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The innate lymphocyte lineage natural killer (NK) is now the target of multiple clinical

applications, although none has received an agreement from any regulatory agency

yet. Transplant of naïve NK cells has not proven efficient enough in the vast majority

of clinical trials. Hence, new protocols wish to improve their medical use by producing

them from stem cells and/or modifying them by genetic engineering. These techniques

have given interesting results but these improvements often hide that natural killers are

mainly that: natural. We discuss here different ways to take advantage of NK physiology

to improve their clinical activity without the need of additional modifications except for in

vitro activation and expansion and allograft in patients. Some of these tactics include

combination with monoclonal antibodies (mAb), drugs that change metabolism and

engraftment of specific NK subsets with particular activity. Finally, we propose to use

specific NK cell subsets found in certain patients that show increase activity against a

specific disease, including the use of NK cells derived from patients.

Keywords: NK cells, microenvironment, monoclonal antibodies (mAbs), antibody-dependent cell cytotoxicity

(ADCC), autoimmune diseases, CD45RARO

INTRODUCTION

Innate lymphoid cells (ILCs) play a main role in immune-related disorders and are divided
into three groups: ILC1s, ILC2s, and ILC3s (1). Natural killer (NK) cells, which belongs to the
ILC1 group, are bone marrow derived cytotoxic lymphocytes (CL) that are well-equipped for the
destruction of target cells without the need for prior antigen stimulation. In peripheral blood,
humanNK cells aremostly CD3−CD56dim cells with high cytotoxic activity, while CD3−CD56brigth

cells excel in cytokine production (2). Additional markers can be used to identify specific subsets
within these NK cell populations (2–4). In vitro evidence indicates that CD56bright NK cells are
precursors of CD56dim NK cells and this might also be the case in vivo (3). In contrast to T cells,
grafted NK cells show short live, low expansion and low alloreactivity such as graft-versus-host
(GVH) in humans. Hence, NK can provide a potential source of allogeneic “off-the-shelf ” cellular
therapy and mediate major anti-target effects without inducing potentially lethal alloreactivity.
Given the multiple unique advantages of NK cells, researchers are now exploring different ways
to expand and/or activate them for clinical purposes.
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NK CELLS IN CLINICS: THE PROBLEMS

Researchers working on the clinical use of NK cells have found
numerous challenges. First, this cell lineage represents a low
percentage of lymphocytes, usually estimated to 5–15%. In
addition this changes during human development (4), making
the transfer of sufficient allogeneic cells from a single donor to
a patient challenging.

Second, NK cells have low lifespans, in average 1 week
(5), suggesting that allogenic cells will shortly survive after
engraftment. However, these results should be taken with
caution. Lifetime studies were performed using deuterium
incorporation, and only actively dividing cells incorporate
it. Hence, this technique may not account for long-lived,
non-dividing cells. Moreover, researchers normally focus on
peripheral blood, hence NK cells mainly homing in lymph nodes
such as CD56bright cells are not taken into account in their
real weight (5). But, studies in blood are valid considering that
allogeneic NK cells for engraftment are obtained from peripheral
blood. Moreover, in vitro stimulated NK cells normally gain a
mature phenotype despite high CD56 expression (6). Therefore,
the previous estimates are a reasonable proxy for the amount
of time NK cells will be active after allogenic engraftment.
In agreement, the persistence of ex vivo haploidentical IL-2-
activated and -expanded NK cells ranges between 7 and 10 days
in patients with AML, NHL, and ovarian cancer (7).

The third challenge is that NK cells show doubling times of
1.25 days after activation (8). This is significantly longer than T
cell doubling time during the initial expansion phase, which are 8
and 11 h for CD8+ and CD4+ T cells, respectively (9). Moreover,
after allogeneic engraftment most clinical results failed to show
significant expansion of donor NK cells (6, 7, 10–13). Perhaps
the high renew and short lifespan account for these poor in
vivo expansions because NK cells have already strongly expanded
during their maturation and they are prone to “effector-like”
phenotype, at least in the blood population.

Fourth, naïve NK cells possess a relatively low activity
compare to activated cells (6, 14). This could be responsible of
the low efficacy of NK cell-mediated therapies (11–13).

Fifth, there are several attempts to activate endogenous NK
cells, e.g., by blocking NK cell inhibitory receptors. This led
to the development of IPH2101, a killer inhibitory receptors
(KIRs)/KIRL blocking antibody (Ab) (15), or monalizumab,
a humanized anti-NKG2A Ab (16). This approach has the
inconvenience that in cancer patients NK cells are hyporeactive
(11, 12, 17). Moreover, new therapies such as NK cell-based
therapies are usually tested on patients with advance clinical

Abbreviations: ADCC, antibody-dependent cell-mediated cytotoxicity; AML,

acute myeloid leukemia; B-CLL, B-cell chronic lymphocytic leukemia; B-NHL,

B-cell non-Hodgkin’s lymphoma; BCL, B-cell lymphoma; DLBCL, Diffuse large B-

cell lymphoma; EBV, Epstein–Barr virus; EGFR, epidermal growth factor receptor;

e-NK, expanded NK cells; FL, follicular lymphoma; GMP, good manufacturing

practices; GvHD, graft-versus-host disease; HSCT, hematopoietic stem cell

transplantation; LEN, lenalidomide; mAbs, monoclonal antibodies; NCRs, natural

cytotoxicity receptors; NK cells, natural killer cells; OBZ, obinutuzumab; PFS,

progression-free survival; RTX, rituximab; UCB, umbilical cord blood; UCBT,

umbilical cord blood transplantation.

stages, which correlate with enhance NK cell dysfunction, at least
in multiple myeloma (18). This suggests that endogenous NK
could be unable to eliminate tumor cells even after releasing
KIR inhibition. Interestingly, recent clinical data also inmyeloma
suggest that such antibodies can modify the endogenous NK
repertoire and make them further hyporeactive (19). Other
clinical attempts to activate endogenous NK cells include the
use of lenalidomide [LEN; (20, 21)]. Biological results from the
Phase Ib/II clinical trial GALEN suggest that LEN could facilitate
obinutuzumab (OBZ)-mediated NK cell activation (21), as was
observed with rituximab (RTX) (22). In fact cancer patients, at
least those with hematological cancers, already possess NK cells,
which recognize and kill tumor cells, but are unable to control
the disease (21, 23, 24). Why only a fraction of NK cells is
fighting against the tumor is unknown. Which is known is that
blood-born cancer cells use different mechanisms for immune
escape (25, 26), e.g., by inducing NK cell dysfunction (27). This
mechanism has also been observed in a variety of solid tumor
patients (17).

Due to all these adverse points recent clinical approaches
target in vitro expanded and activated NK cells and hence the use
of allogeneic NK cells.

MECHANISMS OF NK CELL EXPANSION

In this context, clinical-grade production of allogeneic NK cells is
efficient (28) and NK cell–mediated therapy, including the use of
in vitro expanded allogeneic NK cells, seems safe (11, 13, 28–31).
This review does not focus on NK cell expansion, but in how
we can “naturally” increase NK activity. There are recent reviews
regarding NK cell expansion, e.x. (32).

But, it is important to note that choosing the correct donor
can improve the killing activity of NK cells. There are different
possibilities to choose the “best” donor including selection od
donors with HLA/KIR mismatch with the patient (33), donors
with a group B KIR haplotype (these donors have 1 or more of
the B-specific genes: KIR2DS1, 2, 3, 5, KIR2DL2, and KIR2DL5)
(34) or even donors with KIR2DS2+ immunogenotype (35).

New attempts try developing disease-specific cytokine
cocktails to activate in vitro patient NK cells (36–38). This
is pertinent because in vitro the effects of these cocktails are
different between patients and healthy donors. (39). However,
despite the strong cytolytic potential of expanded NK cells
against different tumors in vitro, clinical results have been
very limited (11–13), e.g., NK are considered highly cytotoxic
against AML tumor cells, but their efficacy as monotherapy in
the clinic is low (11–13). Moreover, the results using NK cell
therapy in animal models of solid tumors or in clinical trials
are disappointing, even if NK cells can eliminate the engrafted
cell type or the primary tumor cells in vitro (11–13). In this
context, it should be noted that different culture media affect
tumor recognition by NK cells (40). In summary, there is
not any expansion protocol that produces allogeneic NK cells
able to efficiently eliminate solid tumor cells in vivo. Why NK
cells destroy most targets in vitro but not in vivo is unknown.
Tumor cells strongly modify the expression of ligands, which are
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recognized by NK cell activating or inhibiting receptors when
cultured in vitro (40). This could lead to the mistrust that those
specific tumor cells would be NK sensitive or resistant in vivo.
Allogeneic NK cells survive for several days in patient’s body (see
above), hence their initial survival is probably not the blocking
step for their efficacy in vivo. Impaired tumor infiltration
and/or low cytolytic activity in the immunosuppressive tumor
environment are usually pointed out as responsible of their low
function in vivo. Hence, researchers have focused on protocols to
activate them enough to bypass these clinical obstacles.

There are many protocols to expand and activate in vitro NK
cells (6, 11, 13, 28–31). For many clinical uses, the manufactured
cells should express the FcγRIIIa, also called CD16. The probably
exception is those protocols wishing to generate chimeric antigen
receptor (CAR) NK. We have produced umbilical cord blood
(UCB)-derived NK cells because they are rapidly available,
present low risk of viral transmission and have less strict
requirements for HLA matching and lower risk of GvH disease
(GvHD) (11). Expansion was driven by Epstein–Barr virus
(EBV)-transformed lymphoblastoid B cell lines as accessory cells,
which induce a unique NK cell genetic reprogramming (14),
generating effectors that overcome the anti-apoptotic mechanism
of leukemic cells (41) and that are able to eliminate tumor
cells from patients with poor prognosis (42). NK cells obtained
with this protocol perform antibody-dependent cell cytotoxicity
(ADCC) in vitro and in vivowith different therapeutic antibodies
and against diverse target cells (6).

NK cell expansion is extremely challenging from an industrial
point of view (43, 44), partly due to the problems described in
the previous section. In addition, NK cell production should
be easily scaled up and developed with good manufacturing
practices (GMP). Several biotech companies are now producing
NK cell-based products that could reach the clinic in the
future (44). We will discuss now mechanisms to naturally
improve NK cytotoxicity. We will not discuss about lympho-
depleting chemotherapy, e.g., cyclophosphamide followed by
daily fludarabine, which is already largely use in clinics prior to
NK cell infusion (45).

CYTOKINES MEDIATE NK ACTIVATION

Generally, when NK will reach the target microenvironment
they will receive a burst of cytokines from other cells, e.g.,
those immune cells that have already infiltrated the tumor.
These cytokines affect NK cell behavior and activation and has
extensively been reviewed elsewhere (46). Hence, we will only
briefly describe some few uses. IL-2 and IL-15 are strong NK
cell activators, but their clinical use in vivo is challenging due
to their toxicity (44). Moreover, IL-2 expands and mobilizes
regulatory T cells, which dampen the activity of several effector
cells including NK (44). IL-15, although less toxic than IL-2, is
limited by its short half-life leading to poor functional activity in
vivo.However, in vitro both cytokines are very efficient stimuli to
activate and expand NK cells (6, 14). In fact, membrane-bound
IL-15 is currently the best activating cytokine (47), although

membrane-bound IL-21 is becoming an interesting challenger
(48, 49). In any case, long-term cytokine treatment can lead to
NK cell exhaustion, which will inhibit NK activity (50).

MODIFYING THE TARGET
MICROENVIRONMENT

Tumor cells, directly or by controlling non-transformed cells,
modify the environment to make it immunosuppressive and
avoid destruction by effector immune cells (25, 26, 50). We will
discuss here some approaches that can reverse this “negative”
microenvironment. We will not discuss drugs that per se sensitize
target cells to NK cells. Tumor-induced modifications include
metabolic changes with the production of metabolites that
negatively affect NK cell cytotoxicity, e.g., lactate (26, 50). This
is the classical metabolite produced by tumor cells under the
Warburg effect: cells perform glycolysis even in the presence of
ample oxygen (26). To recover the reducing power of NAD+,
which has been reduced to NADH+-H+ during glycolysis, cells
reduce pyruvate creating lactate. This mechanism recovers the
cell reducing power and allows the glycolysis to proceed. During
the Warburg effect, the products that are not oxidized, i.e.,
that are not consumed to produce CO2, serve to create new
intermediate metabolites that are used for anabolism. But in
addition, tumor cells release lactate to the external medium. This
acidifies the environment and inhibits the antitumor response of
CLs because the killing activity of these cells is extremely sensitive
to the decrease in pH (50, 51). There are some compounds
such as dichloroacetate (DCA) or metformin that inhibit the
Warburg effect and block lactate production (26, 52, 53). It is
hence conceivable that such drugs could increase the cytolytic
activity of NK, or other CLs, in vivo (Figure 1).

In contrast, during the killing of yeast cells or cryptococcoma,
NK cells appeared to profit from the acidic pH of
the microenvironment by displaying enhanced perforin
degranulation and killing capacity (51). Therefore, an interesting
possibility would be to modify the NK-tumor environment to
match that of NK-yeast cells/cryptococcoma in order to increase
NK cytotoxicity even at low pH.

Another way to increase NK activity would be to decrease
adenosine concentration in tumor environment. This nucleotide
is found as much as 100-fold higher in tumors than in normal
tissues and contributes to immune evasion by inhibiting for
example NK cell cytolytic activity (50). The ectonucleotidases
CD39 andCD73 produce large amounts of adenosine, hence their
inhibition decreases tumor growth and metastasis. This type of
treatment has reached the clinic with the anti-CD73 antibody
Oleclumab (50).

Several vitamins, e.g., A, C, and E, induce changes in NK cell
markers associated to activation (60). Vitamin A/retinoic acid
increases target expression of natural-killer group 2, member D
(NKG2D) ligands in mouse, RAE-1 (60), and humans, MICA/B
(61, 62). However, it can activate (60, 62) or inhibit (14, 60, 63)
NK activity depending on the cellular context. Hence, their use in
clinics must be carefully studied.
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FIGURE 1 | Protocols to recover/improve NK function. We describe several mechanisms to improve NK activity in patients. Naïve NK cells can be “armed” with mAbs

that recognize tumor antigens (Ags) to improve their cytolytic activity against cancer cells (6). If specific mAbs against Ags of different pathogens are available, they can

be used to arm NK cells to fight infections, mainly in immune compromised patients (54, 55). NK cells can be expanded (eNK) to recover NK cell functions in several

diseases such as cancer, autoimmune diseases and infections (32). Treatment of patients with metabolic drugs that modify the microenvironment of the target can

increase the function of both “armed” NK and eNK (25, 53). We also believe that it is possible transfer specific NK cell subsets to treat different diseases such as

cancers (11–13), including glioblastoma (56) that has a poor prognosis. Some NK subsets, e.x. memory NK cells could also fight infections (57) when engrafted in

patients. Finally, in autoimmune diseases could be clinically relevant to replace immature CD56bright NK, which are mostly proinflammatory with mature CD56dim NK,

which eliminate activated immune cells. These two NK subsets differentially express various chemokine receptors, which attract them to distinct organs (58, 59).

Hence, locally playing with different chemokines should naturally facilitating the recruitment of a specific subset.

ADCC IS NATURAL: NK CELLS AND mAbs

Cell-mediated immune defense includes ADCC. NK only harbor
the activating Fcγ receptors CD16a and FcγRIIc, also known
as CD32c. This gives NK a preponderant role in ADCC in
humans (64). Although not include in the so-called “natural NK
cytotoxicity,” ADCC is totally a natural physiological process
mediated, at least in large part, by NK cells, but involving
coordination and crosstalk of different immune cells (64).
Through ADCC NK cells can modulate the adaptive immune
response and generate long term protection (65).

Differential response to therapeutic mAbs has been reported
to correlate with a specific polymorphism in CD16 (V158F)
(66). This polymorphism is associated with differential affinity
for mAbs (64). Indeed FcγRs variant play an important role in
determining prognosis of monoclonal IgG antibodies (mAbs)

therapy (67). Hence, an obvious possibility is using NK cell
from donors with the 158V polymorphism, which shows
increase affinity for Fc and better prognosis to mAb treatment
(64, 67). This engrafted NK should show improved activity
after transplantation, mainly when associated to mAb cotherapy.
Conversely, different approaches modify the antibody Fc region
to increase patient NK cell activity. For example, obinutuzumab,
an anti-CD20mAb, is afucosylated to increase CD16 binding and
thereby enhance its ADCC activity (68).

ARMING NK CELLS

As previously described NK cells recognize antibody-opsonized
target cells and hence take advantage of the exquisite selectivity
of mAb to generate a discriminatory immune response against
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target cells. An interesting possibility of increasing NK function
is loading mAbs into the NK CD16 Fc receptor, giving them
an exogenous selectivity against target cells (Figure 1). Recent
data show that expanded NK retain RTX on their CD16 at
least overnight (6). Moreover, RTX-armed NK show improved
cytolytic activity compared to non-armed NK cells. In fact, in
vitro results using RTX and CD20+ tumor cells deerived from
chronic lymphocyte leukemia (CLL) patients do not show any
differences on NK cell-mediated ADCC between opsonizing
targets or “arming” NK (6).

There are other possibilities to “arm” expanded NK cells,
e.g., (i) with activating receptors that enhance their natural anti-
tumor capacity; (ii) with chimeric antigen receptors (CAR) that
can redirect them toward specific tumor targets (45); or (iii) with
death receptor ligands such as a glycosylated form of TNF-related
apoptosis-inducing ligand (TRAIL) fusion protein (69). These
armed NK cells show improved antitumor function, but these
approaches require genetic modification of NK cells, and we do
not consider them “natural.”

NATURALLY OCCURRING ANTITUMOR NK
CELLS: TROGOCYTOSIS AND THE
CD45RARO PARADIGM

The NK cell population with antitumor activity has recently
been identified (21, 23, 24). In multiple hematological cancer
patients there is a population of highly activated CD56dimCD16+

NK cells that have recently degranulated, evidence of killing
activity. These cells generally expressed NKp46, NKG2D, and
KIRs, whereas expression of NKG2A and CD94 is diminished.
They are also characterized by a highmetabolic activity and active
proliferation. Notably, these NK cells carry, non-NK, tumor cell
antigens on their surface, evidence of trogocytosis during tumor
cell killing, i.e., they carry CD19 in B cell-derived cancers and
CD14 in myeloid-derived cancers (21, 23, 24). The antitumor
NK cells are distinguished by their CD45RA+RO+ phenotype,
as opposed to non-activated cells in patients or in healthy donors
displaying a CD45RA+RO− phenotype (21, 23, 24). Therefore,
antitumor NK cells exist (23). Hence, there is the possibility of
selectively expand this population. However, in vitro expansion
does not really produce similar phenotypes to those found in
cancer patients. Moreover, NK cell markers change in vitro
(23, 24). Another possibility would be to exchange the antitumor
population of two cancer patients. Notably, CD45RARO cells
show strong activity against a different tumor cell (23). This
is reminiscent with previous in vitro studies showing that NK
cells exhibited enhanced cytotoxicity after a prior co-culture with
some tumor cells (70, 71). But the in vivo interest of using
patient CD45RARO cells to treat other patients goes further that
this possible “priming” effect. It is known that tumor cells have
been immune sculpted by the host immune system (72). This
allows them to immune escape and generate cancers. However,
the mechanisms of tumor immune escape are usually different
between host/tumor pairs. This suggests that tumors will be
better recognized by antitumor NK cells of another patient,
supporting the exchange of NK cells between patients (Figure 1).

Obviously, the national health agencies should carefully examine
this possibility.

Another possibility is transferring NK cell genotypes that
show higher activity against a specific cancer, such as the
B-haplotype in AML (34) or KIR2DS2 immunogenotype in
glioblastoma (35) (Figure 1).

NK AND INFECTIOUS DISEASES

In contrast to cancer patients, CD45RARO populations have not
been described in patients with viral infections yet (23, 24). In
view of the safety of allogeneic NK in different tumor treatments
described above, their use in infectious diseases is clinically
relevant. However, if we usually consider “cancer” as a complex
disease, what to say about pathogens so diverse as virus, bacteria,
and fungi. Remarkably, a growing body of evidences show that
NK cells play a major role in the immunity against all these
pathogens, not only by their direct killing of pathogens or
infected cells, but also by producing cytokines that activates
other immune cells (73). In several pathological conditions
leading to immunodeficient patients, allogeneic NK cells could
support the recovery of enough protection to decrease infectious
complication (54). An example of immunodeficiency occurs
during hematopoietic stem cell transplantation (HSCT). The
recipient’s immune system is usually destroyed with radiation
or chemotherapy before the stem cell transfer. Hence, infection
is a major complication. Currently, clinicians are trying to use
certain immune cell types such as granulocytes or infectious-
specific T cells to control infection. Although randomized
studies failed to demonstrate a significant survival benefit of
granulocyte transfusions after HSCT (73). It is known that
rapid reconstitution of NK population protects from both
infection (54) and tumor relapse (11, 13, 73). Hence, prophylactic
engraftment of NK cells in HSCT patients could protect from
infection and decrease relapse, with the advantage that NK cells,
and not T cells, target a broad range of pathogens (Figure 1).

If the use of allogeneic NK cells in patients at risk,
i.e., immunocompromised patients as those described above,
clinically sounds, this is not the case of immunocompetent
individuals. Obviously clinical results of allogeneic NK cell
engraftment in these patients are lacking. Despite this, we want
to discuss certain medical situations in which it could be useful.
Again, with the assumption that the transplant would not be toxic
to the patient.

First, the severity of influenza can be associated with transient
T and NK cell deficiency (55) and with specific haplotypes of
killer-immunoglobulin-like receptors (KIRs) (74). Engraftment
of NK cells from donors with such haplotypes can improve
the prognostic of humans that barely respond to influenza
vaccine. A similar approach, i.e., engraftment of allogeneic NK
cells, could be clinically relevant to treat patients infected with
flavivirus, which includes viruses such as West Nile, yellow fever,
dengue, Zika, and Chikungunya. Flavivirus-induced diseases are
currently generating major health problems and, interestingly,
NK cells play a central role in controlling these viruses (75). In
other deadly viral infection such as Ebola, which also decreases
peripheral NK cell numbers, the transplant of NK cells could
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be inefficient because Ebola virus uses specific NK evasion
mechanism (76) and can modulate NK function to increase viral
pathogenicity (77). The possible use of virus-specificmemory NK
cells will be discussed below.

Second, NK cells, through release of perforin and granulysin,
kill a variety of bacteria including Mycobacterium tuberculosis,
Bacillus anthracis, Escherichia coli, Salmonella typhi, and
Trypanosoma congolense (73, 78). NK cells can also eliminate
host cells infected with intracellular bacterial pathogens by
engagement of target cell death receptors, such as Fas- FasL
and TNF-related apoptosis-inducing ligand (TRAIL) (73). The
transfer of allogeneic, expanded, NK cells in patient infected with
those bacteria and with a bad prognostic could have an obvious
clinical benefit.

Third, allogeneic NK cells could also be useful for fungal
infections of poor prognosis due to their direct effect against a
number of pathogenic fungi includingmucormycetes,Aspergillus
fumigatus, Cryptococcus neoformans, and Candida albicans. In
addition, NK cells produce a number of cytokines that activate
the antifungal activity of other immune cells (73).

MEMORY NK CELLS

Viral-infected patients have NK subsets that are associated to
antiviral immunity and could be used for clinical purposes.
Human cytomegalovirus (HCMV) infection promotes expansion
of NKG2C+ NK cells with memory-like properties (79, 80).
Furthermore, NK cells expressing high levels of NKG2C and
CD57 are associated with prior HCMV infection. Certain
cytokines such as IL-12, which is produced by CD4+ monocytes,
are mandatory for NKG2C+ cell expansion (81). However,
there is a lack of evidence concerning their specific effect
against HCMV itself or if there is a recall response to HCMV
reactivation (82).

These HCMV-specific NK cells can originate from CD16-
induced memory-like NK cells and hence they can be waked
up by HCMV antibodies (57). Once activated, these cells could
not only attack HCMV-infected cells, but also other NK cell
targets such as transformed cells. Subsequently, they could be
transferred to patients lacking them to generate the desired
immunity (Figure 1). Direct transfer of anti-HCMV antibodies
would probably not work because these antibodies presumably
do not mediate in the initial generation of NKG2C+ “adaptive”
NK cells in HCMV-seronegative individuals (83).

Most glioblastoma express HCMV proteins and HCMV
infection imprint NK cells. In addition, KIR2DS2+ and
KIR2DS4+ are more potent killers that bulk NK cells in
glioblastoma cells (35). Remarkably, CMV impacts disease
progression in glioblastoma and the KIR allele KIR2DS4∗00101
is an independently prognostic of prolonged survival (56).
Hence, the transfer of KIR2DS4∗00101 NK cells could specifically
improve prognosis of glioma patients.

Another possibility is generating “memory”-like NK cells by
incubation with different cytokine cocktails, e.g., IL-2/IL-15/IL-
18 (57, 82). Some of these cytokines are already part of the
current cocktails to amplify and activate human NK cells in

vitro as described earlier. In fact, several of these protocols also
used accessory, target, cells to drive NK cell expansion and/or
activation. The target cell contact-dependent priming signals to
enhance NK cell activation has already been described, although
the priming stimulus is unknown (57). This has not stopped their
clinical test in clinics (12).

In summary, exploiting NK cells with memory-like properties
might increase the efficacy of these cells and help their clinical
development. However, it is uncertain if current protocols to
produce in vitro expanded NK cells are not really generating
“memory-like” NK cells, and hence, the use of “memory-like” NK
cell is perhaps already used in clinical studies.

RECOVERING NK ACTIVITY IN
AUTOIMMUNE DISEASES BY REPLACING
ENDOGENOUS NK CELLS

NK cells from patients of several autoimmune diseases present
populations that can contribute to disease progression. In other
cases, endogenous NK cells are defective, e.g., in cytotoxicity,
due to genetic or environmental facts. Hence, engrafting NK
subsets with proper activity could rescueNK activity and improve
prognosis. Below we discuss some specific diseases such as
rheumatoid arthritis (RA), multiple sclerosis (MS), and systemic
lupus erythematosus (SLE). However, similar approaches could
also target type I diabetes (T1D) and Sjögren’s syndrome (58).

RA patients accumulate immature NK cells in damaged joints.
Sinovial fluid (SF) NK (sfNK) cells derived from these patients
are enriched in the CD56bright population (84). Moreover, sfNK
produce more IFNγ and TNFα after interleukin-15 activation
(84, 85). IL-15, which is present in the SF of RA patients,
correlates with disease severity and is important in disease
progression (59). Hence all this may contribute to the production
of proinflammatory cytokines and long-term inflammation
(58).The sfNK cell subset, high CD56, CD94/NKG2A, CD69, and
NKp44 and low CD16, is unlike any population documented
in any other organ and is enriched in patients with erosive
deformative RA (DRA) (84, 85). The percentage of total NK
cells was doubled in the peripheral blood and tripled in
SF of DRA, as compared to non-deformative RA (NDRA),
patients (85). Other characteristics of these sfNK in RA are
almost absent KIR expression, low CD57 and high natural
killer cell p46-related protein (NKp46) (85). Probably the
chemokine receptors specifically expressed by immature NK
cells facilitate their infiltration into the damaged joints and
favor RA damage exacerbation (85). Interestingly, the sfNK
CD56bright population express CD16, something that is unique,
although its functionality was not investigated (85). Since sfNK
may play an important role in destruction of joints, which
should implicate their IFNγ and TNFα production, it would
be interesting to replace the immature sfNK with mature
CD56dim cells (Figure 1). An interesting possibility is using
those protocols to produce in vitro expanded NK cells described
earlier. Although these NK cells present high CD56 levels, they
possess all characteristics of mature and activated NK such as
KIR and NKG2D expression [e.g., (6)]. The engraft of these
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cells in damaged joints could reverse the damaging effect of the
autologous CD56bright cells.

MS is an autoimmune inflammatory disease affecting the
central nervous system (CNS). Autoreactive CD4T cells targeting
myelin components are critical mediators. NK cells can control
inflammation by killing activated, autoimmune, T cells (58).
Activated T cells increase expression of the death-receptor
Fas. In patients in remission, NK highly express Fas ligand
(FasL), which can eliminate autoreactive T cells through Fas/FasL
interactions (86).

During relapse the FasLhigh NK population is lost (86). The
site of autoimmunity, i.e., the cerebrospinal fluid, is enriched
in immature CD56bright NK subset, whereas this population is
reduced in peripheral blood (87). Daclizumab, an anti-IL-2Rα

antibody, ameliorates CNS lesions with a decrease in blood
CD4T cells and increase in blood CD56bright NK (88). Hence,
current knowledge on the biology ofMS suggest that engraftment
of amature, cytolytic, CD56dim subset could facilitate elimination
of autoreactive T cells (Figure 1). Although a possible negative
effect cannot be ruled out due to the presence of NKG2D ligands
in oligodendrocytes, astrocytes and microglia (58).

SLE is an autoimmune disorder characterized by production
of autoantibodies against DNA and nuclear proteins. Like in
RA, there is a polyclonal B-cell activation and expansion.
NK cell deficiency correlates with SLE in humans and in
mouse models of the disease (58). Again, SLE patients show
an increase in the proportion of blood CD56bright NK cells
(89). In addition, NK-dependent cytotoxicity decreases (58).
Interestingly in pediatric patients, who show the same NK defects
(90), the impaired activity is observed at diagnosis (90). Like
in previous described autoimmune diseases reconstitution of
a mature CD56dim population in SLE patients could improve
their prognosis. These approaches requiring the engraftment of
“missing” NK cell subsets need proper allogeneic NK recruitment
into the target organ. An obvious solution is local engraftment.
Another possibility is using a chemokine cocktail. The two NK
cell subsets, i.e., CD56bright and CD56dim, differentially express
various chemokine receptors, which attract them to distinct
organs (58, 59). Hence, locally playing with different chemokines
should naturally facilitating the recruitment of a specific subset.
In anyway, reconstitution of NK cell activity in periphery should
improve patient prognosis in these diseases heavily dependent on
NK cell function.

NK CELL LINES: ARE THEY NATURAL?

The difficulties for purify, isolate, expand, and transduce primary
NK cells for therapeutic applications led researchers to also focus
on NK-cell lines such as NK-92 (NK-92 R© ATCC R© CRL-2407TM

and NK-92 R© MI ATCC R© CRL-2408TM). There are other NK

cell lines, but their antitumor cytotoxicity is questioned (91). In
any case, our discussion here on NK-92 cells should be valid for
new NK cell lines that could reach the clinic. NK-92 phenotype
is CD3−CD56+CD16− and display cytotoxicity against a wide
range of human primary leukemias, e.g., B-ALL and CML and
leukemic cell lines in vitro and in SCIDmousemodels (92). Stable
expression of mouse and human CD16 gives ADCC to NK-92
cells and generates the cell lines NK-92 mCD16 and NK-92 hCD16,
respectively (93). In addition, they are a renewable resource to
generate CAR-NK-92 cells. In line with our previous comments
we will not discuss about these transduced cells. In contrast,
non-modified NK cell lines show therapeutic effect without the
need of genetic modifications (91). However, transformed cell
lines present worries, such as uncontrolled growth, which require
irradiation before infusion into patients. This suppress cell
proliferation while, hopefully, maintaining enough cell cytotoxic
activity. NK-92 cells have completed phase I trials in cancer
patients, e.g., NCT00900809 and NCT00990717. Results show
that irradiated NK-92 cells are safe even at very high doses with
minimal toxicity in patients with refractory blood cancers (94).
In addition, they show clinical benefits with 2 out of 12 patients
showing complete response (94).

CONCLUSION

In a challenging clinical environment with the arrival of
“new” cell-therapy products, NK present several advantages and
inconveniences. Their clinical improvement by “natural” means
that can easily be accepted by natural agencies will greatly favor
their use.
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