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Glioblastoma (GBM) is characterized by extensive genetic and phenotypic

heterogeneity. However, it remains unexplored primarily how CpG island

methylation abnormalities in promoter mediate glioblastoma typing. First, we

presented a multi-omics scale map between glioblastoma sample clusters

constructed based on promoter CpG island (PCGI) methylation-driven

genes, using datasets including methylation profiles, expression profiles, and

single-cell sequencing data from multiple highly annotated public clinical

cohorts. Second, we identified differences in the tumor microenvironment

between the two glioblastoma sample clusters and resolved key signaling

pathways between cell clusters at the single-cell level based on

comprehensive comparative analyses to investigate the reasons for survival

differences between two of these clusters. Finally, we developed a diagnostic

map and a prediction model for glioblastoma, and compared theoretical

differences of drug sensitivity between two glioblastoma sample clusters. In

summary, this study established a classification system for dissecting promoter

CpG island methylation heterogeneity in glioblastoma and provides a new

perspective for the diagnosis and treatment of glioblastoma.
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Introduction

Glioblastoma (GBM) is a malignant primary brain cancer characterized by high

infiltration into the parenchyma and wide phenotypic heterogeneity (Hua et al., 2015).

Despite advances in surgical techniques and clinical regimens, the standard therapies,

including surgical resection, chemotherapy, are predominantly ineffective for GBMs due

to therapeutic resistance, rapid recurrence, and the patient outcomes remain between
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12 and 15 months survival rate, 5-year survival rates at only 10%

(Tao et al., 2020). In light of the molecular complexity and

histopathological grading of GBM (Vitucci et al., 2017), there is a

critical need to complement the inaccurate prediction of disease

progression and the deviation of therapy with genomic

information.

The significant factors contributing to the pathogenesis of

GBM were epigenetic molecular mechanisms (Kosti et al., 2020).

DNA methylation, the most common epigenetic event in cancer,

contributes to carcinogenesis and frequently occurs in the

promoter region of genes (Agundez et al., 2011; Wang et al.,

2022). With the help of multi-omics datasets, profiles of GBM at

the transcriptome and methylation levels have been increasingly

reported to investigate the extensive heterogeneity in the tumor

and single-cell level regarding transcriptomic expression (Oh

et al., 2020). Several extensive cohort studies indicate an

important association between DNA methylation of the

promoter region and phenotypic of GBM (Guo et al., 2015).

For instance, the discordance of promoter methylation with O-6-

methylguanine-DNA-methyltransferase (MGMT) expression in

GBM has been a plausible strategy for sensitizing temozolomide

(TMZ) therapy and provides a strong rationale for the

development of new drugs (Yi et al., 2019). Furthermore,

numerous potential prognostic biomarkers, including long

non-coding RNA (lncRNA) and mRNA, were identified with

aberrant methylation (Han et al., 2020). The characterization of

the epigenome by DNAmethylation assay has been progressively

used to stratify and integrate molecular and phenotypic features.

Nevertheless, with advances in genomics, the single-gene

methylation status has limited its clinical utility.

During cancer development, aberrant DNA methylation

occurs within the gene promoter, CpG island, and their

shores (Hardy et al., 2017). However, CpG island has received

little individual attention. CpG sites methylation patterns are

believed to differ considerably between GBM patients

(Etcheverry et al., 2010). In particular, some cancers show an

apparent CpG island methylator phenotype (CIMP), of which a

critical milestone highlighting the clinical importance of the

epigenetic profile of gliomas was the discovery of the glioma

CpG island methylation phenotype (G-CIMP) (Northcott et al.,

2017; Ogino et al., 2018). Specifically, patients carrying G-CIMP

have a better prognosis than patients who do not carry this

phenotype. The clusters identified by separating Isocitrate

dehydrogenase (IDH) mutation status showed overall

concordance with G-CIMP, which exemplifies the particularity

of CpG island in the molecular diagnosis of GBM (Geisenberger

et al., 2015; Park et al., 2019). Recent studies also suggest that the

tumor microenvironment (TME) plays an essential role in

clinical outcomes and response to therapy (Gangoso et al.,

2021). The tumor microenvironment of GBM contains a large

number of infiltrating macrophages (Chen et al., 2019). However,

few studies have assessed the epigenetic alterations and the TME

simultaneously, especially at the single-cell level. Here we

explored a comprehensive genomic and transcriptomic

analysis. We resolve the comprehensive characterization of

GBM subgroups by integrating CpG island methylation,

expression profiling, and single-cell sequencing data. Finally,

we constructed a planetary diagnostic view and performed a

drug sensitivity analysis to illustrate the clinical contribution of

the results.

Materials and methods

Data sources

The HM450k DNA methylation data were downloaded from

The Cancer GenomeAtlas (TCGA, https://portal.gdc.cancer.gov/)

database and GSE41826 in Gene Expression Omnibus (GEO,

http://www.ncbi.nlm.nih.gov/geo/), which includes 155 tumor

samples and 56 normal samples. The methylation level of each

probe was represented by the β-value (from 0 to 1). β-Value =

Imeth/Imeth + Iunmeth, Imeth is the intensity of methylation, and

Iunmeth is the intensity of unmethylation. CpGmethylation probes

were annotated with the platform annotations in GEO

(GPL13534). Clinical information and expression data were

downloaded from the TCGA database, and the expression level

was quantified as fragments per kilobase of transcription per

million mapped reads (FPKM) values. Besides, we downloaded

gene expression data from the Chinese Glioma Genome Atlas

(CGGA, http://www.cgga.org.cn/) database as a supplementary

dataset, which includes 282 GBM patients who possessed

complete clinical information (Zhao et al., 2021a). The

annotation file for mRNAs and promoter region was derived

from the GENCODE database (https://www.gencodegenes.org/)

(Di Risi et al., 2021). The single-cell sequencing data were

obtained from GSE162631 in the GEO database, and cells

derived from the tumor cores of three GBM patients in the

dataset were selected (Xie et al., 2021a). Expression profile data

of human cancer cell lines (CCLs) were obtained from the Broad

Institute Cancer Cell Line Encyclopedia (CCLE) project (https://

portals.broadinstitute.org/ccle/). Drug sensitivity data of CCLs

were achieved from the Cancer Therapeutics Response Portal

(CTRPv.2.0, https://portals.broadinstitute.org/ctrp), which

contains the sensitivity data for 481 compounds over

835 CCLs (Lauria et al., 2020; Bagaev et al., 2021). The dataset

provides the area under the dose-response curve (area under the

curve AUC) values as a measure of drug sensitivity, and lower

AUC values indicate increased sensitivity to treatment.

Gene regulation patterns and GBM
molecular cluster classification

DEGs were identified with the Limma R package (version

3.48.3), and adjusted p-value<0.05 and

Frontiers in Genetics frontiersin.org02

Wang et al. 10.3389/fgene.2022.989985

https://portal.gdc.cancer.gov/
http://www.ncbi.nlm.nih.gov/geo/
http://www.cgga.org.cn/
https://www.gencodegenes.org/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ccle/
https://portals.broadinstitute.org/ctrp
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989985


|log2 Fold Change (FC)|>1 were considered to have a significant

difference (Liu et al., 2021). We used the MethylMix R package

(version 2.22.0) with the |log2 FC|>0.5, Cor < -0.3,

p-value<0.05 to extract the PCGI methylation-driven genes

(Xu et al., 2019). Based on the expression of genes, GBM

samples were clustered into K (2–9) groups using the

ConsensusClusterPlus package (version 1.56.0) in R software

(Wilkerson and Hayes, 2010). The optimal K value was

determined to obtain a stable cluster, of which correlation

coefficients were computed by spearman, and partitioning

around medoids was selected as a clustering algorithm.

Single sample gene set enrichment
analysis

The corresponding enrichment score was computed with

the GSVA R package (version 1.40.1) (Lauria et al., 2020),

which estimated the biological similarity of immune cells by

multi-dimensional scaling and a Gaussian fitting model to

represent the relative abundance of each immune cell type

in gene set enrichment analysis (ssGSEA). Specifically, the

tumor microenvironment was assessed by

immunohistochemistry for markers of immune cell types

(Supplementary Table S1). Further, the ssGSEA score was

normalized to unity distribution for each immune cell type,

and the estimate scores, including purity, stromal and immune

values, were calculated with the estimate R package (version

1.0.13) (Yoshihara et al., 2013).

Single-cell analysis

We collected three separate tissue samples originating from

the tumor core in GBM patients from GSE162631 (21). The raw

count data were loaded into the Seurat package (version 4.0.5) for

quality control (QC), data filtering, normalization, Principal

Component Analysis (PCA), Uniform Manifold

Approximation, and Projection (UMAP) visualization,

clustering. The single-cell sequencing data from three patients

were integrated by the Harmony R package (version 0.1.0) and

the cells withmitochondrial genes greater than 10% or fewer than

300 detected genes were filtered out. A scale factor of 10,000 was

used to normalize all the remaining cells (Xie et al., 2021a). We

used the FindAllMarkers function in Seurat to determine the

genes enriched in each cluster and set a logFC threshold of 0.25. It

applies a Wilcoxon Rank Sum test and performs multiple test

corrections using the Bonferroni method. We used Cellchat R

package (version 1.1.3) with the cellchatDB.Human database,

which includes supporting evidence for each signaling

interaction and considers the structural composition of ligand-

receptor interactions and cofactor molecules to identify and

visualize cell-cell interactions (Jin et al., 2021).

Co-expression network

We calculated the Spearman correlation between ligand-

receptor genes with PCGI methylation-driven genes. The

regulation pairs with Cor>0.4 and p-value<0.05 were used to

construct the co-expression network, which visualized in

Cytoscape (version 3.9.0). We used cytoHubba plug-ins built

into Cytoscape to calculate key genes in the network.

Statistical analysis

All statistical tests were performed in R software (v4.0.3). For

the comparisons of the normally distributed groups, statistical

analysis was performed by t-tests, and for non-normally

distributed variables, statistical analysis was analyzed by

Wilcoxon rank-sum tests. The Chi-square test is used to

compare clinical, pathological parameters, and other

categorical variables. Correlation between two continuous

variables was measured by either Pearson’s correlation or

Spearman’s correlation. For survival analysis, the differences

in prognosis between clusters were assessed via Kaplan-Meier

OS analysis, and log-rank tests were utilized to judge the

differences between clusters. The cluster prediction model was

constructed with LASSO regression in the glmnet R package

(version 4.1.2) (Huang et al., 2021). The pROC package (version

1.18.0) in R was utilized to calculate the ROC curves and AUC

values. For all statistical analyses, a two-tailed p < 0.05 was

considered significant. Significance values correspond to p-value

as follows: ns > 0.05, *<0.05, **<0.01, ***<0.001, ****<0.0001.

Drug sensitivity

We used the Ridge regression analysis in the pRRophetic R

package (version 0.5) to predict differences in drug sensitivity

between the two clusters of GBM cancer samples using default

settings (Yang et al., 2021). K nearest neighbor imputation was

applied to impute the missing AUC values. We used the

normalization method to modify the drug sensitivity data

matrix of CCLs (Roy et al., 2019). The drugs with

|log2 FC|>0.1 were considered to have differential sensitivity in

different clusters (Yang et al., 2021).

Results

Identification of glioblastoma clusters
based on promoter CpG island
methylation-driven genes

To investigate the DNAmethylation of promoter CpG island

(PCGI) associated with GBM disease progression, we established
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a richly computational strategy that maps the Infinium

HumanMethylation450K microarray to gene PCGI

methylation profiles and summarizes DNA methylation

patterns at the gene level (Zhao et al., 2021b). First, based on

the gene annotation derived from the GENCODE database and

GPL13534 platform file containing the methylation probes

information (Li et al., 2020; Di Risi et al., 2021), we defined

the promoter region as 2 kb located upstream of the transcription

start site (Hollstein et al., 2019). We extracted the relevant probes

on the PCGI from the annotation file for subsequent analysis

(Carro et al., 2010). The mean value for probes was calculated as

the methylation level of genes (Liu et al., 2020). In total,

46,072 probes in the DNA methylation microarray were

annotated to 15,067 genes, of which we selected 10,895 coding

genes according to the gene annotation file. The DNA

methylation profiles exhibit the distribution of DNA

FIGURE 1
(A) The Screening process of PCGI methylation-driven genes. The first circle shows the chromosomal location and ordering information. The
second circle represents the distribution of differential methylation genes. Red points represent hypermethylation, and blue ones represent
hypomethylation relative to normal samples. The third circle shows the relationship between methylation and gene expression. Blue and red bars
represent values with negative and positive correlations, respectively. (B) Overview of 48 PCGI methylation-driven genes. The first column
shows the absolute values of the correlation coefficients between DNA methylation and expression level. The second and third columns show the
fold change of the expression and methylation level. (C) Consensus cluster for GBM patients of TCGA based on PCGI methylation-driven genes. (D)
Kaplan–Meier survival analysis for TCGA sample clusters. (E) Hierarchically clustered heatmap for the expression of PCGI methylation-driven genes
across clusters in TCGA. (F) Consensus cluster for GBM patients of CGGA based on PCGI methylation-driven genes. (G) Kaplan–Meier survival
analysis for CGGA sample clusters. (H) Hierarchically clustered heatmap for the expression of PCGI methylation-driven genes across clusters in
CGGA.
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methylation across the CpG island with a typical DNA

hypomethylation tendency in GBM (Supplementary

Figure S1A).

Overall, studies on DNA methylation are thought to be

associated with an opposite gene expression pattern. Thus, we

identified the differentially expressed genes (DEGs) with Limma R

package (p-value<0.05; |log2 FC|>1; Supplementary Figure S1B)

and calculated the methylation differences and the correlation

between expression and methylation with MethylMix R package

(|log2 FC|>0.5; Cor ≤ -0.3; p-value<0.05). Ultimately, we identified

48 PCGI methylation-driven genes (Figures 1A,B and

Supplementary Table S2) (Xu et al., 2019).

To clarify the heterogeneity of PCGI methylation-driven

genes in TCGA-GBM tumor samples, we performed the

consensus cluster method to cluster the samples based on the

similarity of PCGI methylation-driven genes expression

signature (Datta et al., 2021). It is worth noting that all

samples were likely categorized into three clusters named

ClusterA, ClusterB, and ClusterC because the interference

between clusters can be minimized when K = 3 was selected

(Figure 1C and Supplementary Figures S1C–L) (Gong et al.,

2020). The epigenomic analysis demonstrates that GBM patients

exhibit different levels of abnormal methylation in promoter

CpG island, reflecting the heterogeneity of GBM. Particular

clustering results for each sample are listed in Supplementary

Table S3. The prognostic characteristics of clusters were further

appraised by survival analysis, indicating that PCGI methylation

is a significant prognostic factor in GBM patients (Figure 1D).

The heatmap showed significant disparities in PCGI

methylation-driven genes between clusters (Figure 1E). We

further collected 283 GBM samples from the Chinese Glioma

Genome Atlas (CGGA) RNA-seq database with clinical

information data available and performed the analogous

analysis to verify the rationality of results obtained from

TCGA(19): we determined the clustering results for CGGA

patients based on similarity in gene expression and calculated

the survival probabilities between different clusters (Figures

1F,G). Of particular interest, the expression pattern of PCGI

methylation-driven genes in the CGGA database is similar to that

of the TCGA database, with samples divided into three clusters

based on gene expression (Figure 1H). As could be expected, we

observed high concordance between the clustering results and

prognostic features of CGGA and TCGA.

Tumor microenvironment heterogeneity
between glioblastoma clusters

As substantial changes in the tumor microenvironment with

infiltrating immune cells and gene regulation machinery can

influence tumor progression (Tian et al., 2021), we put the DNA

methylation data into a broader GBM context to identify the

effect of PCGI methylation in-depth on the tumor

microenvironment. We first identified the DEGs between

clusters with significant survival differences (clusters A and C)

and performed the single sample gene set enrichment analysis

(ssGSEA) analysis based on the immune cell signature gene set to

investigate the differences between clusters (Bastola et al., 2020;

Krug et al., 2020). The results showed that specific PCGI

methylation-driven genes were substantially different between

clusterA and clusterC within the top differentially expressed

genes, including KIF21B, JPH4, NET O 1, FAM181B, AMER2

being up-regulated in clusterC, while ABCC3,MMP14, LGALS1,

SLC16A3, PDPN, ADM exhibiting up-regulated in clusterA

(Figures 2A,B). Additionally, we got the same results in the

CGGA database (Figure 2C). Remarkably, we observed

significant differences in the immune cell infiltration between

the two clusters. The abundance score of immune cells calculated

with ssGSEA was lower in clusterC and higher in clusterA, as

shown in Figure 2D. Collectively, it is worth investigating this

apparent inconsistency between clusterA and clusterC in the

tumor microenvironment as a possible reason for the difference

in clinical survival of patients (Gangoso et al., 2021). We further

utilized the ESTIMATE R package on the expression profiles of

TCGA samples to infer immune and stromal scores for

estimating Tumor Purity, Stromal, and Immune Scores

(Figure 2E) (Riaz et al., 2017; Stewart et al., 2017; Krug et al.,

2020). Studies exist demonstrating that themesenchymal subtype

has many immune cells, in concordance with our work, this

subtype showed lower cell density and large necrotic areas in

histopathology (Klughammer et al., 2018). We observed high

levels of macrophages in clusterA and low levels in clusterC

(Figure 2D). We have reviewed the available studies that higher

with increased macrophages is associated with lower overall

survival (Chen et al., 2019). We also found that the matrix

metalloproteinases (MMPs), which might influence the

expression of multiple proteins in the extracellular matrix,

were differentially expressed between two clusters

(Supplementary Table S4) (Theodoris et al., 2015). We

speculated that the differences in immune cells could be

responsible for the survival status between clusters A and C.

Similarly, we obtained practically consistent results by validating

with the CGGA database, which proved that our analysis was

reliable (Figures 2F,G).

Linking single cell analysis and
communication patterns to glioblastoma
clusters

To accurately assess the tumor microenvironment between

clusters A and C, we analyzed the single-cell data from the core

tumor region of three GBM patients (GSE162631). Specifically,

the cells were analyzed with the Seurat package in R and

annotated according to the expression of canonical cell class

markers and the SingleR R package (Xie et al., 2021a; Lu et al.,
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2021). After the data preprocessing pipeline, the dataset contains

14,926 cells, which cluster into 10 cell groups. The clusters

included Macrophages (APOC1, CD163, F13A1), Microglia

(CX3CR1, P2RY12, P2RY13), Neutrophils (IL1R2, CXCR2,

FPR2), T cells (CD3D, CD3E, GZMK), B cells (IGHG1,

IGHG3, CD79A), Dendritic cells (HLA-DQA1, HLA-DPB1),

Glial/Neuronal cells (FABP7, PTPRZ1), Endothelial cells

(CD34, VWF, CLDN5) and Mural cells (RGS5, PDGFRB,

NOTCH3) were identified in this data set (Figures 3A,B) (Xie

et al., 2021a). We observed a high content of macrophages,

monocytes, and microglia in the single-cell sequencing data of

GBM samples. Figure 3B illustrates the overlap in gene

expression between these 3 cell groups. Consistent with

previous studies, the gene expression patterns of these 3 cell

groups are similar, and it has always been a challenge to

accurately distinguish them in the GBM microenvironment

(Ryan et al., 2017; Yao et al., 2020).

Based on published research, we recognized that microglia and

tumor-associated macrophages, which accumulate in the tumor

region secreting MMPs to promote tumor invasion and secrete

tumor cell proliferation promoting factors are distinct

subpopulations derived from mononuclear phagocytes (Fan et al.,

2020; Ma et al., 2020). The available gene markers do not reliably

discriminate between microglia and macrophages. In contrast, the

B-cell content was shallow in the GBM microenvironment

(Figure 3A). In the central nervous system, B cells are responsible

for the antigenic presentation of tumor antigens and participate in

anti-tumor immunity (Galstyan et al., 2019).

To predict cell signaling and inferred the precise

connections between identified cell clusters to uncover

coordinated responses among different cell types. We

assessed not only the cell types in the tumor

microenvironment but also the interactions between cells

within the GBM tumor microenvironment, which constitute

FIGURE 2
(A) The volcano plot shows fold changes for genes differentially expressed between TCGA-clusters A and C. The differentially expressed PCGI
methylation-driven genes are highlighted in the figure. (B) Boxplots of differentially expressed PCGI methylation-driven genes between clusters A
and C. (C) The volcano plot shows fold changes for genes differentially expressed between CGGA-clusters A and C. The differentially expressed PCGI
methylation-driven genes are highlighted in the figure. (D) Heatmap and hierarchical clustering of normalized immune cell infiltration score of
TCGA samples. (E) Violin plots for the distributions of StromalScore, immuneScore, ESTIMATEScore, and TumorRurity of TCGA samples. (F)Heatmap
and hierarchical clustering of normalized immune cell infiltration score of CGGA samples. (G) Violin plots for the distributions of StromalScore,
immuneScore, ESTIMATEScore, and TumorRurity of CGGA samples.
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an additional layer of information for the integration of DNA

methylation data (Lennon et al., 2016).

Normalized single-cell data was then loaded into the Cellchat R

package, which integrates cell gene expression and prior knowledge

of the interactions between signaling ligands, receptors, and their

cofactors to model ligand-receptor mediated signaling interactions

(Jin et al., 2021; Leimkuhler et al., 2021). Lastly, we calculated the

probability of intercellular communication through Cellchat’s

standard process. We detected 35 significant ligand-receptor

pairs categorized into 18 signaling pathways, including SPP1,

MIF, COMPLEMENT, IL1, ANNEXIN, VISFATIN,

GALECTIN, CCL, TNF, PTN, VEGF, GAS, ANGPT, ANGPTL,

TGFβ, PARs, IL6, PDGF (Figure 3C). Signaling contribution

analysis of cell populations revealed that monocytes were the

most important source of SPP1 pathway receptors and the most

important source of ANGPTL pathway ligands. Additionally, the

communication patterns of multiple cell populations are clustered

in the GALECTIN pathway which provided compelling evidence

that different cells may depend on the same signals (Supplementary

Figures S2D–F).

We further intersected the identified ligand-receptor genes

with the list of differentially expressed genes between clusters A

and C in the TCGA database simultaneously. The results indicate

that ten ligand-receptor genes were differentially expressed

between clusters A and C. Notably, all ten ligand-receptor

genes were up-regulated in cluster A and down-regulated in

cluster C, showing a consistent pattern of differential expression

in general (Figure 3D). Compared to the ssGSEA results, these

significant differences in the expression distribution trends of the

ten ligand-receptor genes in the GBM sample clusters are

comparable to the differences in immune cell abundance

between clusters A and C (Figures 2D,F). Specifically, multiple

signaling pathways may be activated in the tumor

microenvironment of subtype A, including TNF, SPP1, MIF,

ANGPL, and ANGPTL (Figure 3C). For example, TNF receptor

superfamily members might participate in the progression of

GBM through responses to TNF signaling pathway and are

associated with poor prognosis (Xie et al., 2021b). This cross-

referencing of single-cell sequencing data with epigenetic analysis

models provides rapid insight into the mechanisms underlying

the analysis of the GBM tumor microenvironment.

The correlation between PCGI methylation-driven genes and

ligand-receptor genes was further evaluated to explore the effect of

PCGI methylation-driven genes on patients’ tumor

microenvironment. The correlation heatmap shows that 78.2% of

the correlation coefficient matrices had absolute values greater than

FIGURE 3
(A)UMAP of Single-cell sequencing data, colored for the 10 cell clusters. (B)Dot plot heatmap of the marker genes in individual cell clusters. (C)
The dot plot shows the significant signaling patterns and ligand-receptor pairs. Dot color reflects communication probabilities and dot size
represents computed p-values. The highlighted signals are pathways in which ligand-receptor genes are differentially expressed between clusters.
(D) Expression distribution of differentially expressed ligand-receptor genes in 10 cell clusters and comparison of expression between TCGA
sample clusters A and C. (E) Heatmap shows Spearman’s correlations between PCGI methylation-driven genes and ligand-receptor genes. (F) The
correlation between Cellchat score and macrophage infiltration score.

Frontiers in Genetics frontiersin.org07

Wang et al. 10.3389/fgene.2022.989985

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.989985


0.4, embodying a critical regulatory relationship between PCGI

methylation-driven genes and ligand-receptor genes (Figure 3E).

Next, we applied weighted co-expression network analysis to the

correlation coefficient matrices and explored the critical nodes in the

network. Ranked by the degree method, we found that ITGA5 may

play an essential role in the network as a key node (Supplementary

Figure S2B and Supplementary Table S5). Our results show that the

major signaling pathways of ITGA5 include SPP1, ANGPTL,

ANGPT, which are characterized by monocytes in the incoming

interaction environment, but the communication patterns of

outcoming interaction are dominated by macrophages

(Supplementary Figure S2C). Then, we defined the mean value of

ligand-receptor genes expression in each sample of the TCGA

database as a Cellchat score, which quantified the strength of cell

communication.We observed that Cellchat score played a significant

positive correlation with the abundance of macrophages (Cor = 0.73;

p < 0.001) (Figure 3F ). Given the crucial role of macrophages in the

GBM tumor microenvironment, significant heterogeneity in the

expression profile of ligand-receptor genes could help us

differentiate the infiltration of macrophages in GBM clusters

regulated by PCGI methylation-driven genes, eliminating the

dependence of epigenetic typing on high-quality methylation data

(Klughammer et al., 2018).

Building diagnostic map and cluster
prediction model for the clinical
improvement of GBM clusters

Precise molecular clustering and clinical features may

become key components in prognostic index models

(Giacopelli et al., 2019). Therefore, to evaluate the

contribution of the GBM clustering results to diagnosis

and prognosis in this study, we constructed a diagnostic map

containing all clinical features in the database, based on the

samples from the CGGA database (Figure 4A and Supplementary

Figure S3A) (Bagaev et al., 2021). Additionally, to characterize

the clinicopathological relevance of our results, we not only

compared the clinical characteristics of the samples in the

CGGA database but also calculated the Cellchat score of each

sample (Figure 4B). We compared the distribution of multiple

clinical features and showed that the majority of patients in

clusterA were IDH wild-type. At the same time, we divided the

patients into high and low subgroups by the median value of the

Cellchat score. The distribution between Cellchat groups and

GBM clusters was assessed in the CGGA cohort. The samples in

Cellchat high score largely overlapped with clusterA and the

Cellchat low score overlapped with clusterC, which showed a

comparable outcome to TCGA database analysis (Figure 4C).

The reliability of our results was verified in the CGGA database,

synthetically validating our conclusions.

The clinical utility of our GBM clustering results provided

new insights into GBM progression compared to a single clinical

feature. For example, we observed that patients with MGMT

promoter unmethylated, IDH wild-type, 1p/19q non-codel in

clusterC were more likely to achieve a survival advantage at a

later stage of GBM progression than patients in clusterA (Figures

5A–C). These findings may suggest that the abnormal

methylation profile of promoter CpG islands does not

necessarily reflect initial risk factors in GBM progression but

is a late result of complex gene-tumor microenvironment

interactions throughout GBM progression.

FIGURE 4
(A)Clinical diagnosticmap based on GBM samples in CGGA database. Constellationmap of GBM sample distribution based on the results of this
study. The green points represent clusterA, and orange ones represent clusterC, which is consistent with the color annotation of other figures in this
study. (B–C) The distribution of CGGA clinical characteristics and Cellchat score we defined.
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We developed an accurate performance model which can

explore a prompt diagnosis (Pyonteck et al., 2013). Specifically,

the PCGI methylation-driven genes differentially expressed in

clusters A and C were used to construct the prediction model. We

randomly divided the samples of TCGA into a training dataset

(70%) and test dataset (30%) and brought the CGGA samples as

an independent test dataset to verify the repeatability of the

cluster prediction model. Then we fit the LASSO logistic

regression with the best lambda value to get a stable set of

selected features (Supplementary Figures S3B,C). Lastly, the

Area Under the Curve (AUC) area was used to quantify

response prediction, which exhibited reasonable prediction

accuracy in GBM patients with an AUC of 0.975 in the

TCGA database and 0.969 in the CGGA database (Figures 5D,E).

For refining the diagnostic map, we concentrated on

predicting drug response between GBM clusters based on the

CTRP dataset, which contains the gene expression profiles and

drug sensitivity profiles of cancer cell lines (CCLs) (Basu et al.,

2013; Yang et al., 2021). We excluded the compounds containing

NAs in more than 20% of the samples and excluded the CCLs

derived from hematopoietic and lymphoid tissue. After pre-

processing the data, we used 658 CCLs containing

266 compounds in CTRP and expression profile data from

GBM patients to predict patient response to drugs between

clusters A and C, based on pRRpphetic with a built-in ridge

regression model (Yang et al., 2021). The difference of estimated

AUC values of compounds between two clusters was compared

with the Wilcoxon rank-sum test, and the results indicated that

patients in clusterA showed significantly lower estimated AUC

values of Dasatinib and Selumetinib than clusterC (p < 0.001)

(Figure 5F and Supplementary Figures S3D,E). Previous studies

have shown that the combination of Crizotinib and Dasatinib

induced an anti-proliferative effect in GBM cell lines, exerting a

potent effect on different GBM cell lines when investigating

different tyrosine kinase inhibitors (Nehoff et al., 2015; Wang

et al., 2020). Additionally, Selumetinib, a kinase inhibitor

affecting actionable kinase targets associated with intracranial

tumor growth rate, has been selected for single and combination

therapy to develop a miniaturized system for drug testing

(Gilbert et al., 2018). The difference in estimated AUC values

suggest that patients in clusterA may be more sensitive to these

two drugs in clinical treatment (Yang et al., 2021). Overall, we

believe that our results provide new insights into improving

clinical outcomes for GBM patients and the basis for new

treatment options for GBM.

Discussion

Multi-omics data analysis has significantly propelled the

understanding of GBM biology, enabling scientists to provide

new insights into the GBM precision medicine (Bock et al., 2016).

FIGURE 5
(A–C) Kaplan-Meier survival curve analysis between clusters A and C in 1p/19q_Non-codel, MGMTp_un-methylated, and IDH_wildtype). (D)
The ROC curves of TCGA sample prediction results. (E) The ROC curves of CGGA sample prediction results. (F) Comparison of estimated Dasatinib
and Selumetinib sensitivity.
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Although the importance of aberrant DNA methylation is well

established in various cancers, comprehensive analyses of

genomic and single-cell sequencing data based on tumor

typing of CpG island within promoter regions remain

deficiency. Collectively, elucidating the complexity of the

epigenome in GBM typing and therapeutic response

specificity may reveal potential mechanisms of targeted

therapy and immunotherapy resistance (Manuyakorn et al.,

2010). Hence, we performed a consensus clustering analysis

with PCGI methylation-driven genes expression profiles and

identified three clusters in patients of TCGA and CGGA

database, which helped frame the development of GBM

precision diagnosis. The identification of PCGI methylation-

driven genes comprehensively reflects the influence of

methylation information layer on genes and avoids the noise

of miscellaneous methylation probe data. Many PCGI

methylation-driven genes have been proven extremely

valuable in diverse GBM research. For example, the up-

regulation of PDPN by cancer cells has recently been linked

to an increased risk for venous thromboembolism in GBM (Tawil

et al., 2021). Moreover, Hernando et al. found that forced

expression of reprogramming transcription factor SOX2,

which is highly expressed in GBM, reduces expression of

TET2 and 5hmC, thus contributing to the hyper-methylated

phenotype of GSCs (Lopez-Bertoni et al., 2022). In terms of other

clinical features and diagnostics, our results can complement

existing molecular typing while identifying new clinical

differences in the integration process.

Because of the particular proliferation form and development

process of the tumor, TME exhibits significant differences

compared to the normal tissue environment, leading to

exclusive characteristics of the tumor [58]. In this study,

clusters A and C we identified differed in the degree of

immune infiltration in GBM. Combined with the results of

single-cell sequencing, differences in the extent of macrophage

infiltration in the TME may account for the significant

differences in survival between clusters. Macrophages and

microglia are significantly abundant in the GBM

microenvironment and provide 10%–34% of the tumor mass,

which is supported by previous observations (Jacobs et al., 2012).

In studies on GBM typing, macrophages and microglia are more

increased in recurrent mesenchymal GBM than in primary non-

mesenchymal GBM (Wang et al., 2017). Classifying GBM

samples based on the TME has predictive power, so efforts to

characterize PCGI methylation-driven genes will prove

invaluable for identifying the immunosuppressed patients.

Additionally, matrix metalloproteinases (MMPs), a key factor

degrading almost all proteins in the extracellular matrix, were

found substantially distinct between clusters. MMPs can degrade

a variety of proteins in the extracellular matrix, and their

increased expression levels are positively correlated with the

malignancy of GBM. For example, MMP14 was reported to

be up-regulated in some types of cancer and to promote

cancer cell invasion (Theodoris et al., 2015).

Single-cell heterogeneity, essential for the precise application

of biomarkers and selecting appropriate drugs for clinical use,

plays an important role in tumor therapy and diagnostic [63].

The signaling pathways identified by the Cellchat R package help

us measure the dynamic interactions between tumor cells and

their microenvironment. For instance, multiple studies have

shown that macrophages maintain GBM cells and stimulate

angiogenesis through the SPP1 pathway, which correlates

positively with a higher macrophage density in GBM patients.

The maintenance of macrophage infiltration and its

immunosuppressive phenotype in GBM requires the

SPP1 pathway, which induces a positive feedback loop for

macrophage production of SPP1 [17]. Previous studies have

shown that ITGA5 was increased in GBM tissues and

promoted tumor cell proliferation and invasiveness, which is

consistent with our results (Figure 3D). Further experiments

revealed that NEAT1 promoted ITGA5 expression through

competitive binding with miR-128–3p, which might offer a

potential strategy for the treatment of GBM (Chen et al.,

2021; Shaim et al., 2021). Although many methodological

issues need further discussion, the ligand-receptor genes

differently expressed between clusters validate the

reasonableness of the typing results from different

perspectives, indicating the combination of gene methylation

and TME may be a beneficial strategy for GBM patients.

Lastly, the diagnostic map refined the former classification

and proposed new points for molecular typing [63]. As new

criteria and classification methods provide a more detailed

understanding of GBM, relying exclusively on a single

molecular marker could not satisfy an accurate diagnosis. The

observed GBM sample clusters based on PCGI methylation-

driven genes in this study improve homogeneous tumor

diagnosis and provide insights into the prognosis of GBM

patients at later stages of progression (Brennan et al., 2013;

Geisenberger et al., 2015). Strikingly, the Cellchat score we

defined distinguished the GBM subtypes with clear separation

in the CGGA and TCGA databases. This comprehensive DNA

methylation- and tumor microenvironment-based classification

of biomarker arrays improves molecular understanding of

pathway signaling among GBM cell clusters. Here, our results

also show that sample classification of GBM can further stratify

patient response to different drugs, which could ultimately

compensate for personalized therapies in groups of GBM

patients.

In conclusion, the results of our analysis adequately discuss

the heterogeneous profile of promoter CpG island methylation in

GBM. The GBM typing constructed by integrating PCGI

methylation-driven genes and the GBM tumor

microenvironment in our study contributes to improving the

understanding of homogeneous intra-tumor diagnostics.
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