
fmicb-13-872583 April 28, 2022 Time: 14:27 # 1

PERSPECTIVE
published: 04 May 2022

doi: 10.3389/fmicb.2022.872583

Edited by:
Eugenia Bezirtzoglou,

Democritus University of Thrace,
Greece

Reviewed by:
Ayixon Sánchez-Reyes,

National Autonomous University
of Mexico, Mexico

Manoj Kumar,
ICMR-National Institute for Research

in Environmental Health, India

*Correspondence:
Antonis Ampatzoglou
ampatzoglou@ugr.es

Margarita Aguilera
maguiler@ugr.es

†EU-FORA Fellowship Program
Hosted at UGR-INYTA

Specialty section:
This article was submitted to

Food Microbiology,
a section of the journal

Frontiers in Microbiology

Received: 09 February 2022
Accepted: 31 March 2022

Published: 04 May 2022

Citation:
Ampatzoglou A,

Gruszecka-Kosowska A,
Torres-Sánchez A, López-Moreno A,

Cerk K, Ortiz P,
Monteoliva-Sánchez M and

Aguilera M (2022) Incorporating the
Gut Microbiome in the Risk

Assessment of Xenobiotics and
Identifying Beneficial Components for

One Health.
Front. Microbiol. 13:872583.

doi: 10.3389/fmicb.2022.872583

Incorporating the Gut Microbiome in
the Risk Assessment of Xenobiotics
and Identifying Beneficial
Components for One Health
Antonis Ampatzoglou1,2*†, Agnieszka Gruszecka-Kosowska1,2,3†,
Alfonso Torres-Sánchez1,2, Ana López-Moreno1,2,4, Klara Cerk1,2†, Pilar Ortiz1,2,
Mercedes Monteoliva-Sánchez1,2 and Margarita Aguilera1,2,4*†

1 Department of Microbiology, Faculty of Pharmacy, University of Granada (UGR), Granada, Spain, 2 Centre of Biomedical
Research, Institute of Nutrition and Food Technology “José Mataix” (INYTA), UGR, Granada, Spain, 3 Department of
Environmental Protection, Faculty of Geology, Geophysics, and Environmental Protection, AGH University of Science and
Technology, Kraków, Poland, 4 IBS: Instituto de Investigación Biosanitaria ibs., Granada, Spain

Three areas of relevance to the gut microbiome in the context of One Health were
explored; the incorporation of the microbiome in food safety risk assessment of
xenobiotics; the identification and application of beneficial microbial components to
various areas under One Health, and; specifically, in the context of antimicrobial
resistance. Although challenging, focusing on the microbiota resilience, function and
active components is critical for advancing the incorporation of microbiome data
in the risk assessment of xenobiotics. Moreover, the human microbiota may be a
promising source of beneficial components, with the potential to metabolize xenobiotics.
These may have possible applications in several areas, e.g., in animals or plants
for detoxification or in the environment for biodegradation. This approach would be
of particular interest for antimicrobials, with the potential to ameliorate antimicrobial
resistance development. Finally, the concept of resistance to xenobiotics in the context
of the gut microbiome may deserve further investigation.

Keywords: one health, gut microbiome, xenobiotics, microbiota disrupting chemicals, next-generation risk
assessment, antimicrobial resistance, next-generation probiotics

INTRODUCTION

The microbiome, a characteristic microbial community occupying a reasonably well-defined
habitat with distinct physio-chemical properties, encompasses the microorganisms involved
(microbiota), as well as their structural elements, metabolites, and surrounding environmental
conditions (Berg et al., 2020). One Health (OH) is the holistic methodology of transdisciplinary
cooperation to improve human, animal, plant, and environmental health simultaneously, and
its adoption is continuously expanding (Centers for Disease Control and Prevention, 2020;
Bronzwaer et al., 2021). Due to their functional potential and considering their associations with
a range of diseases, microbiomes are key elements in the OH framework (Comitato Nazionale
per la Biosicurezza, le Biotecnologie e le Scienze della Vita [CNBBSV], 2019; Merten et al.,
2020). Their significance is partly due to pathogenic and commensal microbial transfer between
humans, animals, and the environment and the human microbiome stands out with regards to
its interactions with environmental and dietary chemicals that affect human health outcomes
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(Trinh et al., 2018). Of particular interest are the contact and
mutual influence between the human gut microbiome (GM)
and exogenous toxic chemicals, xenobiotics, focusing on their
fate, metabolism, and toxicity (National Academies of Sciences,
Engineering, and Medicine [NASEM], 2018; Abdelsalam et al.,
2020).

Among xenobiotics, endocrine disrupting chemicals (EDCs)
are especially important, and they have been associated with
metabolic disorders, such as obesity, as well as with changes in
the GM (Gálvez-Ontiveros et al., 2020; Aguilera et al., 2021).
Recently the concept of microbiota disrupting chemicals (MDCs)
has been proposed, which comprise EDCs and other xenobiotics
with potential to alter the gut microbiota’s composition and
metabolism (Aguilera et al., 2020) via food ingestion, e.g.,
bisphenols and parabens (Andújar et al., 2019; Monteagudo et al.,
2021; Robles-Aguilera et al., 2021).

The interactions between MDCs and the GM are complex.
This is partly because multiple general mechanisms are involved
including; direct effects of the MDC on the microbiome;
altered epithelial-barrier functions (affecting uptake or
excretion of MDCs); direct chemical transformations of MDCs;
secondary transformation of host-generated metabolites (e.g.,
deconjugation by β-glucuronidases), and; altered expression
of host-tissue metabolic enzymes and pathways (e.g., in the
liver via microbial signaling molecules) (Ulluwishewa et al.,
2011; Patterson and Turnbaugh, 2014; Peterson and Artis, 2014;
Kelly et al., 2015; Selwyn et al., 2015, 2016; Claus et al., 2016;
Spanogiannopoulos et al., 2016; National Academies of Sciences,
Engineering, and Medicine [NASEM], 2018). Although these
interactions can decrease MDC exposure and toxicity effects,
they can also increase them. For example, several bacterial
phyla in the human GM can produce azoreductases, which have
been shown to reduce azo dyes that are common in foods into
mutagenic and carcinogenic aromatic amines (Rafii et al., 1990;
Xu et al., 2007). Overall, the role of these complex interactions
in modifying human susceptibility to MDCs is beginning
to be elucidated.

Risk assessment (RA) is the science-based component
of the food safety risk analysis framework, alongside risk
management and risk communication. RA comprises; hazard
identification; hazard characterization; exposure assessment, and;
risk characterization (Codex Alimentarius Commission, 1999;
Regulation (EC) No 178/2002, 2002). Traditionally, xenobiotic
RA relies on data from animal experiments, human trials and/or
human observational/epidemiological studies. Importantly, the
extrapolation of this data across species or studied populations
is not without challenge, partially due to GM variability and
the complexity of MDC/GM interactions (National Academies
of Sciences, Engineering, and Medicine [NASEM], 2018). Thus,
the need for the incorporation of the GM in food safety RA
of xenobiotics is well-justified (Merten et al., 2020) and by
extension to MDCs.

Another area of relevance to the GM in the context of OH
is the identification of beneficial taxa and derived components
(e.g., enzymes and biocompounds) in the GM and their potential
application. In this context, toxicomicrobiomics, which study
the aforementioned microbiome-xenobiotic/MDC interactions,
along with culturomics, which aim to cultivate components of

the human GM through the use of optimized selective and/or
enrichment culture conditions coupled with metagenomic taxa
identification, can shed light on the microbiome’s capacity to
metabolize xenobiotics (Aziz, 2018; Lagier et al., 2018; Comitato
Nazionale per la Biosicurezza, le Biotecnologie e le Scienze
della Vita [CNBBSV], 2019; Abdelsalam et al., 2020; López-
Moreno et al., 2022) and by extension MDCs. Thus, these
approaches can help identify GM components with beneficial
effects under OH, for example detoxification activity (López-
Moreno et al., 2021b) or next-generation probiotics (NGPs)
(López-Moreno et al., 2021a).

A third area of relevance is antimicrobial resistance (AMR).
Undoubtedly, AMR is an important OH issue, with the major
contributor being the misuse of antibiotics (World Health
Organization, 2015, 2021; O’Neill, 2016). Moreover, the GM
has previously been considered as a reservoir for antibiotic
resistance genes (Gibson et al., 2015; Anthony et al., 2021).
Non-antibiotic antimicrobials, including MDCs triclosan and
parabens, commonly used as preservatives in foods, food contact
materials (FCMs) and personal care products (Soni et al., 2001,
2002, 2005; Cosmetic Ingredient Review Expert Panel, 2008;
Halden et al., 2017), may also contribute to AMR (Scientific
Committee on Consumer Safety [SCCS], 2010). This is because
some resistance mechanisms are common to both biocidal MDCs
and antibiotics, for example, the former may; exert selective stress
leading to the expression of bacterial resistance mechanisms and
their dissemination, and/or; maintain mobile genetic elements
carrying genes involved in antibiotic cross-resistance (Scientific
Committee on Emerging and Newly Identified Health Risks,
2009). Therefore, due to their detoxification potential certain
GM taxa may become of particular interest in the context of
such antimicrobials.

This perspective discusses these interlinked areas of relevance
to the GM in the context of OH (Figure 1). The first area relates
primarily to human health. However, depending on the output
of the RA and the antimicrobial or not nature of the xenobiotic,
the other two areas are highly relevant to holistic xenobiotic
risk management.

INCORPORATING THE GUT
MICROBIOME IN FOOD SAFETY RISK
ASSESSMENT OF XENOBIOTICS UNDER
ONE HEALTH

GM variability adds layers of complexity to the already
intricate interactions between MDCs and health. The observed
differences in the GM have been attributed to multiple factors
including age, antibiotic use, diet, disease state, environmental
exposures, exercise, genetics, geography, pregnancy status, sex,
socioeconomic status, and surgical interventions (Dethlefsen
and Relman, 2011; Koren et al., 2012; Yatsunenko et al., 2012;
Markle et al., 2013; Goodrich et al., 2014; O’Sullivan et al.,
2015; Tremaroli et al., 2015; Levin et al., 2016; Mar et al., 2016;
National Academies of Sciences, Engineering, and Medicine
[NASEM], 2018). Moreover, these factors may only explain a
small fraction of the total GM variation (Falony et al., 2016;

Frontiers in Microbiology | www.frontiersin.org 2 May 2022 | Volume 13 | Article 872583

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-13-872583 April 28, 2022 Time: 14:27 # 3

Ampatzoglou et al. Gut Microbiome Applications-One Health

FIGURE 1 | Three interlinked areas of relevance to the human gut microbiome (GM) in the context of One Health (OH); incorporation of the GM in food safety risk
assessment of xenobiotics; identification and application of beneficial GM taxa and components (e.g., enzymes and bioactive compounds) to various areas under
OH, and; specifically, in the context of antimicrobial resistance. EDC, endocrine disrupting chemicals; MDC(s), microbiota disrupting chemicals.

Comitato Nazionale per la Biosicurezza, le Biotecnologie e
le Scienze della Vita [CNBBSV], 2019). Importantly, due to
this variability, observations of microbiome-influenced toxicities
in a studied population might have little relevance to other
populations with substantially different GM composition and
function (Rodricks et al., 2019).

In addition, there is considerable variation between the
GMs of humans and animals, due to anatomical, physiological,
functional, immunological and compositional differences. Some
of these have been partially overcome via the use of “humanized”
animals in toxicological studies (Sonnenburg and Bäckhed,
2016). Nevertheless, extrapolation from such studies to humans
still carries considerable uncertainty (Rodricks et al., 2019) and,
along with the intraspecies variability, necessitates the use of
uncertainty/safety factors, frequently reaching two orders of

magnitude (Dorne and Renwick, 2005; Benford et al., 2018).
Based on these factors, traditional RAs may overestimate or
underestimate the risk associated with exposure to an MDC,
partially because they do not account for its interactions with
the microbiome (National Academies of Sciences, Engineering,
and Medicine [NASEM], 2018; Merten et al., 2020). Consequent
risk management decisions may place considerable pressure
on the industry. For example, EFSA’s recent proposal to
considerably reduce the tolerable daily intake for Bisphenol A
(BPA) (Lambré et al., 2022), may further increase the use of
bisphenol analogs in FCMs, which may also trigger dysbiosis and
obesogenic phenotypes (Andújar et al., 2019; Monteagudo et al.,
2021).

Although the need is clear to incorporate the GM in
the RA of xenobiotics, there are additional hurdles, i.e., the
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fundamental requirements to; establish causation and molecular
mechanisms linking phenotypes, e.g., obesity, with microbiota
profiles (Fischbach, 2018), and; define what constitutes a healthy
GM, which still remains elusive (Merten et al., 2020). Considering
that these tasks require significant resources, it might be a useful
first step to establish principles on how to evaluate the potential
of xenobiotics to alter the GM.

Interestingly, a three-tier framework has recently been
proposed by the Unilever Safety and Environmental Assurance
Center for assessing the potential of personal care formulations
to perturb the skin and oral microbiomes (Métris et al., 2021).

The first tier benchmarks new formulations against ones
regarded as safe because of a long “history of safe use” (HoSU).
However, this approach cannot apply directly to xenobiotics,
for reasons such as their nature as contaminants or that they
may not be intended to be ingested (e.g., if used in FCMs).
Moreover, it is challenging to establish robust links between GM,
cumulative exposure and resulting adverse effects (Ortiz et al.,
2022). Nevertheless, evidence has been compiling in recent years
on the impact of several contaminants and groups of xenobiotics,
including pesticides, bisphenols, phthalates, metals, triclosan,
parabens and polybrominated diphenyl ethers, on human and
animal gut microbiomes (Aguilera et al., 2020). As it expands,
this evidence could potentially serve as an early cross-reference
tier which would raise initial concerns, depending on the nature
and chemical structure of a xenobiotic under RA.

The second tier focuses on microbiome resilience. Other
authors highlighted resilience, along with resistance to
perturbation, as a key feature of healthy microbiomes, attributed
to their rich and diverse metabolic pathways (Lloyd-Price et al.,
2016; McBain et al., 2019; Cheng et al., 2022). Importantly, this
tier assesses risk in relative terms. Thus, it circumvents the need
to define the healthy microbiome, since it is only concerned about
the return to its baseline state, independently of whether healthy
or desirable. Of course, the length of exposure of the microbiome
to the potential perturbator would be a critical consideration.
Overall, however, this tier could be a reasonable approach to
screen MDCs based on the resilience of the GM under various
experimental approaches, extending from “humanized” animals
(National Academies of Sciences, Engineering, and Medicine
[NASEM], 2018) to ex vivo and in vitro models, such as simulator
of the human intestinal microbial ecosystem (SHIME) (Van den
Abbeele et al., 2012), minibioreactor arrays (Auchtung et al.,
2015) and multi-compartment microfluidic-based gut-on-chip
systems (De Gregorio et al., 2020; Signore et al., 2021).

Finally, the third tier makes use of next-generation sequencing
microbiome data in relation to host health status. This requires
further development, is the most challenging tier and is, certainly,
relevant to the RA of xenobiotics in the context of the GM.
Métris et al. (2021) highlighted the importance of microbiome
function over composition. This is not surprising, given that
compositional variation might not necessarily impart key
functional differences due to functional redundancy (Tian et al.,
2020). Regarding research methodology, metatranscriptomics,
is an established approach to focus on the functional taxa in
the microbiome. More recent methodologies, however, have
combined flow cytometry with omics technologies to characterize
active microbial fractions in the GM, revealing a number of taxa

underrepresented by traditional 16S rRNA metagenomics (Peris-
Bondia et al., 2011; Maurice et al., 2013). These approaches are
likely to offer valuable insights in the extrapolation of this tier’s
approach to the GM, especially in the pursuit for key species
or other types of biomarkers associated with host health or
disease, which will be crucial for the incorporation of the GM
in the RA of MDCs.

IDENTIFYING BENEFICIAL GUT
MICROBIOME TAXA AND OTHER
COMPONENTS AND APPLYING THEM
UNDER ONE HEALTH

Taxa culturing strategies, in the context of the interactional
triangle between EDCs (obesogens)-gut microbiota (dysbiosis
vs. eubiosis)-human health (obesity vs. leanness), are key in
obtaining and selecting strains (associated with pro-obesity and
antiobesity phenotypes) with potential use as NGPs (López-
Moreno et al., 2021a). The latter, unlike traditional probiotics, do
not have a defined HoSU, and are thus subjected to more stringent
regulatory requirements (O’Toole et al., 2017). Nevertheless,
strains isolated from the human gut could more readily be
used under OH, e.g., as probiotics for animals, plants, and
environmental protection and bioremediation. Recent work
has demonstrated that toxicomicrobiomics and culturomics are
promising in exploring the potential of human GM taxa to
metabolize obesogenic MDCs and selecting species able to
tolerate or biodegrade BPA (López-Moreno et al., 2021b, 2022).
Thus, similar approaches could be used going forward to explore
the human GM as a source of beneficial microbes (NGPs),
enzymes, and bioactive compounds linked to MDC detoxification
or biodegradation, with various potential applications under
OH (Figure 1).

GUT MICROBIOME AND
ANTIMICROBIAL RESISTANCE UNDER
ONE HEALTH

MDCs, such as triclosan and parabens, contribute to the
AMR issue, primarily through resistance development against
themselves (self-resistance), but also potentially through
development of cross-resistance against antibiotics (Ribado
et al., 2017). Although the evidence supporting cross-resistance
development in situ is not conclusive (Scientific Committee
on Consumer Safety [SCCS], 2010), the potential contribution
of MDCs to AMR and their mechanisms merit further data
compilation (Valkova et al., 2002; Hughes et al., 2020; Rozman
et al., 2021). Moreover, given that antimicrobial MDCs would
likely have higher potential to alter and perturb microbiomes
(compared to non-antimicrobial xenobiotics), they have been
proposed as candidate chemicals in investigations that would
built our understanding around the xenobiotic-microbiome
interactions in the context of xenobiotic RA (National Academies
of Sciences, Engineering, and Medicine [NASEM], 2018).

Nevertheless, even non-antimicrobial xenobiotics may pose
resistance development issues in the context of the GM, as
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exposure to them may apply a selective pressure in favor of
microbial taxa with specific enzymatic arsenals and metabolic
pathways. For example, López-Moreno et al. (2022), associated
BPA exposure and the obese phenotype in children to higher BPA
biodegradation potential in their GM. Moreover, they reported
that BPA-resistant strains isolated from human gut microbiota
exhibited xenobiotic biodegradation and antimicrobial effects
linked to polyketide biosynthesis (Torres-Sánchez et al., 2021).
Therefore, in the presence of BPA, these strains may further
modulate the composition and function of the human gut
microbiota, potentially reducing GM diversity and inducing
dysbiosis and adverse metabolic effects (Aguilera et al., 2020).
The mechanisms, via which gut microbiome taxa may be affected
by non-antibacterial MDCs, potentially leading to dysbiosis,
could include growth inhibition or promotion and metabolism
modulation (Lindell et al., 2022). For example, several artificial
sweeteners, spice extracts and food dyes have been shown to
inhibit the growth of specific bacterial strains in vivo, while
certain natural xenobiotics and food additives appear to promote
the growth of other strains under similar conditions, likely acting
as nutrient sources (Pan et al., 2012; Bello González et al., 2016;
Lu et al., 2017; Wang et al., 2018; Ruiz-Ojeda et al., 2019;
Frame et al., 2020). Additionally, an alkaloid found naturally in
coffee, trigonelline, has shown potential to alter the metabolism
of a common human gut commensal in vivo (Anwar et al.,
2018). Although limited, this evidence suggests that the potential
for xenobiotic resistance development, in the context of the
GM, may warrant further consideration and research, beyond
antimicrobial resistance.

Overall, applying GM taxa and biocompounds able
to metabolize antimicrobial MDCs to crosscutting
areas under OH could potentially ameliorate AMR
pressure (Figure 1).

CONCLUSIONS

• Focusing on the GM’s resilience circumvents some of the
RA challenges. Moreover, looking at function, rather than

composition, and exploring the active components of the
GM can help establish specific biomarkers, necessary for
incorporating the GM in the RA of xenobiotics.

• The human GM may be a promising source of beneficial
microbes (i.e., probiotics, NGPs and biodegraders),
enzymes, and bioactive compounds, with the potential
to metabolize xenobiotics. These may have potential
applications in various areas under OH.

• Applying human GM components, able to metabolize
antimicrobial MDCs under OH could also help ameliorate
the global risk of AMR development.

• The potential for xenobiotic resistance development, in the
context of the GM, may warrant further consideration.
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