual Niño3.4 and DMI were followed by changes 
on incidence of dengue in Indonesia, but whether this is the main reason for reduction of dengue 
in 2017 still needs to be explored. Some studies using small-scale region data in Indonesia have 
shown that dengue incidence was associated with climate [44, 45] and some climate-related 
variables could be used to predict dengue outbreak or incidence [46, 47]. A study reported that 
12.9–24.5% of variance in dengue incidence were explained by two or three climate variables [48]. 
The reason why climate variables are associated with dengue incidence or outbreak is because 
variations in climate variables affect the behavior, maturation and duration of infectivity of DENV 
vector mosquitoes and therefore affect their density. Although the present study has assessed the 
role of Niño3.4 and DMI on dengue incidence, the correlations were assessed using annual data, 
thus making analyses less sensitive to detect clear association of these climate variables. In 
addition, missing from the analyses are assessments of the role of other climate variables, such 
as rainfall, temperature, and humidity. Therefore, a study to analyze the relationship between 
changes in climate variables and reduction of dengue in 2017 is needed. Moreover, efforts to 
explore the relationship between Niño3.4, DMI and dengue cases in Indonesia using higher 
temporal resolutions, such as weekly or monthly, are also needed. In addition to direct month-
by-month correlation, the variables need to be lagged up to particular times with respect to 
dengue incidence. 

The cross-immunity generated by the ZIKV outbreaks has been considered as an associated 
factor with decrease of dengue incidence in Americas [25]. Many studies have focused whether 
pre-existing DENV-induced antibodies enhance or protect ZIKV infection, founding conflicting 
results [24, 49-59]. Some studies found that DENV-induced antibodies enhanced [49-53], had no 
association [54-56], or had protective [24, 57-59] for ZIKV infection. A recent prospective study 
in Nicaragua found that prior DENV infection was associated with protection against 
symptomatic ZIKV infection [58]. However, few studies have been conducted to assess whether 
immunity responses after ZIKV infection are cross-protective against DENV infection. An initial 
study in Brazil indicated to a decrease in dengue cases following a widespread ZIKV outbreak 
[24]. Data from other countries throughout the Americas also observed decrease dengue cases 
following ZIKV outbreaks [25]. These studies suggest that ZIKV infection might induce cross-
protective immune responses against DENV and could inhibit the transmission of DENV.  

In Indonesia, although no Zika cases have been reported, two Australian travelers have been 
reported to have acquired ZIKV infection after visiting Indonesia in 2012 and 2013 [18, 19]. A 
serology study in 2014 found that 9.1% out of 622 children aged 1-4 years were infected with ZIKV 
[22] and in 2015 ZIKV was isolated for the first time in Indonesia [40]. These data indicate that 
ZIKV have been circulated in Indonesia prior to 2014, earlier than when the virus reached the 
Americas. This is also supported by a phylogenetic study that demonstrated the introduction and 
dispersal of ZIKV in the Pacific islands and Americas originated from Asia that evolved adaptively 
with silent transmission in Southeast Asia [60]. A recent study found that among 150 Indonesian 
migrant workers to Taiwan in 2017, 4.7% and 43.3% were positive for ZIKV-specific IgM and IgG, 
respectively [61]. Among IgM positive samples, confirmation with plaque reduction 
neutralization test indicated at least one sample with ZIKV infection using WHO criteria [61], 
indicating that ZIKV was till circulating in 2017 in Indonesia. However, with limited Zika 
infection data in Indonesia, it is difficult to elucidate that the reduction of dengue in Indonesia in 
2017 was associated with previous ZIKV infection. Nevertheless, the role of cross-protective 
immunity responses generated by previous ZIKV infection cannot be ruled out. Therefore, 
prospective studies are needed to fully assess the subsequent risk of dengue after ZIKV exposure 
in the country. In addition, data of dengue and chikungunya cases in 2017 from other countries 
in Southeast Asia region are also important to explain the phenomenon in the bigger context.  

Apart from cross-immunity generated by the ZIKV infection, the role of herd immunity 
might also contribute to the decline of dengue observed in 2017. Epidemiological studies have 
shown that dengue had endemic and epidemic cycles due to herd immunity and varies among 
countries [62-65]. This variation is associated with serotypes of circulating viruses and 
population immunity background [62]. Studies suggested that cross-protection induced by a first 
infection with DENV against a second symptomatic infection is approximately 2 years [66, 67]. A 
review indicated that the peak transmission occurred between 3–5 years in many populations 
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regardless of the circulating DENV serotype [63]. In Indonesia, data from over 50-year time-span, 
IRs of DHF appear to be cyclic and peaking approximately every 6–8 years [7]. The latest sharp 
reduction of DHF prior to 2017 occurred in 2011 when the cases reduced significantly from 
156,086 to 65,725 cases, reduced by 57.8% compared to 2010 (Figure 1). A previous study 
detected increase activities of multiple DENV serotypes during a significant increase of DHF cases 
while a reduction of DHF in 2011 was coincident when DENV-1 had serotype dominance in the 
country [7]. The cycle repeated again in 2013 onward so that, when multiple DENV serotypes 
began to dominate, the number of DHF started to increase [7]. However, it is difficult to elucidate 
whether the reduction of dengue in 2017 is part of nature cyclic of dengue transmission in 
Indonesia due to limitation of the data.  

There are some limitations of this study that should be considered when interpreting the 
findings. This study used notification data (passive-surveillance) which may result in under 
estimation of the actual dengue incidence. We acknowledged that the surveillance management 
(e.g., completeness of the report, underreported cases) could have varied between provinces, 
which may influence the results. In this study we did not assess the association between local 
climate variables such as rainfall, temperature, and humidity. Instead, we used regional climatic 
data such as Niño3.4 and DMI. Further studies should be carried out to explore the correlations 
between climate variables and dengue incidence at sub-national and local level. Although this 
study has assessed the role of IVM, as indicator of vector density, on reduction of dengue cases, a 
study to analyze the relationship between changes of climate variables and reduction of dengue 
in 2017 is needed. In addition, the relationship between Niño3.4, the DMI and dengue cases in 
Indonesia is far from clear and therefore further investigation is needed. We used the number of 
districts implanting IVM as proxy for vector control. However, the IVM maybe not the best proxy 
for vector density because the implementation and the effectiveness of IVM may vary among 
districts. One of the accurate indicators would be provincial LFI, however, this data is not 
available. So far, there is no routine longitudinal entomological data (e.g., pupae index, house 
index, container index). Lastly, correlations between provincial ZIKV seroprevalence in 2014 and 
the changes of IR and CFR of dengue were calculated. This might prone to bias because there is a 
possibility that the magnitude of the ZIKV infection have changed during the 2014-2016 period 
in each province and so far, there were no studies that have measured the most effectiveness time 
and how long the cross-protective role of ZIKV-antibodies against DENV infection lasts.  

Conclusions 
There was a significant reduction in both IR and CFR of dengue in 2017. The reduction is likely 
associated with factors other than changes in epidemiological surveillance system or changes of 
circulating viruses. The coverage of IVM implementation has no correlation with reduction of 
both IR and CFR of dengue suggesting that the reductions was not associated with vector controls. 
Initial data indicated that the trend of dengue incidence follows the fluctuations of Niño3.4 in 
lagged manner and further studies using high temporal resolution are needed. Although the role 
of cross-protective of ZIKV-antibodies could not be ruled out, lack of Zika data in Indonesia 
makes this is hard to be elucidated.  
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