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A Hearing-Model-Based Active-Learning
Test for the Determination of Dead Regions
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Abstract

This article describes a Bayesian active-learning procedure for estimating the edge frequency, fe, of a dead region, that is, a

region in the cochlea with no or very few functioning inner hair cells or neurons. The method is based on the psychophysical

tuning curve (PTC) but estimates the shape of the PTC from the parameters of a hearing model, namely fe, and degree of

outer hair cell loss. It chooses the masker frequency and level for each trial to be highly informative about the model

parameters in the context of previous data. The procedure was tested using 14 ears from eight subjects previously diagnosed

with high-frequency dead regions. The estimates of fe agreed well with estimates obtained using ‘‘Fast PTCs’’ or more

extensive measurements from an earlier study. On average, 33 trials were needed for the estimate of fe to fall and stay within

0.3 Cams of the final ‘‘true’’ value on the equivalent rectangular bandwidth-number scale. The time needed to obtain a

reliable estimate was 5 to 8 min. This is comparable to the time required for Fast PTCs and short enough to be used when

fitting a hearing aid. Compared with Fast PTCs, the new method has the advantage of using yes-no judgments rather than

continuous Békésy tracking. This allows the slope of a subject’s psychometric function and thus the reliability of his or her

responses to be estimated, which in turn allows the test duration to be adjusted so as to achieve a given accuracy.
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Introduction

Cochlear hearing loss is often associated with damage to
the hair cells (Borg, Canlon, & Engström, 1995;
Engström, 1983; Schuknecht & Woellner, 1953; see
also Moore, 2007). Outer hair cell loss (OHCL) reduces
the gain of the cochlear amplifier, while inner hair cell
loss (IHCL) reduces the number of action potentials
evoked in the auditory nerve. The total amount of coch-
lear hearing loss, HLtotal, can be modeled as the sum of
OHCL and IHCL, when all three are expressed in dB
(Moore & Glasberg, 2004). Usually, OHCL is much
larger than IHCL. In some cases, there may be a
region in the cochlea where the inner hair cells or neu-
rons are functioning so poorly that a pure tone produ-
cing peak vibration in that region is detected by off-place
listening (also called off-frequency listening). In other
words, the tone is detected at a place whose characteristic
frequency (CF) is different from the frequency of the
tone. Such a region is known as a dead region (DR;
Moore, 2001, 2004). The most common type of DR is
a basal DR, which starts at a place in the cochlea with

CF¼ fe and extends upwards from fe. Diagnosing the
presence of a basal DR, and estimating fe is relevant to
the fitting of hearing aids, including cases where a hear-
ing aid is combined with a cochlear implant (Moore,
2001; Moore & Malicka, 2013; Zhang, Dorman,
Gifford, & Moore, 2014). It may also be relevant to
deciding whether a hearing-impaired (HI) person is a
candidate for a cochlear implant (Moore, Glasberg, &
Schlueter, 2010). This article describes a novel, behav-
ioral method of estimating fe that is both time-efficient
and accurate.

As described earlier, a pure tone whose frequency falls
in a DR may be heard because of off-frequency listening:
The excitation evoked in the cochlea spreads to CFs
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away from the signal frequency, and if the tone is suffi-
ciently intense, this can lead to audible excitation in an
adjacent non-DR. This makes exact determination of fe
difficult. Even if there is a sharp boundary between func-
tioning and nonfunctioning inner hair cells, the threshold
for detecting a tone may increase only gradually as its
frequency traverses the boundary.

A well-established test for DRs is the TEN(HL) test
(Moore, Glasberg, & Stone, 2004). The task is to detect a
pure-tone signal in a broadband masker, threshold-
equalizing noise (TEN). The TEN has approximately a
constant level per ERBN, where ERBN is the equivalent
rectangular bandwidth of the auditory filter for listeners
with normal hearing (Glasberg & Moore, 1990). The
masked threshold, expressed as the signal level relative
to the level of the TEN in a 1-ERBN-wide band at 1 kHz
(denoted the signal-to-noise ratio [SNR]), is about 0 dB
for listeners with normal hearing, that is, the signal needs
to have the same level as the TEN produces at the output
of the auditory filter centered at the signal frequency.
For HI listeners without DRs, the threshold for detecting
the signal in the TEN is typically about 3 dB higher.
However, if the frequency of the signal falls well inside
a DR, it will only be detected if it evokes sufficient exci-
tation in the non-DR below fe, and this usually requires
an SNR of 10 dB or more (Moore et al., 2004; Moore,
Huss, Vickers, Glasberg, & Alcántara, 2000). Hence, a
DR at the signal frequency is diagnosed when the SNR
at threshold is 10 dB or more (with the additional con-
dition that the signal level at the masked threshold
should be at least 10 dB above the absolute threshold).
The TEN test allows rapid detection of a DR, but it does
not provide a precise estimate of fe. For example, for a
basal DR, if the frequency of the tone is only a little
above fe, the SNR at threshold may be only a little
above the ‘‘normal’’ value of 0 dB (Moore, 2001, 2004),
and the DR will be ‘‘missed’’. For a basal DR, the ‘‘true’’
value of fe usually lies somewhat below the lowest signal
frequency at which the TEN-test criteria are met.

Another test for DRs is based on psychophysical
tuning curves (PTCs; Chistovich, 1957). Here, the task
is to detect a pure-tone signal in the presence of a nar-
rowband noise. The frequency ( fsig) and level (Lsig) of the
signal are fixed, and the center frequency and level of
noise ( fmask, Lmask) are varied. A PTC is the value of
Lmask required to mask the signal plotted as a function
of fmask. For normally hearing subjects and subjects with
hearing loss but without DR, the PTC has a minimum
near fsig, that is, where the frequencies of the signal and
noise coincide. When the signal frequency falls within a
DR, the noise only needs to mask the part of the excita-
tion pattern that falls outside the DR. Thus, the min-
imum in the PTC occurs when fmask& fe. PTCs
measured using several discrete values of fmask have
been used to determine fe in experimental studies (Kluk

& Moore, 2005; Moore & Alcántara, 2001; Moore et al.,
2000). However, this method is too time-consuming for
use in clinical practice.

A method of obtaining PTCs more rapidly is called
‘‘Fast PTCs’’ (Se�k, Alcántara, Moore, Kluk, & Wicher,
2005). The method uses Békésy tracking: fsig and Lsig are
kept constant, and the signal is continuously pulsed on
and off, while fmask is continuously increased (or
decreased) over time. The subject presses a button to
indicate whether he or she hears the signal, and Lmask

is increased while the button is pressed and decreased
while it is released. This yields a PTC within 3 to
6min, depending on the selected range of fmask and the
rate of change of fmask. However, the method has
the disadvantage that the subject may ‘‘lose track’’ of
the signal; essentially, the subject forgets what to listen
for. For some subjects, many Fast PTCs using several
values of fsig and Lsig are needed to obtain a robust esti-
mate of fe (Kluk & Moore, 2005, 2006).

The present article describes a PTC-based method that
is fast but also accurate. The masked threshold of a pure
tone in noise, and thus a PTC, is predicted using a hearing
model (Moore & Glasberg, 2004) based on the simple
assumption that the signal can be heard if its excitation
exceeds the excitation evoked by the noise at any CF and
cannot be heard if its excitation is below the excitation
evoked by the noise or below the audiometric threshold at
all center frequencies. The calculated excitation patterns
of the tone and noise depend on their frequency and level
and the subject’s hearing loss. The model parameters used
to characterize the hearing loss are HLtotal, OHCL, and fe.
HLtotal is known from the audiogram. In practice, when
fsig falls above fe, the maximum excitation evoked by the
signal always occurs at fe and the highest ratio of signal
excitation to masker excitation occurs at fe. Therefore, the
value of OHCL only needs to be estimated at fe; this value
is denoted OHCL( fe). Responses obtained using various
combinations of fmask and Lmask limit the possible com-
binations of fe and OHCL( fe).

In the proposed method, a probabilistic approach
is used to express the degree of ‘‘belief’’ about the
values of fe and OHCL( fe). The belief is represented by
a probability distribution over fe and OHCL( fe),
p( fe, OHCL( fe)), that indicates how likely each setting
of fe and OHCL( fe) is, given the data. As the test pro-
ceeds, p( fe, OHCL( fe)) collapses to a single point, that of
the true parameters. To make the test fast, fmask and
Lmask are chosen to be highly informative about fe and
OHCL( fe). A similar approach was used by Kontsevich
and Tyler (1999) to estimate a psychometric function, its
mean and slope being the model parameters. For each
trial, the stimulus level was chosen to minimize the
expected entropy (Shannon, 1948) of the model param-
eters given the previous data (see the Method section for
details). The psychometric function has only a single
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stimulus parameter, the level. Other work in cognitive sci-
ence has made this strategy tractable when two or more
parameters need to be estimated (DiMattina, 2015;
Houlsby, Huszár, Ghahramani, & Lengyel, 2011;
Houlsby et al., 2013; Kujala & Lukka, 2006), by using
equivalent but computationally less expensive formulae.
Active-learning paradigms that maximize the information
gained on each trial have been used in the auditory domain
to estimate the bandwidth of the auditory filter (Shen &
Richards, 2013) and to estimate the audiogram (Song,
Sukesan, & Barbour, 2018; Song et al., 2015). In this art-
icle, we show that the proposed Bayesian active-learning
procedure determines fe accurately within minutes. It is
thus short enough to be applied in clinical practice.

Method

Overview

First, two audiograms were obtained for each test ear of
each subject. One was obtained using an audiometer and
the manual procedure recommended by the British
Society of Audiology (2011). The other was obtained
using an active-learning procedure similar to that
described by Song et al. (2015). On average, the thresh-
old obtained using the active-learning method was 3.2 dB
below that obtained using the audiometer (standard
deviation of the difference: 6.7 dB). The variability is
comparable to that reported by Song et al. (2015). The
audiograms obtained using the active-learning procedure
were used for further analysis since they were obtained
on the same apparatus and yielded a continuous estimate
of the threshold as a function of frequency.

It has been shown that the likelihood of a DR being
present at a given frequency increases markedly when
HLtotal at that frequency exceeds 65 dB HL (Vinay &
Moore, 2007). Hence, in a second step, the frequencies
at which the audiometric threshold reached 65, 70, and
75 dB HL ( f65, f70, and f75) were extracted, and a quick
version of the TEN(HL) test was used to assess whether
f65 fell in a DR (see later for details). If it did not, the
quick TEN(HL) test was repeated to assess whether f70
and f75 fell in a DR. Finally, each subject was tested using
a Bayesian active-learning procedure (called ‘‘Smart
DRT’’) to estimate fe, and a Fast PTC was also obtained.
Since the frequency at the tip of the Fast PTC is usually
taken as an estimate of fe, one can think of the goal of the
Smart DRT as being to estimate the frequency at the tip
of the PTC but without determining the entire PTC. To
assess the repeatability of the Smart DRT, it was admin-
istered three times for each test ear. Half of the ears were
tested using the Smart DRT before the Fast PTC, and the
other half were tested in the reverse order.

For all tests, the subject was asked to indicate whether
the signal was present on each trial or not, that is, a yes-

no task was used. This was chosen in preference to a two-
interval forced-choice task since random guessing in a
two-interval forced-choice means that on average, a cor-
rect response will be given on half of trials where the
signal was not heard at all, whereas a ‘‘yes’’ response
in a yes-no task probably indicates that the subject did
obtain some sensory evidence indicating the presence of
the signal and is therefore more informative (Green &
Sweets, 1974). In most cases, subjects adopted a cautious
response criterion, usually responding ‘‘no’’ on trials
where the signal was absent.

Subjects

Fourteen ears from seven male subjects and one female
subject aged 45 to 82 years (mean 72 years) were tested.
All test ears had previously been diagnosed as having
extensive basal DRs using the TEN(HL) test and Fast
PTCs, as described by Salorio-Corbetto, Baer, and
Moore (2017). Six of the subjects had DRs in both
ears, and two had a DR in one ear only. The contralat-
eral ears of these two subjects had impaired hearing but
no DR. All subjects had normal hearing to moderate
hearing loss at low frequencies and hearing loss of
more than 65 dB at high frequencies. The slope of the
hearing loss varied across subjects. At a hearing loss of
65 dB HL, the derivative of HLtotal ranged from 14 dB/
octave to 145 dB/octave. The audiograms for all test
ears, including the two without a DR, are shown in
Figure 1, with lines denoting HLtotal and crosses the
values of fe that were determined by the Smart DRT.
In addition, the quick TEN(HL) test was conducted
using two normal-hearing and two HI subjects without
a DR, in order to confirm that the quick TEN(HL) test
did not falsely identify DRs when none were present.

Apparatus

For all tests except standard audiometry, stimuli were
generated digitally at a sample rate of 48 kHz using a
personal computer. The signal was converted to analog
form by an M-Audio Delta 44 audio interface
(Cumberland, RI) and presented via a Sennheiser
HDA200 headset (Wedemark, Germany). The frequency
response of the headset at the eardrum was estimated
using KEMAR (Burkhard & Sachs, 1975) and used to
determine sound levels at the eardrum. The traditional
audiogram was measured using a Grason-Stadler GSI-61
audiometer and Telephonics TDH-50 headphones.

Stimuli

All signals were presented monaurally. For the quick
TEN(HL) test, a TEN(HL) noise was generated in the
same way as described by Moore et al. (2004), but it was

Schlittenlacher et al. 3



designed for use with Sennheiser HDA200 headphones.
It was band limited between 354 and 6500Hz, and its
level is specified in dB HL/ERBN at 1 kHz. The noise had
a low crest factor, to allow presentation at high levels
without peak clipping. However, after passing through
the auditory filters, the noise would have had a Gaussian
distribution of instantaneous amplitudes.

The task in the Smart DRT was similar to that for a
traditional PTC, that is, to detect a pure tone in the
presence of bandpass-filtered noise. The bandwidth of
the masking noise was 1 ERBN or 200Hz, whichever
was greater. The bandwidth was selected to minimize
the influence of beats on the masked threshold (Kluk
& Moore, 2004, 2005). The level (Lmask) and center fre-
quency ( fmask) of the noise were varied. The noise had a
flat spectrum within the passband and was generated
using an inverse discrete Fourier transform, the spectrum
being defined with a resolution of 1Hz. A broadband
TEN with a level of 35 dB HL/ERBN was added to
mask potential distortion products (Alcántara &
Moore, 2002).

The temporal envelopes of the stimuli were the same
for the quick TEN(HL) test and the Smart DRT. The
signal consisted of three pulses of a tone with Hann-
windowed rise and fall times of 20ms and a total duration
of 150ms each. The interval between pulses was 100ms.

The noise was switched on 100ms before the first pulse
started and switched off 100ms after the last pulse fin-
ished, again with Hann-windowed rise and fall times of
20ms, leading to a total duration of 850ms. The stimuli
for determining Fast PTCs were generated using the soft-
ware described by Se�k and Moore (2011).

Procedure for the Quick TEN(HL) Test

The quick TEN(HL) test was conducted to determine
whether the test ear had a DR at f65, f70, or f75. The
value of fsig was initially set equal to f65. Lsig was set to
75 dB HL, which is 10 dB above the absolute threshold
determined using the active-learning procedure, that is,
10 dB SL. The TEN level was 65 dB HL/ERBN. This
slightly lower TEN level than that proposed by Moore
et al. (2004) was used here to avoid uncomfortably loud
levels, especially for subjects with good low-frequency
hearing. Initially, the signal was presented without any
noise, and the subject was asked to confirm that it was
audible. Thereafter, 10 trials containing the signal in
TEN and 10 trials with the TEN only were presented
in random order. The task was to indicate whether the
signal was heard or not. Denote the proportion of trials
where the signal was present and the subject responded
‘‘yes’’ (hits) as X and the proportion of trials where the
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Figure 1. Audiograms obtained using the active-learning method for the 14 test ears and the two contralateral ears without DR of the

same subjects (5L and 6R). Lines show HLtotal, and crosses show the values of fe that were determined by the Smart DRT. The two upper

panels and the lower left panel show results for subsets of ears, and the bottom right panel shows the values of fe plotted against the

audiometric threshold at fe for all ears with DRs.
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signal was absent and the subject responded ‘‘no’’ (cor-
rect rejections) as Y. The proportion of false alarms
(responses of ‘‘yes’’ when the signal was absent) is
1�Y. If the signal is not detectable at all, X¼ 1�Y.
We chose as a threshold criterion X5 1.5(1�Y), that
is, XþY5 1.5. Given that there were 10 trials of each
type, this corresponds to a total number correct 515. In
practice, the scores were mostly close to 10 correct or (in
the case of the subjects without DRs at f65) close to 20
correct. Thus, the outcome was not affected by the exact
threshold criterion used.

If the subject scored 14 or fewer correct, it was
assumed that there was a DR at f65 (see Moore et al.,
2004). If the subject scored 15 or more correct, the quick
TEN(HL) test was repeated with fsig set to f70, Lsig set to
80 dB HL, and the TEN(HL) level set to 70 dB HL/
ERBN. If the subject scored fewer than 15, it was
assumed that there was a DR at f70. If the subject
scored 15 or more, the quick TEN(HL) test was repeated
with fsig set to f75, Lsig set to 85 dB HL, and the
TEN(HL) level set to 75 dB HL/ERBN. The signal was
never detected in this case, indicating the presence of a
DR at f75. The value of fsig used for the Smart DRT and
Fast PTCs was taken as the lowest frequency (out of f65,
f70, and f75) at which the subject scored less than 15 cor-
rect. The signal level was always 10 dB SL.

Procedure for the Smart DRT

A single trial in the Smart DRT included three intervals.
The task was to indicate whether a pure-tone signal was
present in the third interval or not. For four practice
trials and 100 subsequent trials, the intervals contained
the signal alone, the noise alone, and the signal plus the
noise, in that order. For 20 trials that were randomly
mixed with the other 100 trials, the signal was omitted
from the third interval, to assess false positives.

The procedure started with four easy practice trials to
introduce the subject to maskers with different frequen-
cies and levels. The experimenter inspected the results
and could intervene if the subject performed unexpect-
edly badly. These four trials were not considered for any
further analysis. The next 16 trials were chosen by simple
rules: Initially, fmask was set 2 Cams below fsig, where
Cams are units of the ERBN-number scale (Moore,
2012). Lmask was increased across successive trials, with
values of �20, �9, �6, �3, 0, 3, 6, and 9 dB relative to
Lsig. This was then repeated with fmask set 4 Cams below
fsig. This initial grid was intended to familiarize the sub-
ject with trials of varying detectability. Subsequent
values of Lmask and fmask were chosen by a model-
based active-learning method. The responses for the
initial 16 trials were taken into account by the active-
learning method. Doing so limited the impact of a
wrong response in the early active-learning trials.

There were two free parameters in the model. The
value of fe was one of them. It was assumed that when
fsig fell within a DR, detection of the signal would
depend on the relative response to the masker and
signal at the output of the auditory filter tuned to fe,
that is, on the relative excitation levels evoked by the
signal and masker at fe. The output of this filter was
calculated using the method described by Moore and
Glasberg (2004). The sharpness of the filter was assumed
to be determined by the total hearing loss at fe, denoted
HLtotal( fe), the amount of hearing loss at fe that was
attributed to reduced outer hair cell function,
OHCL( fe), and the spectrum of the input. The value of
HLtotal( fe) was based on the audiogram obtained using
the active-learning procedure. The value of OHCL( fe)
was a second free parameter.

For given values of fe and OHCL( fe), the excitation
levels evoked by the noise (Enoise) and by the signal (Esig)
were calculated. Enoise was substituted by the maximum
of Enoise and HLtotal( fe), because the threshold in quiet
could limit the audibility of the signal. The difference
between Esig and Enoise was taken as an indicator of
the audibility of the signal. To provide a very simple
model for the audibility of the signal in noise, it was
assumed that when the difference was 0 dB
(Esig¼Enoise), the probability of a correct yes response
(a hit, denoted y¼ 1) was 50%. The probability of a hit
was calculated from a Gaussian cumulative density func-
tion (CDF) with a standard deviation of 3 dB

p y¼ 1jx, �ð Þ ¼ CDF Esig �ð Þ �Enoise �,xð Þ, �¼ 0, � ¼ 3
� �

ð1Þ

where x denotes the presentation parameters fmask and
Lmask, and � denotes the model parameters fe and
OHCL( fe). A standard deviation of 3 dB was thought
to be a reasonable estimate of the slope of the psycho-
metric function for detection of a tone in noise (Green,
Birdsall, & Tanner, 1957). In general, if the standard
deviation is assumed to be smaller than it actually is, the
algorithm becomes ‘‘overconfident’’, that is, assigns
probabilities that are too high around the currently
most probable model parameters. Without additional
measures, this may result in the algorithm getting
‘‘stuck’’ at an incorrect estimate. If, on the other
hand, the standard deviation is assumed to be larger
than it actually is, the algorithm becomes more ‘‘cau-
tious’’ and may waste time exploring extreme parameter
values. The CDF was scaled to have values between
0.01 and 0.99 to incorporate a lapse rate for acciden-
tally pressing the ‘‘wrong’’ button. Doing this was
thought to allow the method to recover from ‘‘wrong’’
responses more quickly.

The probability of obtaining the observed sequence
of yes and no responses after N trials, given a set of
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model parameters and the presented stimuli, is as
follows:

p Djx, �ð Þ ¼
YN
i¼1

p yijxi, �ð Þ ð2Þ

whereD denotes the collected response data, and i denotes
the ith trial. However, we are not interested in the prob-
ability of the collected data given some assumed model
parameters, but in the probability of the model param-
eters, in particular fe, given the collected data. The prob-
ability of a set of model parameters given the collected
data can be obtained by Bayes’ rule and is as follows:

p �jD, xð Þ / p Dj�, xð Þ p �ð Þ ð3Þ

where p(�) is the prior distribution of the model param-
eters, which does not depend on x. A uniform distribu-
tion was assumed for p(�) with the constraint that
OHCL( fe) could not be greater than HLtotal( fe). Also,
the sets ( fe, OHCL( fe)) were restricted to avoid the entire
audible region of the excitation pattern evoked by the
signal falling above fe. If this were the case, the signal
would not even be audible in quiet according to the
model, but it had been established that the signal in
quiet with a level of 10 dB SL was clearly audible.

The parameters x* of the next trial were chosen with a
probability proportional to the mutual information I
between the response on the next trial y* and the
model parameters �,

I y�; �jx�ð Þ ¼ H y�jx�,Dð Þ � E��p �jDð Þ H y�jx�, �½ �ð Þ ð4Þ

where H is the Shannon entropy (Shannon, 1948), a meas-
ure of the uncertainty in a variable. The first term is the
entropy of the expected response, and the second term is
the expected conditional entropy of the response given the
belief about the model parameters (for more details, see
Houlsby et al., 2011). Mutual information is a mathemat-
ically principled measure of the mutual dependence
between variables that underpins the field of information
theory, and it is used here to pick stimulus parameters.
Stimuli are informative about the parameters fe and
OHCL( fe) if the outcome is uncertain, that is, when the
probability of responding ‘‘yes’’ is close to 50% rather
than close to 0 or 100% (first term of Equation 4). In
our case, this term is large when the masker level is close
to the threshold value. The second term is low in regions of
x* where the responses have been inconsistent or where no
data were collected. The net result is to explore stimuli that
are close to the current threshold estimate, but distant
from areas where ‘‘this’’ threshold estimate is confident.

Mutual information is an optimal criterion, but it can
only be tractably optimized in a ‘‘greedy’’ manner, that

is, the algorithm looks only one trial ahead and can only
pick the next stimulus without considering potentially
informative sets of several stimuli. Greedily selecting
the stimulus that is most informative about � can, in
some circumstances, lead to failure to explore relevant
regions of parameter space. Here, the failure would have
been a result of the algorithm being unable to take into
account the information gained on subsequent trials.
This problem was avoided by picking the next stimulus
with a probability proportional to the mutual informa-
tion. This strategy leads to more exploration of the par-
ameter space but still picks stimuli that are highly
informative about �.

In addition, the algorithm was ‘‘encouraged’’ to
choose fmask close to the current estimate of the most
likely value of fe, denoted f̂e, by applying an additional
weight to fmask, based on a normal distribution around f̂e
with a standard deviation of 1.5 Cams. This was done for
several reasons. First, it avoided values of fmask for which
the model predictions were likely to be less accurate.
Second, it utilized the fact that the PTC shape is most
distinctive around fe. Third, it favored low and thus
more comfortable masker levels. Thus, the parameters
for the next trial were chosen randomly with probability.

p x� ¼ fmask,Lmaskð Þ / I y�; �jx�ð ÞN x�; f̂e, �
2

� �
ð5Þ

where �¼ 1.5 Cams and N(. . .) denotes the normal dis-
tribution. In addition, values of fmask within 2 Cams of
the value of fmask on the previous trial were excluded, to
avoid ‘‘duplication’’ of information.

The belief about fe and OHCL( fe) was updated after
each trial (Equation 3), and the f̂e value that was most
likely after the last trial was chosen as the final estimate
of fe. The computations were made tractable, so that
they could be performed in the intertrial interval of
about 2 s, by using numerical integration and precom-
puting excitation patterns before the experiment started.

Fast PTCs

Fast PTCs were obtained for comparison with the Smart
DRT results, using the software of Se�k and Moore
(2011). The values of fsig and Lsig were those determined
in the quick TEN(HL) test. The masker center frequen-
cies covered the range from one octave below fsig to
slightly above fsig. A low-pass noise with a cutoff fre-
quency of 200Hz and level of 40 dB SPL was added to
mask possible difference tones (Alcántara & Moore,
2002). Two PTCs were obtained, one using an upward
frequency sweep and one using a downward sweep with
the masker level changing at a rate of 2 dB/s. The dur-
ation of each frequency sweep was 4min. If a subject
reported difficulties in the first run, for example
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forgetting what to listen for, or if the results were erratic,
for example because the PTC did not have a convex
shape or clearly showed a lapse of attention, the run
was repeated. In this case, only the results from the
repeated run were analyzed.

Results

Quick TEN(HL) Test

The two normal-hearing subjects and two HI subjects
without a DR were tested on the quick TEN(HL) test
using fsig¼ 1 kHz, Lsig¼ 75 dB HL, and TEN(HL)
level¼ 65 dB HL/ERBN. All scored at least 19 out of
20 trials correct. For 13 of the test ears with DRs, the
signal with frequency f65 was never heard when presented
at 75 dB HL in the presence of the TEN(HL) at 65 dB
HL/ERBN, suggesting the presence of a DR at f65. For
the remaining test ear (3R), the subject achieved 20 and
19 trials correct for the frequencies f65 and f70, but could
not hear the signal with frequency f75 when presented at
85 dB HL in the presence of the TEN(HL) at 75 dB HL/
ERBN, suggesting the presence of a DR at f75.

Smart DRT

To illustrate the operation of the Smart DRT, Figure 2
shows the belief about fe after 0, 20, 50, and 100 trials for
the second run for ear 3R. The probability of fe was
obtained by marginalizing the joint distribution over
OHCL( fe), that is, integrating the joint probabilities

over all OHCL( fe) for each fe. This averages away the
uncertainty in OHCL( fe). The prior probability (dotted
line), which was estimated before considering any results
for the initial grid, but just taking the audiogram and
model constraints into account, was approximately uni-
form between about 11 Cams (520Hz) and 14.8 Cams
(900Hz, corresponding to fsig), and decreased to 0 at 7.2
Cams (270Hz) and above 14.8 Cams (since it was
already known that fe was below fsig). The distribution
narrowed with increasing number of trials, N, with
maxima at 13.3 Cams (730Hz) after 20 trials and at
13.5 Cams (750Hz) after 50 and 100 trials. On average,
33 trials were needed for the estimate of fe to fall and stay
within 0.3 Cams of the final estimate, indicating that less
than 20 active-learning trials after the initial grid were
sufficient to produce a reliable result (see also Figure 6).

The final estimates of fe (those obtained at the end of
each run) varied across runs of the Smart DRT and
across ears from 0.5 kHz (ear 1L) to 3.3 kHz (ear 5R).
To assess the accuracy of the estimates, initially the
values of fe derived from the Fast PTCs for each ear
were used as a ‘‘gold standard’’ or ‘‘reference’’. For the
Fast PTCs, the value of fe is usually taken as the fre-
quency at the tip of the PTC, ftip (Moore & Alcántara,
2001; Moore et al., 2000). However, the exact value of
ftip is sometimes difficult to estimate because of the
jagged nature and somewhat irregular shapes of the
Fast PTCs. Se�k and Moore (2011) proposed several
methods for estimating ftip, which can lead to somewhat
different values. Here, the reference values of fe were
calculated by interpolating the 4-point moving averages
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of the Fast PTCs with splines, averaging the fitted levels
at each masker center frequency for the upward sweep
and the downward sweep, and taking the minimum of
the curve obtained in this way. The Fast PTCs for 7L,
8L, and 8R did not show clear minima, and for these
ears, the mean of the estimates of fe for the three Smart
DRT runs was taken as the reference. The Fast PTCs for
7L were very flat, with the downward sweep even being
slightly concave. The Fast PTCs for 8L and 8R showed
one or two reversals at the start for both the downward
and upward sweeps but reached the maximum masker
level immediately afterwards. Example Fast PTCs for 4L
and 5R are shown in Figure 3. Both PTCs were rather
flat, which is typical for ears with high values of OHCL.
The irregular nature of the PTCs limits the accuracy with
which ftip can be determined.

For each test ear, the values of fe obtained using each
run of the Smart DRT were divided by the reference
value of fe for that ear. The resultant relative values of
fe are shown in Figure 4. Results for the three runs of the
Smart DRT are indicated by circles, squares, and tri-
angles. Ideally, these values should lie close to 1. In prac-
tice, they fell in the range 0.83 to 1.49 with a geometric
mean of 1.06. However, the three Smart DRT estimates
for each ear generally fell close to one another (except
perhaps for 7L and 8L), indicating good internal consist-
ency of the Smart DRT procedure. The range of the
three Smart DRT estimates, expressed as the maximum
estimate divided by the minimum estimate, had a geo-
metric mean across ears of 1.08, and varied from 1.00 for
2L and 2R to 1.35 for 8L.

Two further estimates of ftip were derived from the
Fast PTC data (neither of which could be used with
7L, 8L, and 8R). For one, a 4-point moving average
was obtained separately for the upward sweep and the
downward sweep, the frequency at the minimum of each
curve was found, and the two frequencies were averaged.
The resulting estimates, expressed relative to the refer-
ence values of fe, are shown as crosses in Figure 4. For
the other additional estimate, a quadratic function was
fitted separately to the data for the upward sweep and
the downward sweep, the frequency at the minimum of
each function was found, and the two frequencies were
averaged. The resulting relative estimates are shown as �
symbols in Figure 4. If the estimates of ftip were consist-
ent across methods, the crosses and � symbols would all
fall close to 1. In fact, they fell between about 0.8 and
1.4. The variability across the three estimates of ftip
derived from the Fast PTC data was generally larger
than the variability across the three estimates of fe
obtained from the three runs of the Smart DRT, suggest-
ing that at least part of the deviation of the relative
values from 1 for the latter arose from errors in the ref-
erence values. The range of the three Fast PTC estimates,
expressed as the maximum estimate divided by the min-
imum estimate, had a geometric mean across ears of
1.19, and varied from 1.05 for 6L to 1.39 for 2L.

Some of the subjects in the present study had been
extensively tested for DRs by Salorio-Corbetto et al.
(2017). They performed a full TEN(HL) test and
obtained Fast PTCs using several signal levels and fre-
quencies. The estimates of fe obtained by them (plotted
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relative to the reference values estimated here) are shown
as asterisks in Figure 4. As noted earlier, in the present
study, no estimates of ftip could be obtained for ears 7L,
8L, and 8R. Salorio-Corbetto et al. (2017) reported that
more runs than usual were needed for these ears to give
stable results, but they were able to obtain Fast PTCs
with clear minima. For ears 1R, 2R, 6L, 7R, and 8L, the
estimates of ftip obtained by Salorio-Corbetto et al. fell
close to those obtained using the Smart DRT. However,
for ears 1L, 7L, and 8R, there were marked deviations.
For 1L and 7L, the estimates of Salorio-Corbetto et al.
fell above those obtained here. This may have happened
because they tested these ears 4 to 5 years ago, and the
values of fe may have shifted downwards over time.

Sixty catch trials (3 runs� 20 catch trials) were con-
ducted for each ear. For 12 ears, the false positive rate
was 3.3% or smaller, being 1.0% on average. Ears 5R
and 1R gave false positive rates of 10% and 17%,
respectively. Both subjects reported having tinnitus in
their right ears.

It is useful to be able to check the consistency of the
performance of a subject while the data are being col-
lected. This can allow the test duration to be adjusted
individually in order to achieve a predetermined level of
accuracy. A possible method for doing this is to estimate
the steepness of the psychometric function relating the
proportion of ‘‘yes’’ responses to the sound level of the
masker. This was done by expressing all masker levels
relative to the PTC that was calculated from the most

likely combination of fe and OHCL( fe). Having removed
the effect of frequency in this way, the hyperparameters
of a Gaussian Process with a linear kernel in level and
Gaussian CDF likelihood function were optimized (see
Rasmussen & Williams, 2006). Positive responses for
levels higher than 3 standard deviations above the nor-
malized masker level and negative responses for levels
lower than 3 standard deviations below the normalized
masker level were considered as outliers and discarded
before the optimization was repeated iteratively.
Figure 5 shows the resulting estimates of the standard
deviation of the psychometric function for each subject,
with the bars depicting the median for the three runs and
the error bars depicting the range. White bars show esti-
mates after 30 trials, and gray bars show estimates after
all 100 trials. In some cases, the estimates after 30 trials
were much lower than after all 100 trials or even close to
zero. This may happen when the estimated PTC perfectly
separates the audible and inaudible trials, as was the case
for ears 3L and 3R. For the majority of ears, the esti-
mated standard deviation was between 2 and 4 dB and
thus close to the 3 dB value that was used in the active-
learning process. However, the standard deviations for
ears 1R, 8L, and 8R were markedly higher.

An important question for active-learning tests is the
value of N needed to yield a reliable result. Figure 6
shows three measures of the accuracy of the fit as a func-
tion of N. The left panel shows the negative (natural) log
probability of predicting the responses for all 100 trials
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correctly from the responses for the first N trials, divided
by 100. The lower this number, the more accurate are the
predictions. The middle panel shows the ratio between
the most likely value of fe after N trials and the most
likely value after 100 trials, or its reciprocal if the ratio
was smaller than 1. The right panel shows the mutual
information that was queried in the Nth trial, which
declines from a theoretical maximum of 1 bit to 0.1 bit
after about 25 trials, before reaching an asymptote of 0.
For all panels, solid lines show the means across ears and
runs, and gray areas show �1 standard deviation. All
measures are close to asymptotic values after about 50
trials. The mutual information (right panel) is available
during a run, that is, it can be calculated with the

knowledge that is available after the Nth trial. It is
highly correlated with the mean negative log probability,
r(98)¼ 0.88, p< .001, and the ratio of the estimate of fe
to the true value, r(98)¼ 0.84, p< .001. Hence, the
mutual information could be used to decide when fe
was determined with sufficient precision for a run to be
terminated.

Discussion

As shown in the bottom-right panel of Figure 1, a basal
DR could start at a frequency where the audiometric
threshold was only slightly higher than normal. More
generally, the audiometric threshold at fe varied widely
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across ears. Also, the slope of the audiogram for frequen-
cies close to fe varied widely across test ears. This is con-
sistent with previous results showing that the presence
and edge frequency of a DR cannot be diagnosed reli-
ably from the audiogram (Aazh & Moore, 2007; Vinay &
Moore, 2007).

The open symbols in Figure 2 show that the estimates
of fe from the three Smart DRT runs were close to each
other, that is, the active-learning procedure led to repro-
ducible results. This was the case even when the Fast
PTCs failed to provide a clear result, although for the
subjects for whom this was the case the Smart DRT
results varied more across runs than for the other sub-
jects. The estimates of fe obtained using the Smart DRT
were close to the estimates based on ‘‘successful’’ Fast
PTCs, and within the range of plausible values of ftip
given the difficulty of estimating ftip from the irregular
PTCs. The similarity of the estimates of fe for the Smart
DRT and the Fast PTC methods suggests that the values
estimated using the Smart DRT are close to the ‘‘true’’
values.

The estimates of fe obtained by Salorio-Corbetto et al.
(2017) on the basis of several Fast PTCs agreed with two
of the three Smart DRT estimates in cases where the
present Fast PTCs were not successful. Altogether, the
results of the Smart DRT were consistent with estimates
obtained using other procedures in 13 of 14 cases. For
the remaining ear (8R), the Smart DRT runs indicated a
need to be cautious in interpreting the results: Responses
to the initial grid were markedly different across runs
(not shown in the results section), suggesting that he
was not consistent in his criterion for making a decision.

In the Smart DRT, the values of fmask and Lmask for
the next trial were chosen to provide information about
fe and OHCL( fe) but with some specific constraints to
ensure exploration of a reasonable range of the param-
eter space. In theory, this is somewhat less efficient than
choosing the parameters that provide the maximum
information, but it prevented the model-based approach
from becoming ‘‘stuck’’ in an inappropriate region of the
parameter space and it ensured some randomness in
the stimulus parameters for successive trials, preventing
the model from overestimating the precision of its esti-
mates of the model parameters.

The consistency of the performance of the subjects
was determined using two measures, the false alarm
rate and the steepness of the psychometric function.
The two subjects who produced false positives at a rate
of 10% or more both reported having tinnitus, and this
may have contributed to their relatively high false-posi-
tive rates, if the pitch of their tinnitus was close to that of
the signal (see also Lentz, Walker, Short, & Skinner,
2017). For the other subjects, the false alarm rate of
1% on average was exactly the fixed value that was
applied in Equation 1. Thus, the active-learning

procedure used reasonable assumptions for most sub-
jects but was overconfident for the two outliers. In prac-
tice, it is difficult to adjust the false alarm rate to the
value appropriate for an individual, since many trials
are needed to achieve a reasonable estimate.
Nevertheless interleaved catch trials can be used as a
check to be evaluated at the end of a test.

For 11 of the 14 ears, the standard deviation of the
Gaussian CDF used to estimate the psychometric func-
tion was reasonably close to the value of 3 dB that was
assumed in Equation 1 (mean: 3.3 dB, range: 1.9–5.8 dB).
However, the standard deviation of the psychometric
function was considerably higher, at about 10dB, for
1R, 8L, and 8R. The high value for 1R may have been
a consequence of tinnitus. Nonetheless the final estimate
of fe for 1R was close to that obtained from the Fast PTCs
and that obtained by Salorio-Corbetto et al. (2017). This
suggests that the Smart DRT worked for him, but more
trials were needed than for the other subjects to obtain the
same accuracy. In order for the estimate of fe to fall and
stay within 0.3 Cams of the final estimate, 63, 50, and 45
trials were needed in his three runs, compared with the
average of 33 trials. For 8L and 8R, the relatively flat
psychometric functions may reflect his difficulty in distin-
guishing the tone from the noise. Some subjects with DRs
hear a tone whose frequency falls within a DR as being
noise-like (Huss & Moore, 2005). Cognitive factors are
unlikely to account for the relatively flat psychometric
functions, because his psychometric function for the
audiogram was steeper than normal, showing a near-per-
fect separability of yes and no responses.

Ideally, the steepness of the psychometric function
should be set to the individual value in Equation 1.
However, its optimization is not an explicit aim of the
Smart DRT and is not required to obtain a reasonable
result. During early trials, perfect separability between
yes and no responses may be achieved due to the data
being sparsely spaced on the ( fmask, Lmask) initial grid.
After 30 trials, this was the case for both ears of Subject 3
(3L and 3R), and at least one run for 6L (see Figure 5).
Underestimation of the standard deviation of the psy-
chometric function leads to overconfidence in the current
estimates of fe and OHCL( fe). This can have two disad-
vantages. First, it may cause the procedure to stick to
wrong estimates by preventing it from querying param-
eter values around the true values. Second, overconfi-
dence leads to an underestimation of variance or
uncertainty, which may be used as a criterion for stop-
ping the test. A suitable strategy for optimizing the steep-
ness of the psychometric function would be as follows.
For the first few active-learning trials, set the standard
deviation of the CDF to 3 dB. Afterwards, set the stand-
ard deviation to the estimated value with the restriction
that it is at least 2 dB. If it is bigger than 20 dB, the run
should be restarted.
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The number of trials should be chosen to provide an
estimate that is accurate enough for fitting a hearing aid.
It has been recommended that amplification should not
be provided for frequencies higher than about 1.7fe
(Baer, Moore, & Kluk, 2002). A precision of 0.3 Cams
corresponds to a factor of less than 1.05 in frequency for
frequencies between 500 and 4000Hz. When this preci-
sion is reached, the cutoff frequency used for fitting
would be between 1.6 and 1.8fe, which is accurate
enough for an initial fitting. A ratio of about 1.05 or
better was reached on average after about 30 trials
(Figure 6, middle). The ratio was below 1.05 after 50
trials even for the worst cases. Using more than this
number of trials did not increase the predictability of
the entire data set (Figure 6, left). Fifty trials of the
Smart DRT plus some catch trials and one run of the
Quick TEN(HL) test were typically done in 5 to 8min.
The test could be even faster for some subjects if the
stopping criterion was based on the information
obtained in the next trial (Figure 6, right) or the uncer-
tainty about fe (see Figure 2). If this approach is adopted,
the individual consistency of responses (Figure 5) should
be taken into account, since it directly affects the uncer-
tainty about fe.

Conclusions

The present study proposed and evaluated an active-
learning method, Smart DRT, for quickly detecting a
basal DR and estimating its edge frequency, fe. The dur-
ation required for testing one ear was 5 to 8min. The
estimates of fe were close to those obtained using other
methods for 13 of 14 test ears, which is a slightly higher
success rate than for Fast PTCs when the same amount
of time was spent. The Smart DRT may be useful when
fitting a hearing aid, providing accurate estimates of fe in
a short time.
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