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Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems,
obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and
motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin
dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has
suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to
discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms
of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.

1. Introduction

Obesity is the overaccumulation of fat which has aversive
effects on health. The World Health Organization (WHO)
defines overweight and obesity as body mass index (BMI)
≥ 25 and BMI ≥ 30, respectively [1]. Around the world,
obesity has become a worrying health and social issue,
threatening lives of thousands of people. According to the
WHO[1], over 1.9 billion adults (39% adults) were overweight
among which more than 600 million (13% adults) were
obese. Childhood obesity is also common that 42 million
children were overweight or obese in 2013 [1]. Considering
its high prevalence, it is pressing to study the pathogenesis,
manifestations, and prevention of obesity.

Obesity is related to a range of health-related problems,
such as diabetes, heart disease, hypertension, and cancer [2].
Compared to normal-weight individuals, obese individuals
have a reduced life expectancy [3]. Obese children show
greater cardiovascular risk factors and persistence of obesity
into their adulthood, which may be associated with higher

likelihood of premature mortality [4, 5]. In addition to health
problems, obesity is associated with poorer cognition and
motor control, and altered brain plasticity. In this review,
we first look into the behavioral manifestations of obese
individuals’ cognition and motor control capabilities. Next,
obesity-related changes in brain plasticity will be discussed.
Following this, the effects of physical exercise to combat
obesity and obesity-related deficits in cognition and motor
control will also be described. Finally, implications and future
research directions are raised.

2. Cognition

Overweight and obesity are usually related to poorer cogni-
tion across lifespan [6–8]; however, the association between
BMI and cognitive function is weaker in old age [9, 10], partly
due to inaccurate adiposity measurement in the aged people
[11]. Indirect evidence has shown an association between
western high fat diet and impaired cognitive functions [12].
Based on BMI data, individuals who are overweight or obese
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fall in the lowest quartile of global cognition, verbal fluency,
delayed recall, immediate logical memory, and intelligence
[13].

Other than BMI, other adiposity measures are also
related to cognitive performance and brain changes. Visceral
adiposity is inversely correlated with verbal memory and
attention. High visceral adiposity is associated with smaller
hippocampus and larger ventricular volume [14].There is also
a negative correlation between waist-to-hip ratio and hip-
pocampal volume and a positive correlation between waist-
to-hip ratio andwhitematter hyperintensities [15]. Compared
to BMI, central adiposity has a stronger association with the
risk of developing cognitive impairment and dementia in
women [16]. Hence, studies using BMI as the only indicator
of obesity may not be sensitive enough to capture obesity-
induced cognitive dysfunctions.

Neuroimaging studies demonstrate atrophy in the frontal
lobes, anterior cingulate gyrus, hippocampus, and thalamus
in older obese individuals [17]. BMI increase is associated
with lower metabolic activity in the prefrontal cortex and
cingulate gyrus, smaller gray matter volume in many brain
regions (particularly prefrontal cortex), and deficient white
matter integrity in the uncinated fasciculus which is a
structure connecting the frontal and temporal lobes [18–22].
Smaller gray matter volume in the left orbitofrontal region
is related to poorer executive performance in obese women
[21].

Childhood obesity is related to the reduced executive
function, attention, mental rotation, mathematics, and read-
ing achievement [23–25]. Obese adolescents have deficits in a
range of cognitive functions, such as attention and executive
functions [26, 27]. An animal study shows that high fat
diet induces similar morphometric and metabolic changes
in juvenile and adult mice; however, only early exposure to
high fat diet hurts relational memory flexibility and decreases
neurogenesis [28]. Thus, early exposure to high fat diet may
be particularly deleterious to cognition.

People with higher midlife BMI have lower global cog-
nition than their thinner counterparts [29] and midlife
obesity is related to the accelerated cognitive aging, but this
association is weaker in older adulthood [30]. Both age and
BMI contribute independently to decreased brain volume
in middle and older adulthood [31]. It is more likely for an
older adult to have lower cognitive abilities if he/she was
overweight or obese during middle age [32, 33]. Midlife
obesity is related to an increased pace of deterioration in
executive functions and an increase in waist-to-hip ratio
is associated with substantial reduction in total brain vol-
ume [34]. Lower BMI and waist circumference and higher
fat-free mass are associated with slower cognitive decline
[35]. Midlife overweight/obesity, particularly with metabolic
abnormality, is associated with higher dementia risk in older
adulthood [33, 36–40]. Moreover, high midlife BMI is related
to neuron and myelin abnormalities [41]. Hence, midlife is
a critical period in which the overweight/obese status can
predict one’s cognitive functions and brain health in later life
[42].

3. Motor Control

Besides cognition, obesity also affects motor control capa-
bilities, degrading daily functions and health [43]. Children
who are obese or overweight are poorer in gross and fine
motor control and have delayed motor development [44–
50]. Obese boys have poorer motor skills and a reduced
activity of daily living [51]. Obese girls of 6th and 7th grades
participate in less physical activity and have lower enjoyment
of physical activity [52]. Children with high BMI have lower
level of run which is a fundamental motor skill based on
which complex motor skills are learned [53]. Cliff et al. [54]
observe that the prevalence of mastery of all fundamental
motor skills is lower in overweight/obese children, especially
for run, slide, hop, dribble, and kick. In addition to BMI, waist
circumference is also related to children’s and adolescents’
ability to perform fundamental motor skills [55]. There is
an inverse relationship of BMI with fine motor precision,
balance, running speed and agility, and strength in the 1st
graders [56]. Obese children also have difficulty in postural
coordination and a heightened dependency on vision during
locomotion which is rather automatic in nonobese children
[57, 58].

Adiposity is related to muscle quality ratio that is associ-
atedwithmotor conduction velocity and finger tapping speed
[59]. Obesity is related to greater fluctuation in handgrip
force production [60]. Subcutaneous fatness can account for
a significant variance of health-related andmotor fitness [61].
Excessive fat mass is associated with poorer posture and
walking [62]. In middle and older adults, a combination of
high BMI (or waist circumference) and high blood pressure
is related to lower motor speed and manual dexterity [63].
During postural control, obese individuals require greater
attention resources to maintain balance during unipedal
stance [64]; this implicates that obese people consume atten-
tion resources to compensate for their motor deficits.

4. Obesity-Related Changes in Brain Plasticity

A number of factors may mediate obesity’s effects on cogni-
tion and motor behaviors. For example, obesity may affect
brain structure, leptin and insulin dysregulation, oxidative
stress, cerebrovascular function, blood-brain barrier, and
inflammation [11, 65–71]. Some also suggest that obesity-
related changes in metabolism interact with age to impair
brain functions [72].

In terms of brain structure, obese individuals have lower
cortical thickness in the left superior frontal and right medial
orbitofrontal cortex. The volumes of ventral diencephalon
and brainstem are also reduced in obese people [73]. There
is also a negative relationship between neuronal injury and
gray matter density in hippocampus and cerebellum in
overweight and obese individuals [74]. It is suggested that the
medial orbitofrontal cortex, hippocampus, and cerebellum
are involved in reward-based learning, memory, and motor
control and learning [75–77]; structural alterations in these
regionsmay be associatedwith deficits in cognitive andmotor
domains. Hitherto, the mechanisms underlying obesity’s
effects on brain structure are not clear.
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High fat diet increases oxidative stress and inflammatory
signaling in the brain [78]. Diet-induced obesity promotes
reactive oxygen species in the brain which is associated with
both bodyweight and adiposity [79, 80]. In children, intake of
saturated fatty acids impairs both relational and itemmemory
[81]. Occurrence of 15-week obesity during childhood can
induce permanent epigenetic changes in rat’s brain [82]. In
rats, triglycerides diminish the passage of insulin-like growth
factors (IGFs) into the brain through cerebrospinal fluid,
impair hippocampal long-term potentiation, and impede
leptin transportation across the blood-brain barrier [83–85].
Juvenile exposure to high fat diet impairs long-term spatial
memory, but not short-term memory, suggesting a selective
impairment of consolidation which is likely contributed
by increased proinflammatory cytokine expression in the
hippocampus [86]. Moreover, consumption of western diet is
thought to degrade blood-brain barrier, which consequently
damages hippocampus and leads to dementia [87]. Relative to
those having normal diet, mice consuming high fat diet for
17 days develop insulin resistance in cerebral cortex tissues,
degraded synaptic integrity, and poorer spatial memory [88].

Leptin is a cytokine and satiety hormone helping regulate
appetite and energy expenditure. It can cross the blood-
brain barrier and binds to presynaptic GABAergic neurons
to produce its effects [89, 90]. Leptin production is increased
in obesity [91]. As leptin receptors are widespread in the brain
(e.g., throughout the cortex and the hippocampus), leptin can
modulate memory processes [92]. Obese mice with impaired
leptin signaling have deficits of hippocampal-dependent
memory [93] and increased basal hippocampal inflammation
[94, 95]. Leptin is related to neurogenesis, axonal growth, and
synaptogenesis in addition to hypothalamic functions [96–
98]. For hippocampal neurons, leptin plays a role in long-
term potentiation and depression and thus is important for
synaptic plasticity [92, 99, 100]. Compared to those with
low leptin level, the elderly with high leptin level show less
cognitive decline during aging [101]. High leptin level in
individuals with small waist circumference is related to less
cognitive decline over 10 years [102]. The presence of leptin
may decrease the production of amyloid and speed up the
removal of 𝛽-amyloid [103]. Older adults with higher leptin
level are at a lower risk of developing dementia [104]. Obese
individuals usually develop leptin resistance [105] which
results in an increase in food intake and alteration of energy
expenditure [90].

The circulating levels of insulin and signaling pathway are
altered in obesity; this interacts with inflammatory processes
to modulate cognition and behaviors [106]. Insulin plays a
role in modulating hippocampal synaptic plasticity [107].
As insulin receptors are widespread in hippocampal and
cortical brain structures, insulin signaling can contribute
to the formation of declarative memory [108]. Insulin con-
centrations vary with adiposity and there is a negative
relationship between the amount of visceral fat and insulin
sensitivity [109]. Insulin resistance can result from high
fat consumption or obesity [110, 111]. Dysfunctional insulin
signaling can induce inflammation and promote 𝛽-amyloid
and tau pathology, contributing to neurodegeneration [112,
113]. Insulin resistance canmediate cognitive impairment and

neurodegeneration as insulin and IGFs can regulate neuronal
survival, metabolism, and brain plasticity [114, 115]. During
insulin resistance, there is a failure of cells to metabolize
glucose, which consequently triggers an increase of insulin
level. Insulin signaling is related to tau phosphorylation,
an early pathology of Alzheimer’s disease [116, 117]; this is
complementary to the fact that there are a large number of
insulin-sensitive glucose transporters in the medial temporal
lobe [118]. Thus, insulin dysregulation in the obese people
likely confers a greater risk of dementia to them.

The adipose tissue produces many substances for
metabolism (adipokines, such as BDNF) and inflammation
(cytokines, such as leptin). Many cytokines, such as
interleukin-1, produced by the adipose tissue can cross the
blood-brain barrier and affect cognitive functions through
neuroinflammation [95, 119]. Adiponectin is involved in
regulating glucose level and fatty acid breakdown. Similar
to leptin, it exerts its effects in the brain to bring about
weight reduction [120]. Its level is negatively associated
with adiposity and can protect hippocampal cells [119].
Reduced hippocampal adiponectin levels are observed in
aging animals, independent of high fat diet intake [121].Thus,
adiponectin is important for neurodegeneration prevention.

Neurotrophins, such as IGF-1 and BDNF, can mediate
obesity’s effects on cognition and behaviors. IGF-1 is mainly
produced in liver and binds to the IGF-1 or insulin receptors
to exert its effects to stimulate cell growth and proliferation
and promote 𝛽-amyloid clearance in the brain [122]. Obese
individuals usually show IGF-1 resistance, degrading their
capability to prevent 𝛽-amyloid deposition and neurodegen-
eration [114, 123]. Besides, BDNF can bind tomany receptors,
such as TrkB and LNGF receptors, to support neuronal sur-
vival and stimulate neurogenesis and synaptogenesis [124–
126]. Cardiometabolic diseases are usually associated with
low BDNF [127]. BDNF promotes neuronal differentiation
and survival, neurogenesis, and brain plasticity and is thus
particularly crucial for learning and memory [128]. High fat
diet reduces BDNF level in the hippocampus [129], and the
impaired hippocampal synaptic plasticity and cognition are
possibly through BDNF’s effects on dendritic spines [130].
Diet-induced obesity reduces hippocampal expression of
BDNF and presynaptic synaptophysin, which are related to
an impairment of spatial learning in mice [131].

Although mounting evidence shows that obesity is asso-
ciated with structural and functional brain changes, the
causal link between them requires further investigations. In
contrast, the causal link between diet and brain changes is
much clearer. The composition of gut microbiota appears to
be causally related to obesity [132–134], playing a significant
role in body weigh regulation since birth [135, 136]. Gut
microbiota plays a key role in childhood obesity and brain
development [137, 138]. A comparison of germ-free mice
and conventionally reared mice has demonstrated that germ-
free mice are leaner and more resistant to diet-induced
obesity [139]. Obese and nonobese individuals have different
diversity and composition of gut microbiota [140, 141]. As
gut microbiota controls energy extraction and storage in the
body, significant changes in gut microbiota can result in
obesity and insulin resistance [139, 140, 142].
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It has been suggested that diet can influence gut micro-
biota which in turn impacts the brain and behaviors through
neural, hormonal, immune, and metabolic pathways [143,
144]. Transplantation of gutmicrobiota of diet-induced obese
mice to leanmice is sufficient to bring about neurobehavioral
changes through increasing neuroinflammation and disrupt-
ing cerebrovascular homeostasis [145, 146]. Mice consuming
high energy diet containing higher percentage ofClostridiales
and lower expression of Bacteroidales have poorer cognitive
flexibility [147]. In humans, the Firmicutes/Bacteroidetes ratio
is positively associated with BMI [148]. Gut microbiota can
modulate a range of neurotrophins, such as BDNF and
synaptophysin, to affect neural plasticity [149, 150]. Thus,
diet changes gut microbiota which influences neurophysiol-
ogy and neurotrophins, eventually impacting cognition and
behaviors.

Previous results have shown that obesity-related brain
plasticity alteration is a multifaceted issue, which can inflict
permanent harm to individuals in their early ages. Thus, it
would be optimal to combat obesity during childhood.

5. Exercise Improves Brain Functions

Exercise can improve physical and cognitive performance,
and quality of life in the elderly [151–155]. In humans,
those who are highly fit or aerobically trained have greater
prefrontal and parietal activations for spatial selection and
inhibitory functioning [156]. There is a positive relation-
ship between aerobic fitness and spatial memory which is
mediated by hippocampus volume [157]. Aerobic training
can increase hippocampal volume of the elderly (with or
without mild cognitive impairment) and increases plasma
BDNF level in both patients of Alzheimer’s disease and
healthy controls [158–163]. Regular physical activity is related
to better cognition, less cognitive decline, and a lower risk of
developing dementia [164, 165]. As young as children, aerobic
fitness can predict cognitive performance over time [166].
Besides cognition, higher level of physical activity is related
to a reduced white matter hyperintensity burden on motor
function in the aged people [167]. BDNF concentration is
associated with retention performance of motor skill after
learning [168]. Lifelong exercise can preserve white matter
microstructure related to motor control and coordination in
the elderly [169]. In addition, regular physical activity has
long been suggested to be an effective way to improve obesity
and related problems [170, 171]. Exercising 5 days per week
for 15 weeks can improve executive functions in overweight
children [172]. High-intensity physical activity (both aerobic
and endurance training) for 4 months improves cognition
and oxygen extraction in obese individuals [173].

The effectiveness of exercise may be moderated by exer-
cise intensity and duration, and exerciser’s developmental
stage [174, 175]. Exercise intensity can be related both to
behavioral outcomes and to changes in brain structure and
BDNF level. High dose group improves planning more
than the low dose group [172]. Greater amount of physical
activity in early life is associated with larger prefrontal

and hippocampal volumes [176]. Individuals receiving low-
intensity exercise, but not high-intensity, show increased
BDNF expression [177]. BDNF level depends on exercise
intensity [178]; someobserve thatmoderate-intensity exercise
is the most effective to promote BDNF in the elderly [179].
Thus, it seems that amoderate intensity of exercise is optimal.
In addition to exercise intensity, duration of exercise is
also crucial. Tomporowski et al. [180] fail to observe any
augmentation of task switching performance after a single
bout of moderately intense exercise. In midlife mice, only
4-month (but not 2-month) running training can trigger
activation of the antiamyloidogenic, prosurvival, synapto-
genic, and neuroprotective pathways [181].Wheel running for
14 days can increase cell proliferation in the dentate gyrus
whereas wheel running for 56 days can additionally facilitate
long-term potentiation in this region [182]. These show that
a longer duration of exercise favors changes in the brains.
Moreover, the developmental stage of exerciser is associated
with benefits of exercise. Four-week exercise can improve
recognition memory in adult rats, but no such enhancement
can be recorded 2 weeks after cessation of training. However,
in adolescent rats, the enhancement of recognition memory
is preserved [183]. These nicely demonstrate that younger
animals benefit more from exercise.

At the neuronal level, physical activity can enhance
neurogenesis, neuroadaptation, and neuroprotection though
the actions of neurotrophic factors [184–190]. Hippocampal
function is restored by physical activity through enhancing
the expression of neurotrophic factors to promote neu-
rogenesis, angiogenesis, and synaptic plasticity [191–193].
For example, BDNF level increases with physical activity,
particularly regular exercise [194, 195]. It is found that BDNF
can stimulate DNA repair to protect cortical neurons against
oxidative stress [196]. Short bout of mild exercise for 5 weeks
improves both oxygen consumption and long-term spatial
learning and memory in aged rats which is associated with
hippocampal BDNF level [197]. Following physical activity,
hippocampal BDNF level and TrkB receptor activation are
increased [198].The elevated BDNF level in the dentate gyrus
is sufficient to induce spatial memory improvement [199]. A
week of voluntary exercise is sufficient to increase the activity
of tissue type plasminogen activator to facilitate the cleavage
of proBDNF into mBNDF [200]. Also, exercise promotes
sirtuin 1, stimulates mitochondrial biogenesis, and prevents
neurodegeneration [201].

Exercise can be related to structural brain changes [202].
A 7-day exercise intervention can increase gray matter vol-
umes in the motor, somatosensory, association, and visual
cortices in rats [203]. Exercising for 6 months reduces default
mode network activity in the precuneus [204] while one-year
walking increases functional connectivity within the default
mode network and frontal executive network [205]. Regular
physical activity can reduce proinflammatory and increase
anti-inflammatory signaling and reduce oxidative stress in
aged animals [206, 207]. Exercise also reduces peripheral risk
factors, such as diabetes and cardiovascular diseases which
are associated with neurodegeneration [208]. Furthermore,
vasculature is altered after exercise. In middle-aged rats, total
length and surface area of cortical capillaries are increased
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Figure 1: Factors mediating the effects of obesity and exercise on cognition and motor behaviors. Obesity affects cognition mainly through
brain changes and influences motor behaviors through degrading the musculoskeletal system. Exercise can alleviate the deleterious effects of
the obesity-related mediators on cognition and motor performance.

after running [209]. Aerobic exercise at midlife can improve
vascular dysfunctions, astrocyte hypertrophy, and myelin
dysregulation associated with sedentary lifestyle [210, 211].

Exercise is associated with a range of improvements in
the brain through a range of mechanisms in individuals
of different weight statuses (Figure 1). The effectiveness of
exercise depends on the training parameters, such as inten-
sity, duration, and developmental stage of exerciser. Previous
research results have consistently suggested that moderately
intense exercise for a long enough period of time is especially
beneficial for young exercisers.

6. Implications and Future Research

More and more people are becoming obese, producing
aversive effects on their cognition, motor behaviors, and
quality of life [1]. Previous research has suggested that altered
brain structure and activation mediate obesity’s influences
on cognition [17–21], whereas obesity influences the mus-
culoskeletal system to degrade motor performance [59]. As
motor performance partly depends on cognitive ability [64],
obesity may indirectly contribute to motor deficits through
cognitive decline (Figure 1).

Substantial research has shown that obesity affects our
cognition and motor behaviors through different mech-
anisms, possibly through altering brain structure, lep-
tin/insulin regulation, oxidative stress, cerebrovascular func-
tion, blood-brain barrier, and inflammation [11, 65–71]. The
validity of these proposed mechanisms requires further
examinations.

Regular physical activity benefits both cognition and
motor behaviors. It is suggested that moderately intense

exercise for a long enough period of time seems favor-
able; however, the training parameter for optimal outcomes
remains to be determined. Most of the previous research
focuses on aerobic exercise; the efficacy of anaerobic exercise
to improve obesity and related dysfunctions is not well
understood. More efforts should be devoted to investigate
the efficacy of anaerobic exercise, in comparison with aerobic
exercise. Moreover, starting exercising in young age is par-
ticularly important to protect from neurodegeneration in old
age. As childhood obesity is becoming more prevalent [23–
25], introducing physical activity intervention in childhood
may help children improve obesity and prevent age-related
functional decline in old age.

In addition to exercise, leptin replacement therapy,
inhaled insulin therapy, and caloric restriction have also
been proposed to improve obesity. Leptin is responsible for
energy balance and body weight and can affect neurogenesis
and brain functions [212]. It enhances immune response
and regulates inflammation [212]. It is observed that 18-
month leptin replacement therapy increases gray matter
concentration and activations in brain regions implicated in
hunger and satiation neural circuits [213, 214]. During weight
loss, leptin is reduced, facilitating food intake. Leptin therapy
helps sustain weight loss [215].

There are insulin disturbances in obese individuals [216,
217]. Insulin resistance plays an important role in obesity
and cognitive impairments [218]. It is found that intranasal
insulin exerts anorexic effects, promoting satiety and regulat-
ing food intake [219, 220]. Inhaled insulin reaches the brain
through olfactory nerves and specific receptors in blood-
brain barrier to exert its effects [221]. Caloric restriction
also improves obesity and reverses deficits in leptin receptor
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protein and signaling associated with diet-induced obesity
[222]. After 3 months of caloric restriction, serum BDNF
increases in overweight and obese individuals [223]. Diet-
inducedweight loss is related to a decrease in plasma free fatty
acid and improvement in episodic memory [224]. Hitherto,
the efficacy of leptin replacement therapy, inhaled insulin
therapy, and caloric restriction on cognition and motor
behaviors is poorly understood, which warrants further
verification.

7. Conclusions

Obesity has become a worrying health and social issue. It
affects cognitionmainly through altering the brain structures
and functions [17–21], and motor performance through
degrading musculoskeletal system [59]. Obesity can affect
brain structure, leptin/insulin dysregulation, oxidative stress,
cerebrovascular function, blood-brain barrier, and inflam-
mation [11, 65–71], which are involved in the deterioration of
cognitive and motor functions. A host of previous research
has suggested that exercise can improve both obesity-related
cognitive and motor declines. As more and more people
develop obesity in young age, introducing exercise interven-
tion early would result in the greatest benefits.
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modulates peripheral levels of Brain-Derived Neurotrophic
Factor (BDNF): a systematic review of experimental studies in
the elderly,” Archives of Gerontology and Geriatrics, vol. 56, no.
1, pp. 10–15, 2013.

[180] P. D. Tomporowski, C. L. Davis, K. Lambourne, M. Gregoski,
and J. Tkacz, “Task switching in overweight children: effects of
acute exercise and age,” Journal of Sport and Exercise Psychology,
vol. 30, no. 5, pp. 497–511, 2008.

[181] S. Di Loreto, S. Falone, A. D’Alessandro et al., “Regular and
moderate exercise initiated in middle age prevents age-related
amyloidogenesis and preserves synaptic and neuroprotective
signaling inmouse brain cortex,”Experimental Gerontology, vol.
57, pp. 57–65, 2014.

[182] A. R. Patten, H. Sickmann, B. N. Hryciw et al., “Long-term
exercise is needed to enhance synaptic plasticity in the hip-
pocampus,” Learning and Memory, vol. 20, no. 11, pp. 642–647,
2013.

[183] M. E. Hopkins, R. Nitecki, and D. J. Bucci, “Physical exercise
during adolescence versus adulthood: differential effects on
object recognition memory and brain-derived neurotrophic
factor levels,” Neuroscience, vol. 194, pp. 84–94, 2011.

[184] H. van Praag, B. R. Christie, T. J. Sejnowski, and F. H. Gage,
“Running enhances neurogenesis, learning, and long-term
potentiation in mice,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 96, no. 23, pp.
13427–13431, 1999.

[185] A.M. Singh andW.R. Staines, “The effects of acute aerobic exer-
cise on the primary motor cortex,” Journal of Motor Behavior,
vol. 47, no. 4, pp. 328–339, 2015.
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