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Total synthesis of clostrubin
Ming Yang1, Jian Li1 & Ang Li1

Clostrubin is a potent antibiotic against methicillin- and vancomycin-resistant bacteria that

was isolated from a strictly anaerobic bacterium Clostridium beijerinckii in 2014. This poly-

phenol possesses a fully substituted arene moiety on its pentacyclic scaffold, which poses a

considerable challenge for chemical synthesis. Here we report the first total synthesis of

clostrubin in nine steps (the longest linear sequence). A desymmetrization strategy is

exploited based on the inherent structural feature of the natural product. Barton–Kellogg

olefination forges the two segments together to form a tetrasubstituted alkene. A photo-

induced 6p electrocyclization followed by spontaneous aromatization constructs the

hexasubstituted B ring at a late stage. In total, 200 mg of clostrubin are delivered through this

approach.
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T
he discovery of effective antibiotic agents is an urgent
global demand for combating drug-resistant pathogenic
bacterium strains1,2. Secondary metabolites that are

produced by microbes as chemical defence have proven to be
the most important source of such agents3–14. In May 2014,
Hertweck and co-workers15 reported the isolation of clostrubin
(1, Fig. 1) from the strictly anaerobic bacterium C. beijerinckii.
This compound exhibits remarkable potency against methicillin-
resistant Staphylococcus aureus and vancomycin-resistant
enterocci, with minimum inhibitory concentrations of 0.12 and
0.97 mM, respectively. From a structural perspective, clostrubin
(1) poses considerable synthetic challenge owing to the fused
aromatic ring system and multisubstitution pattern. The potential
of 1 as a lead compound for antibiotic development and its
limited supply from natural sources stimulated us to launch a
chemical synthesis programme immediately.

In this paper, we report the first total synthesis of clostrubin (1)
from commercially available starting materials. This concise
synthesis (nine-step for the longest linear sequence) benefits from
the inherent structural symmetry of 1. An advanced olefin
intermediate was constructed through Barton–Kellogg olefina-
tion, and a 6p electrocyclization promoted by ultraviolet light
assembled the fully substituted B ring.

Results
Retrosynthetic analysis. We undertook a retrosynthetic analysis
of clostrubin (1) taking advantage of the inherent symmetry16 of
its molecular architecture, as illustrated in Fig. 1. The initial
disassembly of the fully substituted B ring leads to a precursor 2;
the recombination of the sterically hindered C8–C9 biaryl bond

could rely on a 6p electrocyclization reaction. Electrocyclization
has emerged as a powerful tool for the construction of fused ring
systems since Nicolaou’s pioneering synthesis of endiandric
acids17–32. In particular, the strategy of 6p electrocyclization/
aromatization has demonstrated a significant advantage in the
synthesis of multisubstituted arenes33–44. Recently, we exploited
such a strategy in the total syntheses of a series of natural
products, such as tubingensin A, daphenylline, xiamycin and
oridamycin families, and rubriflordilactone A45–48. It should be
mentioned that the construction of hexasubstituted arenes using
such strategy is rare in natural product synthesis. Preparing the
symmetrical, tetrasubstituted olefin 2 is indeed of signi-
ficant challenge with the conventional olefination methods, and
Barton–Kellogg reaction is envisioned as a suitable solution49–54.
Interestingly, this olefination method has found remarkable
applications in material science55–57 rather than natural product
synthesis in recent years. Disconnection at the C15–C16 bond
results in stabilized diazo compound 3 and thioester 4. The
former may arise from the corresponding anthraquinone
precursor, which is further traced back to 2,6-dibromo-1,4-
benzoquinone (ref. 58) 5 and Brassard diene (refs 59,60) 6 in a
double retro-Diels–Alder (D-A) manner. The latter would be
accessed from commercially available iodide 7 by using lithium
chemistry.

Synthesis of the two segments. The synthesis commenced with
the preparation of diazoketone 3, as shown in Fig. 2. A sequence
of double D-A reactions was carried out: 2,6-dibromo-1,4-ben-
zoquinone 5, prepared in one step from commercially available
1,3,5-tribromophenol58, reacted smoothly with an excess of diene
8 to afford anthraquinone 9 along with a small amount of mono-
O-methyl-9, presumably via the intermediacy of 10. The
regioselectivity of the D-A reactions may be attributable to the
electronic bias induced by the bromine atom. The addition of
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Figure 1 | Retrosynthetic analysis of clostrubin. The inherent structural

symmetry of the molecule inspires a desymmetrization strategy. A Barton–

Kellogg olefination would be used for assembling a sterically hindered

tetrasubstituted olefin. A 6p electrocyclization/aromatization sequence is

envisioned as the key step for the construction of the hexasubstituted

aromatic B ring.
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Figure 2 | Synthesis of the anthraquinone segment. Reagents and

conditions: (a) tetrahydrofuran (THF), � 78 �C, 6 h; then silica gel, 22 �C,

2 h. (b) K2CO3 (3.0 eq), MeI (2.5 eq), N,N-dimethylformamide (DMF),

22 �C, 18 h, 45% (two steps). (c) SnCl2�H2O (6.0 eq), aqueous HCl (37

wt%), AcOH, 22 �C, 30 min. (d) DBU (3.0 eq), TsN3 (1.1 eq), methylene

chloride (CH2Cl2), 22 �C, 20 h, 89% (two steps). TMS, trimethylsilyl.
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silica gel may accelerate the hydrolysis of the silyl ether and thus
led to a rapid aromatization along with release of HBr. Notably,
when a single equivalent of 8 was used for the D-A reaction, a
bromonaphthoquinone was readily prepared, presumably with
the intermediacy of a mono cycloadduct61. The crude 9 was
treated with K2CO3 and MeI to give compound 11 (45%
overall yield from 5). 11 underwent Clemmensen-type reduction
in the presence of SnCl2 and HCl to give the corresponding
monoketone62, which instantaneously tautomerized to anthranol
12. Exposure of crude 12 to 1,8-diazabicyclo[5.4.0]undec-7-ene
(DBU) and TsN3 furnished diazoketone 3 in 89% overall yield.

We observed unexpected reactivity of anthraquinone 11
(Fig. 3) during the above studies, which influenced the overall
strategy of the synthesis. In theory, the C9 carbonyl of 11 should
be sterically more hindered for nucleophilic attack due to two
neighbouring methoxy groups. From an electronic perspective,
this upper ketone could be considered as an equivalent of a
double vinylogous carbonate than is also rather unreactive as an
electrophile. To our surprise, we obtained hydrazone 13 in 61%
yield when treating 11 with TsNHNH2; the anticipated
regioisomer was not detected. The structure of 13 was determined
by X-ray crystallographic analysis. This observation interrupted
our initial plan of exploiting the C10 tosylhydrazone of 11 as the
potential precursor for the Barton–Kellogg olefination. We
further examined other types of nucleophiles such as benzyl
Grignard reagent for the addition reaction with 11. In this case,
two regioisomeric alcohols 14 and 15 were isolated in 32% and
40% yields, respectively. Both structures were confirmed by
nuclear Overhauser effect (NOE) studies. The enhanced reactivity
of the C9 carbonyl may be attributable to inductive effects from
the o-methoxy substitutents or relief of 1,3-allylic strain that
occurs on nucleophilic additions. Thus, the strategy involving
direct olefination of C10 carbonyl of anthraquinone 11 (for
example, with functionalized benzylic metal species or phospho-
nate carbanion) had to be abandoned due to the poor
regioselectivity.

We then focused on the synthesis of the thioester segment as
the electron donor in the devised Barton–Kellogg olefination, as
shown in Fig. 4. Aldehyde 16 was prepared in one step from
commercially available 2-iodophenol63. Treatment with K2CO3

and MeI gave methyl ether 17 (99% yield), which underwent
MeMgBr addition followed by silylation to provide compound 18

(94% yield) in one pot. Hexamethylphosphoramide (HMPA) was
found to be crucial to enhance the nucleophilicity of the
magnesium alkoxide. 18 was subjected to the magnesium–
halogen exchange conditions (EtMgBr) to generate a
functionalized Grignard reagent45,47,64–66, which was quenched
by CS2 and MeI to give dithioester 19. It is noteworthy that
lithium–halogen exchange did not lead to a satisfactory result.
The desilylation took place spontaneously during acid workup
to deliver alcohol 20 in 67% yield from 18. Oxidation of 20
with Dess–Martin periodinane (DMP) afforded ketone 21 (83%
yield) without destroying the sulfur-containing functionalities,
and the subsequent methanolysis furnished thioester 4 in
66% yield.

Completion of the synthesis. With both fragments in hand, we
directed our attention to the construction of the aromatic B ring,
as depicted in Fig. 5. It is well documented in the literature of
Barton–Kellogg olefination that thioketones readily react with
diazo compounds without promoters or catalysts55–57. After
examination of the conventional conditions, we realized that the
stabilized diazoketone 3 needed to be activated by Rh2(OAc)4

to form the metal-carbenoid intermediate52,54,67–70, which
was further trapped by relatively unreactive thioester 4. The
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postulated episulfide intermediate 22 was reduced by Cu powder
in situ to afford tetrasubstituted olefin 2 in 85% overall yield. We
examined a series of conditions such as heating or FeCl3 to
promote the last C–C bond formation but only observed
decomposition. Inspired by our synthesis of daphenylline46, we
irradiated 2 with ultraviolet light (l¼ 365 nm). To our delight,
this symmetrical olefin underwent a 6p electrocyclization,
presumably to provide pentacyclic intermediate 23, which was
spontaneously oxidized under an air atmosphere during workup
to furnish tetramethyl clostrubin 24 (55% yield from 2). Global
deprotection of the methyl groups with aqueous HBr (48 wt%)
gave clostrubin (1) with excellent efficiency. The spectra and
physical properties of the synthetic 1 are consistent with those
reported for the natural product. In total, 200 mg of 1 were
obtained through the synthesis.

Discussion
In summary, we have accomplished the first total synthesis of
clostrubin. The concise and efficient route took advantage of the
6p electrocyclization strategy as well as the inherent structural
symmetry of the molecule. The synthesis provides a practical
means to obtain this potent antibiotic for further investigations,

considering the limited supply and difficult isolation of the
naturally occurring sample.

Methods
General. All reactions were carried out under an argon atmosphere with dry
solvents under anhydrous conditions, unless otherwise noted. Tetrahydrofuran was
distilled immediately before use from sodium-benzophenone ketyl. Methylene
chloride, N,N-dimethylformamide, triethylamine, N,N-diisopropylethylamine and
chlorotrimethylsilane were distilled from calcium hydride and stored under an
argon atmosphere. Methanol was distilled from magnesium and stored under an
argon atmosphere. Reagents were purchased at the highest commercial quality and
used without further purification, unless otherwise stated. Solvents for chromato-
graphy were used as supplied by Titan Chemical. Reactions were monitored by
thin-layer chromatography carried out on S-2 0.25 mm E. Merck silica gel plates
(60F-254) using ultraviolet light as visualizing agent and aqueous ammonium
cerium nitrate/ammonium molybdate or basic aqueous potassium permanganate
as developing agent. E. Merck silica gel (60, particle size 0.040–0.063 mm) was used
for flash column chromatography. Preparative thin-layer chromatography
separations were carried out on 0.25 or 0.50 mm E. Merck silica gel plates (60F-
254). Nuclear magnetic resonance (NMR) spectra were recorded on Bruker AV-
400 or Agilent 500/54/ASP instrument and calibrated by using residual undeut-
erated chloroform (dH¼ 7.26 p.p.m.) and CDCl3 (dC¼ 77.16 p.p.m.) or undeut-
erated dimethylsulfoxide (dH¼ 2.50 p.p.m.) and dimethylsulfoxide-d6 (dC¼ 39.52
p.p.m.), as internal references. Infrared spectra were recorded on a Thermo Sci-
entific Nicolet 380 FT-IR spectrometer. Melting points are uncorrected and were
recorded on a Shanghai Jingke SGW X-4 apparatus. High-resolution mass spectra
were recorded on a Bruker APEXIII 7.0 Tesla ESI-FT or a Waters Micromass GCT
Premier EI mass spectrometer.

For 1H and 13C NMR spectra of compounds, see Supplementary Figs 1–26. For
heteronuclear multiple quantum correlation spectroscopy (HMQC) and
heteronuclear multiple-bond correlation spectroscopy (HMBC) spectra of
compound 13, see Supplementary Figs 27 and 28. For nuclear Overhauser effect
spectroscopy (NOESY) spectra of compound 14 and 15, see Supplementary Figs 29
and 30. For the comparisons of 1H and 13C NMR spectra of the natural and
synthetic clostrubin, see Supplementary Figs 31 and 32. For the comparisons of 1H
and 13C NMR spectroscopic data of the natural and synthetic clostrubin, see
Supplementary Tables 1 and 2. For the experimental procedures and spectroscopic
and physical data of compounds and the crystallographic data of compound 13, see
Supplementary Methods.
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