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Abstract: Superatoms are promising materials for their potential in elemental substitution and as
new building blocks. Thus far, various synthesis methods of thiol-protected Au clusters including
an Au25 superatom have been investigated. However, previously reported methods were mainly
depending on the thermodynamic stability of the aimed clusters. In this report, a synthesis method
for thiol-protected Au clusters using a dendrimers template is proposed. In this method, the number
of Au atoms was controlled by the stepwise complexation feature of a phenylazomethine dendrimer.
Therefore, synthesis speed was increased compared with the case without the dendrimer template.
Hybridization for the Au25 superatoms was also achieved using the complexation control of metals.
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1. Introduction

Some clusters consisting of a few to several dozen metal atoms can provide discrete
atom-like electron states according to DFT calculations with the Jellium model [1,2]. Metal
clusters with this property, called “superatoms,” are attracting attention. Among them, a
halogen superatom of Al13

− [3] and an alkali-metal superatom of Cu8
−/Ag8

− [4] are well-
known examples. In the latter case, electronegativity lower than the alkali metal elements
(Li, Na, K, Rb, or Cs) is proposed, demonstrating a super-alkali superatom. Therefore, the
development of synthesis methods for such superatoms has been a significant target of
recent research.

Among these superatoms, Au clusters have been focused on as useful candidates
for superatoms that can be synthesized not only in the gas phase but also in the so-
lution phase [5,6]. Since the synthesis of thiol-protected Au clusters was reported by
Brust and Schiffrin et al. [5], lots of research [6–29] has investigated them. Especially,
Au25SR18 [30,31], Au38SR24 [6,32,33] and Au144SR60 [6,34,35] (R: hydrocarbons) are studied
as superatomic clusters. They were purified and characterized by single crystal analy-
sis [30,31]. In addition, the introduction of different elements, such as Pd, Pt, Cu, Ag,
Cd, and Hg [23,24,27,28,36–39] into Au clusters has been reported. The mixing has been
carried out by metal-exchanging. However, the synthesis of these materials often requires
low-temperature conditions [30,40] or an etching reaction for several days [41] to increase
the synthetic yields.

Dendrimer templates are attractive for the solution phase synthesis of metal clusters
or particles since their sizes can be controlled in the state of the precursors [42–58]. One
of the most famous dendrimers is the polyamidoamine (PAMAM) dendrimer, which is
limited in accuracy for metal assembly due to its random complexation fashion. In contrast,
phenylazomethine dendrimers enable atomicity control for cluster synthesis [59–69]. Some
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clusters prepared by this method are found to exhibit high catalytic activities depending
on the number of atoms. In addition, the specific high activity of a Pt17 catalyst is also
reported [70]. Superatom synthesis using this phenylazomethine dendrimer has also been
reported. The synthesis and properties of Al13

− [71] and Ga13
− [72] in the dendrimer were

also demonstrated. In this study, we investigated dendrimer-templating synthesis for the
thiol-protected Au25 superatom. As the template, a phenylazomethine dendrimer with a
tetraphenyl methane core part (TPM G4) was used. Due to the metal-complexation feature
of the TPM G4, one atom blending was also demonstrated.

2. Result and Discussion
2.1. Controlled Assembly of AuCl3 on TPM G4

The TPM G4 has tetraphenylmethane in the core and a fourth-generation imine skele-
ton in the branches, with higher electron density in the inner layers (Figure S1). In order to
use the TPM G4 as a precise template, metal salts and the imine parts of the TPM G4 are
required to be connected by a 1:1 ratio. Based on the previous reports [65–69], the mixed
solution of chloroform:acetonitrile = 1:1 was used as a solvent for the metal assembly. The
stepwise coordination fashion between the dendrimer and AuCl3 was confirmed by UV-Vis
titration (Figure S2). Isosbestic points, according to the number of imines at each layer of
the TPM G4, were observed during the addition of the acetonitrile solution of AuCl3. The
result indicates its 1:1 complexation. The observed isosbestic points at 336.5 nm (0~4 equiv.),
344.0 nm (4~12 equiv.), 332.0 nm (12~28 equiv.) and 328.0 nm (28~60 equiv.) indicate the
stepwise coordination of the inner layer imines as shown in the Figure S2. These results
indicate that the TPM G4 can be used as an accurate template for Au clusters.

The Au25PET18 superatom (PET: 2-phenylethanethiol: SCH2CH2Ph) was synthesized
by adding thiol-ligand solution at the same time as the reduction of AuCl3 in the TPM G4
(Figure 1). Though this method is similar to our previously reported methods [62,67,70,72],
it is different due to the addition of the thiol ligands to protect the surface of Au clusters.
In addition, the solvent of NaBH4 was changed from methanol to ice-cold water. When
NaBH4/methanol solution was used, Au25PET18 was not obtained. After the reactions,
the solution was stirred for 3 h. Then the solvent was removed using an evaporator after
filtration. The obtained dark-brown solid was purified by washing with a water/methanol
mixture, and the Au clusters were extracted with acetonitrile. The obtained solution
was subjected to MALDI-TOF-MS measurement in linear mode (Figure 2a). As a result,
the peak corresponding to Au25PET18 (m/z = 7390.73) was detected with the fragment
peak of [Au21PET14]+ (m/z = 6057.25) [73]. The calculated exact mass [74] of Au25PET18
(m/z = 7391.93) confirms the formation of the aimed superatom. UV-vis spectra of the
synthesized Au25PET18 (Figure 2b) showed broad absorption from 800 nm to 600 nm
and 450 nm indicating the formation of Au25PET18 [40,75–77]. The expected peak around
400 nm was unclear. This may be due to the overlap of the dendrimer absorption peaks
with the peak top around 320 nm.
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Au25PET18 sample.

Size distribution and elemental analysis of the synthesized clusters were performed by
STEM/EDS measurements (Figures 2c and S3). The estimated size was 1.2 ± 0.3 nm, close
to the longest interatomic distance of 11.99 Å observed by single-crystal analysis reported in
the previous paper [31]. EDS mapping also indicates that Au and S are present in the same
particle. XPS measurement was conducted with tetraoctylammonium bromide (TOAB)
which was added to the solution before casting on highly oriented pyrolytic graphene
(HOPG) (Figure S4). The observed peaks of Au 4f, which show higher binding energy than
that of bulk Au, suggested the successful formation of the Au25 superatom [29].

2.2. Comparison with Existing Methods

In the previous cases, thiol protected Au clusters were generally synthesized by
reducing multimeric Au-thiol complexes [30,40,41]. In these methods, only the most stable
species were obtained by the etching process after forming large Au clusters. In contrast,
the Au cluster was synthesized directly through the collecting process of AuCl3 to the
dendrimer in this method (Figure 1). Therefore, the cluster formation speed is different
from the previous cases [41]. MALDI-TOF-MS spectra confirmed the direct synthesis
process (Figures 3a and S5). The intense peak corresponding to Au25PET18 (m/z = 7390.73)
was generated within 15 min without peaks of large Au clusters. This result suggests that
the assembly process on the TPM G4 is directly responsible for the Au25 nucleation. After
one day of reaction, the main peak was still detectable; however, the peaks of degraded
clusters also appeared. Therefore, it was appropriate to control the reaction time within a
few hours of synthesis using the TPM G4.



Molecules 2022, 27, 3398 4 of 10Molecules 2022, 27, x FOR PEER REVIEW 4 of 10 
 

 

 
Figure 3. MALDI-TOF-MS spectra during Au25PET18 synthesis (a) with TPM G4 and (b) without 
TPM G4. ▼ are the peaks of Au25PET18, and * is the fragment peaks. 

The same synthetic procedure was carried out without the dendrimer (Figure S6). 
This method also shows the formation of Au25PET18 after a reaction time of about 30 min 
(Figures 3b and S7). This reaction time is considered to be derived from the etching pro-
cess of the nanoparticles to the Au25 superatom by the ligands. 

These differences in the formation process can be seen in the appearance of the solu-
tions (Figure S8). When the dendrimer (TPM G4) was used, the color of the solution 
changed from red (0 min) [41] (the early stage of Au25PET18 synthesis) to brown (after 2 
min) (color of Au25PET18). The color was maintained for 12 h. On the other hand, in the 
case without the TPM G4, the solution turned black at 0 min immediately after the reduc-
tion and remained grayish at 15 min. After 11 h, the formation of the Au25PET18 was sug-
gested by the color of the solution; however, the solution contained a black precipitate, 
indicating the formation of large particles. In the case of the dendrimer (Figure 3a), several 
peaks with small intensity are also observed in the range of m/z = 3000–7500 at 15 min after 
reduction. These peaks are considered to be the small Au-thiol multimer and decomposed 
products of the TPM G4 (Figure S9). 

2.3. Synthesis of MAu24PET18 Using the Dendrimer TPM G4 as a Template 
The advantage of the TPM G4 includes metal blending ability. Here, we investigated 

the blending of metals using the TPM G4. In the case of previous methods, the introduc-
tion of other metals using the ligand effect was reported [20,24,27,28,36–39,78]. The blend-
ing of metals was conducted using the complexation process (Figure 4a). In this synthesis, 
one equivalent of Pd(CH3CN)4(BF4)2 and 24 equivalents of AuCl3 were coordinated to the 
dendrimer, and the thiol was added simultaneously with the reduction (Figure 4a). The 
formation of PdAu24PET18 was confirmed in the MALDI-TOF-MS spectrum (Figure 4b). 
The structure of the PdAu24PET18 was previously proposed as a Pd encapsulated structure 
(Figure S10). The MALDI-TOF-MS spectra show the formation of not only PdAu24PET18 
but also Au25PET18. In fact, Au25PET18 was observed as a strong peak, and the intensity of 

Figure 3. MALDI-TOF-MS spectra during Au25PET18 synthesis (a) with TPM G4 and (b) without
TPM G4. H are the peaks of Au25PET18, and * is the fragment peaks.

The same synthetic procedure was carried out without the dendrimer (Figure S6).
This method also shows the formation of Au25PET18 after a reaction time of about 30 min
(Figures 3b and S7). This reaction time is considered to be derived from the etching process
of the nanoparticles to the Au25 superatom by the ligands.

These differences in the formation process can be seen in the appearance of the
solutions (Figure S8). When the dendrimer (TPM G4) was used, the color of the solution
changed from red (0 min) [41] (the early stage of Au25PET18 synthesis) to brown (after
2 min) (color of Au25PET18). The color was maintained for 12 h. On the other hand, in
the case without the TPM G4, the solution turned black at 0 min immediately after the
reduction and remained grayish at 15 min. After 11 h, the formation of the Au25PET18 was
suggested by the color of the solution; however, the solution contained a black precipitate,
indicating the formation of large particles. In the case of the dendrimer (Figure 3a), several
peaks with small intensity are also observed in the range of m/z = 3000–7500 at 15 min after
reduction. These peaks are considered to be the small Au-thiol multimer and decomposed
products of the TPM G4 (Figure S9).

2.3. Synthesis of MAu24PET18 Using the Dendrimer TPM G4 as a Template

The advantage of the TPM G4 includes metal blending ability. Here, we investigated
the blending of metals using the TPM G4. In the case of previous methods, the introduction
of other metals using the ligand effect was reported [20,24,27,28,36–39,78]. The blending
of metals was conducted using the complexation process (Figure 4a). In this synthesis,
one equivalent of Pd(CH3CN)4(BF4)2 and 24 equivalents of AuCl3 were coordinated to the
dendrimer, and the thiol was added simultaneously with the reduction (Figure 4a). The
formation of PdAu24PET18 was confirmed in the MALDI-TOF-MS spectrum (Figure 4b).
The structure of the PdAu24PET18 was previously proposed as a Pd encapsulated structure
(Figure S10). The MALDI-TOF-MS spectra show the formation of not only PdAu24PET18
but also Au25PET18. In fact, Au25PET18 was observed as a strong peak, and the intensity
of PdAu24PET18 was about 1/13 of that of Au25PET18 This result suggests the partial
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reconstruction of the stable Au25PET18 structure. STEM/EDS analysis of the prepared
particles confirmed the presence of Pd and Au on the same particle (Figure S11).
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and (b) MALDI-TOF-MS spectrum of PdAu24PET18.

In the case of Pt introduction, the presence of Pt and Au on the same particle was
confirmed by STEM/EDS analysis. However, the MALDI-TOF-MS spectra of the sample
are not useful, unfortunately (Figure S12c). The observed peak at m/z = 7392 is close to
that of Au25PET18; therefore, we could not determine the formation of PtAu24PET18 in the
MS spectra. In this case, the comparison of the MS spectra is difficult since the masses of
PtAu24PET18 (m/z = 7390.93) and Au25PET18 (m/z = 7391.93) are very close (Figure S14).

3. Materials and Methods
3.1. Chemicals

The TPM G4 (synthesized by the method [59] reported previously by our group),
gold(III) chloride (AuCl3, Sigma-Aldrich Japan, 99%), platinum(IV) chloride (PtBr4, Thermo
Scientific, 99.99+% (metals basis), Pt 57% min), tetrakis(acetonitrile)palladium(II) tetrafluo-
roborate (Pd(CH3CN)4(BF4)2, Sigma-Aldrich Japan), 2-phenylethanethiol (HSC2H4C6H5,
Sigma-Aldrich Japan, 98%), sodium borohydride (NaBH4, Kanto Chemical, >92.0% (T)),
chloroform (CHCl3, Fujifilm, for Organic Synthesis, 99.0+% (Capillary GC)), acetonitrile
(CH3CN, Kanto Chemical, Organics, >99.5% (GC)), toluene (C6H5CH3, Kanto Chem-
ical, Organics, >99.5% (GC)), ultrapure water (Merck Millipore, generated with Milli-
Q Element A10, conductivity 18.2 MΩ cm), trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-
propenylidene]malononitrile (DCTB, TCI, >98.0% (GC)) and Tetraoctylammonium bromide
([CH3(CH2)7]4N(Br), TOAB, Sigma-Aldrich Japan, 98%) were used.

3.2. Assembly Accumulation of AuCl3 on Dendrimer TPM G4

Solution preparation was performed in a glove box under a nitrogen atmosphere. First,
AuCl3 (22.7 mg, 74.7 µmol) was dissolved in acetonitrile to prepare a 2.99 mM solution.
The dendrimer TPM G4 (0.380 mg, 34.4 nmol) was dissolved in chloroform and acetonitrile
was added to prepare a 3.43 µM chloroform:acetonitrile = 1:1 solution. The complexation
of AuCl3 and the TPM G4 was monitored by a UV-Vis spectrometer.

3.3. Synthesis of Au25PET18 Using Dendrimers

AuCl3 acetonitrile solution (10.4 mM, 25.0 mL) and the TPM G4 chloroform:
acetonitrile = 1:1 solution (44.9 µM, 10.0mL) were prepared in a glove box under a nitrogen
atmosphere. The TPM G4 solution was stirred for 1 h in the air under light-shielding condi-
tions after the addition of 25 equivalents of the metal salt. After 1 h, ice-cold water with
NaBH4 (26.6 mg, 0.704 mmol, 1500 equivalents of the metal salt) and 2-phenylethanethiol
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(10 µL, 74.5 µmol) were added for reduction and thiol protection. The amount of PET
(Au:PET = 1:6) was determined based on a previous report [44]. The reaction was moni-
tored by MALDI-TOF-MS.

After the addition of the reducing agent, the organic layer of the reaction solution was
filtered. Then, the solution was concentrated using an evaporator. The obtained samples
were washed several times with water/methanol. For STEM measurements, 1 µL of the
sample solution (acetonitrile) was drop-casted onto a TEM grid (grid with carbon support
film Super Hi-Res Carbon SHR-C075 STEM Cu75P grid, Okenshoji Co., Ltd., Tokyo, Japan).
After the casting, the TEM grids were vacuum dried overnight. For XPS measurements,
TOAB was added to the sample solution at 1.2 equivalents of Au. The solution was cast
onto HOPG (490HP-AB HOPG SPI-3(ZYH) Grade 5 × 5 × 1 mm, Alliance Biosystems).

In this method, Au25PET18 can be synthesized by using a TPM G4 solution with
concentrations of 9.29 µM–3.04 mM.

3.4. Synthesis of MAu24PET18 (M = Pd, Pt) Using Dendrimers

AuCl3 (79.4 mg, 0.262 mmol) was dissolved in acetonitrile to prepare a solution of
10.5 mM; Pd(CH3CN)4(BF4)2 (15.4 mg, 34.7 µmol) was dissolved in acetonitrile to prepare a
solution of 3.47 mM; PtBr4 (18.8 mg, 36.4 µmol) was dissolved in acetonitrile to prepare a so-
lution of 3.65 mM. The dendrimer TPM G4 (10.3 mg, 930 µmol) was dissolved in chloroform,
and acetonitrile was added to prepare a 46.5 µM solution (chloroform:acetonitrile = 1:1).
One equivalent of the metal salt of Pd or Pt was added to the dendrimer solution un-
der atmospheric conditions and stirred for 5 min. Then, 24 equivalents of Au metal
salt were added, and the mixture was stirred for 1 h under a light shield. After 1 h,
ice-cold water containing NaBH4 (54.9 mg, 1.45 mmol) and 2-phenylethanethiol (90 µL,
671 µmol) were added simultaneously to the dendrimer complex solution. The amount of
2-phenylethanethiol was determined based on a previous report [44]. The reaction was
monitored by MALDI measurements.

3.5. Characterization

The UV-vis absorption spectra were obtained by Shimadzu UV-3150 and UV-3600
spectrometers. MALDI-TOF-MS spectra were obtained by Bruker microflex-YI, ultrafleX-
treme. DCTB was used as the matrix, and toluene or chloroform was used as the solvent
at a concentration of 20 mg/mL. The samples were mixed in 1:20 volume ratios. STEM
measurements were carried out by a JEOL JEM-ARM200F equipped with an EDS analyzer
(acceleration voltage: 80 kV). XPS measurements were carried out by ULVAC-PHI ESCA
1700R. The X-ray source was monochrome Al Kα (1486.7 eV). The neutralizer’s emission
current was 1 µA.

4. Conclusions

Dendrimer template synthesis of a Au25 superatom was developed with thiol protec-
tion. Unlike conventional synthetic methods, the conditions for synthesis are unique in
that they do not require special conditions (e.g., low temperature reaction, a reaction in two
separated aqueous and organic layers, or a long reaction time in the order of several days).
The reduction and thiol coordination are performed for AuCl3 in the TPM G4, resulting
in a short-time synthesis. The addition of different elements using this method was also
demonstrated by using Pd or Pt atoms.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27113398/s1, Figure S1. Schematic diagram of the
structure and coordination of the dendrimer (TPM G4) used in this study. Figure S2. (a) Coordi-
nation image of AuCl3 to TPM G4, (b) UV-Vis absorption spectra obtained by tightening of AuCl3
vs. TPM G4, (c) magnified view of UV-Vis absorption spectrum near the isoabsorption point and
(d) the change in absorbance at 287 nm. Figure S3. (a) STEM image, (b) STEM/EDS mapping image
and (c, d) EDS spectrum (yellow: whole image, gray: blank area) of Au25PET18 XPS spectrum of
Au25PET18 and Au wire. X-ray source is monochrome Al Kα (1486.7 eV). Neutralizer’s emission

https://www.mdpi.com/article/10.3390/molecules27113398/s1
https://www.mdpi.com/article/10.3390/molecules27113398/s1
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current is 1µA. Figure S5. MALDI-TOF-MS spectra after 2 h of the Au25PET18 synthesis reaction
with TPM G4. Figure S6. Synthetic procedure of Au25PET18 cluster not using TPM G4. Note:
main product is Au nanoparticle. The concentration of AuCl3 was the same as when synthesized
using TPM G4. In the presence of dendrimers, the equivalent of 25 equivalents of AuCl3 is 45 µM.
Figure S7. MALDI-TOF-MS spectra after 2 h of the Au25PET18 synthesis reaction without TPM G4.
Figure S8. Comparison during synthesis of Au25PET18 with and without TPM G4. A significant color
change is observed immediately after reduction. Figure S9. Image of the effect of dendrimer during
Au25PET18 synthesis and its main and byproducts. Figure S10. The image of the stable structures of
PdAu24PET18 (note: draw a figure with reference to the previous report [76]). Figure S11. (a) STEM
image, (b) STEM/EDS mapping image and (c) EDS spectrum (purple: whole image, gray: blank
area) of PdAu24PET18. Figure S12. (a) Synthetic scheme of thiol-protected Au clusters blended with
different elements (Pt), (b) the image of the possible structures of PtAu24PET18 (note: draw a figure
with reference to the previous report [20],), (c) MS spectrum of PtAu24SR18. Figure S13. (a) STEM
image, (b) STEM/EDS mapping image and (c,d) EDS spectrum (light blue: whole image, gray: blank
area) of PtAu24PET18. Figure S14. A comparison of the simulated values (light blue: PtAu24PET18
and yellow: Au25PET18) and the measured value of PtAu24PET18 (red).
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