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Abstract: Biocompatible nanoparticles (NPs) containing polymers, lipids (liposomes and micelles),
dendrimers, ferritin, carbon nanotubes, quantum dots, ceramic, magnetic materials, and gold/silver
have contributed to imaging diagnosis and targeted cancer therapy. However, only some NP drugs,
including Doxil® (liposome-encapsulated doxorubicin), Abraxane® (albumin-bound paclitaxel), and
Oncaspar® (PEG-Asparaginase), have emerged on the pharmaceutical market to date. By contrast,
several phytochemicals that were found to be effective in cultured cancer cells and animal studies
have not shown significant efficacy in humans due to poor bioavailability and absorption, rapid
clearance, resistance, and toxicity. Research to overcome these drawbacks by using phytochemical
NPs remains in the early stages of clinical translation. Thus, in the current review, we discuss the
progress in nanotechnology, research milestones, the molecular mechanisms of phytochemicals
encapsulated in NPs, and clinical implications. Several challenges that must be overcome and future
research perspectives are also described.

Keywords: nanoparticles; cancer progression; research milestones; clinical implications;
nano-phytochemicals

1. Introduction

Cancer progression is the result of tumor development and subsequent metastasis,
with features including increases in the growth rate and invasiveness of tumor cells [1].
Though cancer therapies such as chemotherapy, radiotherapy, immunotherapy, and surgery
have been used to suppress cancer progression for years, cancer treatment is still frequently
unsuccessful due to poor solubility, low stability, limited biodistribution, metabolism,
chemoresistance, and toxicity [2].

Hence, to overcome the poor bioavailability of anticancer agents, including natural
compounds, nanobiotechnologies such as nanoparticles (NPs) have been employed for
efficient drug delivery to mitigate poor solubility and stability, prevent degradation by
proteases, improve drug distribution, and reduce drug resistance [3].

Accumulating evidence reveals that organic NPs (such as polymeric conjugates, poly-
meric NPs, lipid-based carriers (liposomes and micelles), dendrimers, and ferritin) and
inorganic NPs (such as carbon nanotubes, quantum dots (QDs), ceramic NPs, magnetic
NPs, and gold/silver NPs) are useful nanomaterials for achieving the enhanced perme-
ability and retention (EPR) effect [4,5]. Furthermore, emerging evidence demonstrates that
NPs that include a hydrophilic central core, a target-oriented biocompatible outer layer,
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and a middle hydrophobic core containing the target site can improve drug/gene delivery
in cancer cells and tissues for ligand- or antigen-targeted therapy [6].

Though anticancer nanodrugs such as Doxil and Abraxane are on the pharmaceuti-
cal market, several nano-phytochemicals, defined as nanomaterials and phytochemicals,
including curcumin [7] and EGCG [8], are attractive cancer therapy candidates, as experi-
mental data suggest that they result in improved drug delivery and have low toxicity in
several cancers. Thus, in this review, we discuss the recent progress of NP biotechnology,
the molecular mechanisms of nano-phytochemicals, and their implications for the possible
clinical application of potent anticancer nanodrugs on the basis of experimental studies in
several cancers. Future research perspectives are also suggested.

2. Research Milestones in Nanotechnology and Anticancer Nanodrugs

Over the past decade, nanotechnology has greatly contributed to biomedical sciences,
including oncology, with the development of efficient delivery systems. Colloidal gold
particles were first synthesized as a typical hydrophobic colloid by Turkevich’s group
in 1951 [9], and in 1965, Bangham’s group introduced liposomes as nanocarriers with
composite structures made of phospholipids for transporting proteins and drugs [10].
Since then, polymeric NPs have included biodegradable and biocompatible polymers
of synthetic (polylactide, polylactide–polyglycolide copolymers, polycaprolactones, and
polyacrylates) or natural (alginate, albumin, or chitosan) origin. Wichterle et al. discovered
hydrophilic gels in 1960, and Langer and Folkman were the first to introduce polymer
systems appropriate for the controlled release of ionic molecules and macromolecules [11].
In 1978, Fritz Vögtle’s group became the first to synthesize dendrimers with structural
stability [12]. Thereafter, Fraley et al. [13] reported the liposome-mediated delivery of DNA
in 1980, and Gabizon et al. suggested that liposomal delivery improved the therapeutic
index of encapsulated doxorubicin in 1982 [14]. In addition, QDs were synthesized by
Ekimov’s group in 1982 [15], and in 1986, Matsumura and Maeda proposed the concept
of the EPR effect, whereby nano-sized molecules accumulate more in tumor tissues than
in normal tissues [16]. Among anticancer nanodrugs, the US FDA approved DOXIL
(doxorubicin HCL liposome injection) for AIDS-related Kaposi’s sarcoma treatment in
1995 [17], DaunoXome (liposomal encapsulated daunorubicin) for HIV-related Kaposi’s
sarcoma treatment in 1996 [18], Eligard (leuprolide acetate and polymer) for prostate
cancer treatment in 2004 [19], Abraxane (albumin-bound paclitaxel injection) for metastatic
pancreatic cancer treatment in 2005 [20], Oncaspar (Pegaspargase conjugated to mPEG) for
acute lymphoblastic leukemia treatment in 2006 [21], Marqibo (vincristine sulfate liposome
injection) for Philadelphia chromosome-negative lymphoblastic leukemia treatment in
2012 [22], and Onivyde (liposomal irinotecan) for pancreatic cancer treatment in 2015 [23].
Additionally, Myocet (non-PEGylated liposomal doxorubicin) was approved for metastatic
breast cancer treatment in combination with cyclophosphamide in 2000 by the regulatory
agencies of Europe and Canada [24]. Recently, anticancer nano-phytochemicals have
been receiving increasing interest for their improved drug delivery and lower toxicity
compared to synthetic anticancer agents. Among these compounds, gelatin/sugar-coated
lycopene NPs were first characterized by Wegmann et al. in 2002 [25], and solid lipid
NPs (SLNs) containing ferulic acid were characterized and developed as a sunscreen
by Souto et al. in 2005 [26]. Additionally, Takahashi et al. prepared curcumin-loaded
liposomes for encapsulation in 2006 [27], and in 2006, Hung et al. showed the NP potential
of resveratrol coated with an emulsion-liposome blend, and no liver or kidney toxicity was
detected [28]. Along the same line, systems with reported NP potential include gambogic
acid-loaded micelles based on a chitosan derivative [29], ginsomes (ginsenoside-based
NPs) for reinforcing the immune response of T and B lymphocyte in mice in 2009 [30],
and EGCG encapsulated in PLA-PEG NPs [31] (Figure 1). Despite the advanced progress
of nanotechnology over the past decade and a variety of potent nanodrugs or nano-
phytochemicals, numerous questions and challenges remain for the future development of
commercial anticancer nanodrugs. With this aim, this review focuses on a variety of NPs
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associated with phytochemicals, their drug delivery efficiency, and their anticancer efficacy.
Then, future research directions are suggested.
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3. Recent Advances in Nanotechnology Targeting Cancer Progression

A variety of NPs (1~100 nm) have been applied as efficient drug delivery systems,
with advantages such as a high efficiency of drug loading and good bioavailability, drug
delivery, and pharmacokinetics [32]. Generally, organic NPs include polymeric conjugates,
polymeric nanoparticles, lipid-based carriers (liposomes and micelles), dendrimers, and
ferritin, while inorganic NPs include carbon nanotubes, ceramic NPs, quantum dots,
magnetic NPs, and gold/silver NPs [33] with specific nanostructure morphologies and
sizes. Over the past decade, these NPs have been applied in the biomedical sciences for
diagnosis and targeted drug delivery in cancer treatment (Figure 2).
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3.1. Carbon-Based NPs

Carbon-based NPs are generally classified as single-walled carbon nanotubes (SWC-
NTs) and multiple-walled carbon nanotubes (MWCNTs) [34], which were first reported by
Sumio Iijima [35,36] in 1991. These CNTs have attracted interest for their unique physico-
chemical properties that allow them to cross the cell membrane [37], as well as their highly
versatile materials and enormous potential for biomedical applications [38]. However,
CNTs are known to be cytotoxic in MC4L2 cells and mice. The antitumor effect of CNTs
was confirmed in an animal model of breast cancer [39], and their increased cytotoxicity
was attributed to the induction of oxidative stress in murine breast cancer [40]. Srivastava
et al. [41] also demonstrated that MWCNTs induced oxidative stress and apoptosis in A549
cells. Similarly, Wang et al. [42] suggested that SWCNTs induced oxidative damage and
apoptosis in PC-12 cells along with autophagy through the AKT–TSC2–mTOR pathway
in non-small cell lung cancer cells (NSCLCs) [43]. Recently, Rh2 ginsenoside-hyaluronic
acid-functionalized zinc oxide (Rh2HAZnO) was shown to have an enhanced antitumor
effect compared to Rh2 alone in A549, HT29, and MCF7 cancer cells [44], and ZnO/carbon
nanotubes were FDA-approved as safe in the body [45].

3.2. Ceramic NPs

Ceramic NPs (CNs) have emerged as drug delivery vehicles [46]. Silica nanoparticles
(SNPs), discovered in 1992 by Kresge et al. [47], are known to have superior textual proper-
ties, such as a high surface area, narrow pore size distribution, large pore volume, and tun-
able pore diameter, for disease diagnosis and cancer imaging [48]. Recently, Yuan et al. [49]
reported that SNPs encapsulating doxorubicin exerted antitumor effects through a burst
release at an early stage and sustained release at a later stage. However, ceramic NPs have
been reported to induce oxidative stress and inflammation in the lungs, liver, heart, and
brain, leading to prethrombosis, genotoxicity, carcinogenicity, and teratogenicity, or brain
toxicity [50]. Similarly, cerium oxide (CeO2) NPs induced apoptosis via ROS generation
and p53-dependent mitochondrial signaling in HCT116 colorectal cancer cells [51]. Re-
cently, Cinnamomum cassia extract was reported to protect against liver and kidney damage
induced by nickel nanoparticles (Ni-NPs), which are used in applications such as ceramics
and nanomedicine, in male Sprague Dawley rats [52]. Moreover, licorice isoliquiritigenin-
encapsulated mesoporous silica nanoparticles (MSNs-ISL NPs) significantly suppressed
receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast generation, and
the effect was greater than that achieved using ISL or MSNs alone [53].

3.3. Metal NPs

NPs containing metals such as gold, silver, copper, zinc, and palladium have unique
physicochemical properties that are suitable for drug delivery and ligand targeting [54].
Among these complexes, gold NPs are regarded as bio-inert and non-cytotoxic and are
used for medical applications such as MRI for imaging diagnosis and the photothermal
treatment of cancer, in which NPs generate heat when exposed to near-infrared (NIR)
laser light [55], with no acute cytotoxicity [56]. Indeed, Tsai et al. [57] reported that gold
NPs inhibited proinflammatory cytokine production and TLR9 translocation via CpG
oligodeoxynucleotides (CpG-ODNs), and Farooq et al. [58] demonstrated the anticancer
and cytotoxic effects and intracellular localization of AuNPs in HeLa cells. Similarly, silver
NPs have been used for biomedical applications such as infertility, antibacterial effects,
skin damage, burns, and cancer treatment despite their harmful nanotoxicity [59,60]. Gu-
runathan et al. [61] reported that AgNPs, which are characterized by high yield, solubility,
and stability, exerted dose-dependent cytotoxicity in MDA-MB-231 cells through the ac-
tivation of lactate dehydrogenase (LDH), caspase-3, and reactive oxygen species (ROS)
in breast cancer [62]. Similarly, B-AgNPs and F-AgNPs derived from Bacillus tequilensis
and Calocybe indica (milky mushroom) extract induced apoptosis via the activation of p53,
p-Erk1/2, and caspase-3 signaling and the downregulation of Bcl-2 in MDA-MB-231 breast
cancer cells [62]. Interestingly, the release of Zn2+ from zinc peroxide nanoparticles (ZnO2
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NPs) exerted an anticancer effect in a synergistic fashion with ROS production [63]. Ruen-
raroengsak et al. [64] demonstrated that mesoporous silica nanolayer (MSN)-ZnO-AuNSs
reduced the viability of CAL51/CALDOX cells and MCF7/MCF-7-TX cells, while MSN-
ZnO-AuNSs conjugated with Frizzled-7 (FZD-7) enhanced the toxicity by three-fold in
resistant MCF-7TX cells. Further study on the efficacy and toxicity of metal NPs in animals
and humans is required for their potential use in cancer diagnosis and therapy.

3.4. Quantum Dots

Quantum dots (QDs) are among the emerging engineering nanomaterials that have
shown promise as a platform for cancer detection and diagnosis; examples include CdSe,
ZnS, CdSe, ZnS, and CdS, which have unique optical and chemical properties [65]. Gen-
erally, colloidal QDs have been synthesized for diagnostic and therapeutic purposes in
living systems through the processes of core development, shell growth, solubilization,
and biological binding [66]. Lee et al. [67] reported that MNP-QD conjugates enhanced
cellular uptake in HeLa cells without non-specific binding to the cell membrane, making
them a promising new cell imaging technique. However, one drawback of QDs is their
toxicity, which is caused by the release of factors that induce oxidative stress, including
ROS, inflammatory cytokines, and metal ions [68]. Recently, curcumin quantum dots
(CurQDs) were found to enhance the degradation of bacterial biofilms compared to cur-
cumin alone [69], and folic acid [70] and chlorophyllin [71] have also emerged as promising
QD NP candidates for imaging diagnosis.

3.5. Magnetic NPs

Magnetic NPs (MNPs) have been widely used for diverse applications, including
magnetic biosensing (diagnostics), magnetic imaging, magnetic separation, drug and gene
delivery, and hyperthermia therapy [72]. Interestingly, among MNPs, magnetic iron oxide
NPs conjugated with integrin αvβ6 antibodies are known to have antitumor effects in
oral squamous cell carcinoma [73]. Recently, galbanic acid-coated Fe3O4 MNPs were
found to exert cytotoxic effects in PC3, LNCaP, and DU145 prostate cancer cells via the
downregulation of AR, while galbanic acid was cytotoxic only in LNCaP cells [74].

3.6. Polymeric NPs

Polymeric NPs consisting of a reservoir system (nanocapsule) and matrix system
(nanosphere) can incorporate hydrophilic/hydrophobic drug particles by coating inert ma-
terials in imaging, targeted drug delivery, and biomedical applications [75]. Known natural
polymeric NPs include gelatin, chitosan, collagen, gum arabic, starch [76], dextran [77],
alginate [78], and polylactic acid, while synthetic polymeric NPs in the form of dendrimers
include N-(2-hydroxypropyl) methacrylamide (HPMA), polyglycolide or polyglycolic acid
(PGA), PGA polyethylene glycol (PEG), polypropylenimine, polyamidoamine, and hy-
drogels [79,80]. Among the listed compounds, chitosan, a cationic polysaccharide, has
been effectively used for the treatment of several cancers; its beneficial properties are
biodegradability, mucoadhesiveness, enhanced absorption, and biocompatibility [81,82].
For instance, Amjadi et al. [83] suggested that DOX@BET-loaded PGNPs—betanin (BET)
and doxorubicin (DOX) encapsulated by gelatin nanoparticles (GNPs)—showed better
anticancer activity in MCF-7 cells compared to DOX or BET alone. Similarly, pretreat-
ment with collagozomes followed by paclitaxel micelles facilitated drug penetration into
pancreatic ductal adenocarcinoma, resulting in better antitumor activity [84], while gum
arabic-encapsulated gold NPs (GA-AuNPs) combined with the application of lasers in-
duced cell death in lung tumor tissues via the inhibition of inflammation, angiogenesis,
and lipid peroxidation [85]. Furthermore, Babu et al. [86] suggested that the combinatorial
delivery of cisplatin and p62siRNA/β5 plasmid DNA-mediated chitosan-coated polylactic
acid NPs enhanced the antitumor effect of cisplatin in resistant ovarian cancer cells. Addi-
tionally, Strong et al. [87] reported that polyhydrogels with silica–gold nanoshells loaded
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with either doxorubicin or a DNA duplex enhanced drug release by 2–5-fold after exposure
to NIR light in CT 26-WT colon cancer cells.

3.7. Lipid-Based NPs

Lipid-based NPs with low toxicity include liposomes, micelles, solid lipid nanoparti-
cles (SLNs), and nanostructured lipid carriers (NLCs) [88,89]. However, a major drawback
of SLNs is their low drug loading capacity due to the release of the loaded drug solu-
tion [90]. NLCs have a less defined lattice defect with an incomplete crystal or amorphous
structure. Consequently, drug loading occurs at the defect site, leading to greater accu-
mulation and less excretion of the drug, since the compartment is surrounded by solid
lipids [91,92]. Liposomes have a bilayer structure that is mainly composed of phospho-
lipids, and they can encapsulate both hydrophobic and hydrophilic drugs because of the
amphiphilic properties of phospholipids. Furthermore, liposomes can improve stability
and efficiency by preventing the drug from being metabolized [93,94]. Notably, lipid NPs
with aqueous cores can be used as carriers of hydrophilic drugs, mainly for oral delivery,
while polymeric NPs, including carbon nanotubes, dendrimers, and quantum dots, can
encapsulate water-insoluble drugs in their hydrophobic cores for injectable drug deliv-
ery systems [95]. Wang et al. [96] suggested that myricetin nanoliposomes (MYR-NLs)
enhanced apoptosis in DBTRG-05MG glioblastoma multiforme (GBM) cells by reducing
glycolysis. Similarly, Maroufi et al. [97] reported that myricetin-loaded nanostructured
lipid carriers (NLCs) enhanced the anticancer effect of DXT via the downregulation of
Mcl-1, survivin, and cyclin B1 and the upregulation of Bid and Bax in MDA-MB231 breast
cancer cells.

3.8. Dendrimers

Dendrimers are manufactured using several macromolecules, including polypropy-
leneimine (PPI), polyamidoamine (PAMAM), poly-L-lycine (PLL), melamine, triazine,
and poly(ethylene glycol) (PEG) [98]. Dendrimers are suitable for loading hydrophilic
and hydrophobic drugs and are characterized by branches, distinct molecular weights,
and a globular assembly with a meticulous surface, and they have been studied since Dr.
Donald Tomalia first published his work on poly(amidoamine) (PAMAM) dendrimers
in 1985 [99]. Indeed, Dickwalkar et al. [100] reported that polyamidoamine dendrimers
(PAMAMG4.0-NH2) conjugated with the omega-3 fatty acid docosahexaenoic acid (DHA)
and paclitaxel (PTX) enhanced the anticancer activity of PTX compared to PTX or PAX
(PAMAMG4.0 -NH2 -PTX) alone in upper gastrointestinal cancer cells. Recently, Mignani
et al. [101] suggested that several anticancer phytochemicals, including epirubicin (4′-epi-
isomer of DOX), methotrexate, daidzein, genistein, 7-ethyl-10-hydroxycamtothecin (SN-38),
colchicine, 7-butyl-10-aminocamptothecin, lamellarin D, digoxin, biotin, a tubulysin D
analog, and 10-hydroxycamptothecin, could be conjugated only with dendrimers for en-
hanced anticancer activity. Accumulating evidence also suggests that dendrimers combined
with phytochemicals can serve as drug and gene carriers that impart good solubility and
bioavailability to hydrophobic drugs in cancer therapy [101,102]. Aas et al. [103] reported
that dendrosomal farnesiferol C (DFC) significantly enhanced the anti-proliferative effect
in a time- and dose-dependent manner compared to FC alone in AGS cells.

3.9. The Enhanced Permeability and Retention Effect

The enhanced permeability and retention (EPR) effect first coined by Matsumura
and Maeda [16] is defined the phenomenon of macromolecules or high molecular weight
drug and nanomedicine accumulation inside solid tumor models compared to healthy
tissue counterparts [4]. EPR effect is usually induced by a leaky tumor vasculature by the
accelerated angiogenesis and impaired lymphatic drainage by the disorganized growth of
tumors [104,105]. In details, NPs with appropriate sizes can evade the tumor capillaries
and be retained in the tumor tissues for days due to the lack of lymphatic drainage. Ad-
ditionally, particles with high positive charges can bind non-specifically to the negatively



Int. J. Mol. Sci. 2021, 22, 3571 7 of 25

charged luminal surface due to the presence of sulfate and carboxylate sugar moieties [106].
It is noteworthy that nitric oxide (NO), prostaglandins, and bradykinin, which act as
vasodilators, can enhance the EPR effect in tumors by increasing their vascular permeabil-
ity [107]. Furthermore, some nanomedicine formulations are effective in the treatment
of multidrug resistance (MDR) [108]. In contrast, Jain et al. [109] claimed that elevated
interstitial fluid pressure and heterogeneous blood supply limit macromolecular delivery
to tumors. Furthermore, a key challenge is the promotion of the EPR effect in patients
with EPR-insensitive tumor phenotypes since the EPR-insensitive phenotype is known
to have smaller endothelial fenestrations, heterogeneously high or low pericyte coverage,
more developed and branched vasculatures, a relatively dense ECR, and more developed
immune profiles compared to EPR sensitive phenotypes [105]. Thus, the role of EPR is still
in question in terms of clinical translation and different human tumor types due to their
heterogeneity [105,110]. Among the three major targeted drug delivery methods, namely,
passive targeting, active targeting, and physical targeting; passive targeting acts via the
EPR effect, by which tumor cells preferentially absorb NPs [111]. In active targeting, NPs
that are functionalized with ligands such as proteins, antibodies, and peptides effectively
interact with overexpressed receptors at the target site [112]. Physical targeting utilizes
external sources or fields, such as radiation, ultrasound, photothermal and magnetic hyper-
thermia therapies, to guide NPs to the target site and control drug release through changes
in pH and/or temperature especially in EPR-insensitive tumor phenotypes [103,106]. Thus,
Theek et al. [113] revealed that increased accumulation of liposomes was shown in two
EPR-insensitive phenotypes such as highly stromal BxPC-3 pancreatic carcinoma xenograft
and highly cellular A431 epidermal xenograft after ultrasound irradiation compared to
untreated controls.

3.10. The Reticuloendothelial System Barrier in Nanoparticle Drug Delivery

One of the clinical translation issues with NP drugs has been the reticuloendothe-
lial system (RES) barrier because hepatocytes and Kupffer cells in the RES in the liver
usually take up NPs bound to serum proteins, depending on their size and surface prop-
erties [103,114]. Thus, for the purpose of clinical translation, a good strategy to block or
deplete macrophages is to boost the efficiency of nanoparticle drugs. Recently, Tang et al.
suggested that d-self-peptide-labeled liposomes (DSLs) could reduce interactions between
phagocytes and NPs by forming a long-lasting mask [115] since the modification of NPs
with polyethylene glycol (PEG) reduced their clearance by macrophages and their inter-
nalization [116]. Similarly, multicore iron oxide NPs coated with a poly(4-vinylpyridine)
polyethylene glycol copolymer have low RES retention and high urinary excretion in the
kidneys [117].

4. Molecular Mechanisms of Nano-Phytochemicals in Cancer Progression

Recently, phytochemicals, including functional food and anticancer supplements,
have emerged as effective anticancer agents for cancer therapy with fewer side effects
than conventional treatments [118]. Among phytochemicals, curcumin, epigallocatechin
gallate (EGCG), ginsenosides, lycopene, and resveratrol are more attractive than others.
In particular, curcumin, the Indian spice turmeric from Curcuma longa, has been shown
to exert an anticancer effect in several cancers, including breast, colon, and pancreas,
brain, and liver cancers [119]. Despite its beneficial effects, its therapeutic efficacy is
limited due to poor bioavailability, poor absorption, rapid metabolism, and rapid systemic
elimination [120–122]. Thus, to overcome the shortcomings of natural compounds such as
curcumin, several types of NPs have been applied with phytochemicals in cancer therapy,
as shown in Table 1.

4.1. Anacardic Acid

Anacardic acid (AA) from Anacardium occidentale has antitumor effects in several can-
cers. AA inhibited proliferation, invasion, and migration and induced G0/G1-phase arrest
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and apoptosis in MDA-MB-231 cells via the inhibition of Hsp90-dependent endoplasmic
reticulum stress (ERS)-related molecules, such as GRP78, Hsp70, CDK-4, MMP-9, Bcl-2, and
Mcl-1 [123]. To increase the efficacy of this molecule, nanotechnology with AA has been
adopted [124]. Kushwah et al. [125] reported that docetaxel (DTX)-loaded bovine serum
albumin (BSA) covalently conjugated with AA and gemcitabine (GEM) nanoparticles (AA-
GEM-BSA NPs) significantly improved the cellular uptake, apoptosis, and pharmacokinetic
profile in MCF-7 and MDA-MB-231 breast cancer cells compared to DTX and GEM alone.
Specifically, AA-GEM-BSA NPs were associated with significantly sustained release, en-
hanced stability against enzymatic degradation, delayed DTX release, and higher levels
of the apoptosis index in MCF-7 and MDA-MB-231 cells as compared to a combination
of GEM and DTX. Thus, the combination of AA and DTX or GEM encapsulated by BSA
protein is a promising candidate for breast cancer treatment.

4.2. Betulinic Acid

Though betulinic acid (BA), a pentacyclic triterpenoid derived from birch tree, has
a broad spectrum of biological and medicinal properties, it has some drawbacks, such as
poor aqueous solubility and a short half-life in vivo [126]. Thus, several types of nanoscale
delivery systems, such as polymeric NPs, magnetic NPs, liposomes, polymeric conjugates,
nanoemulsions, cyclodextrin complexes, and carbon nanotubes, have been developed for
the efficient delivery of BA [127]. Saneja et al. revealed that GEM -BA NPs significantly
enhanced cytotoxicity and ROS generation in pancreatic cancer Panc-1 cells compared to
GEM NPs or GEM and BA or GEM alone [128]. Farcas et al. [129] indicated that BA-loaded
magnetoliposomes, as a potent anticancer agent, enhanced the antitumor effect in MDA-
MB-231 breast cancer cells without significant cytotoxicity in normal breast epithelial MCF
10A cells. Similarly, Kumar et al. [130] reported that poly(lactic- co-glycolic acid)-loaded
NPs of BA (PLGA-loaded NPs of BA) significantly decreased the expression of i-NOS,
Bcl-2, and Bcl-xl and increased the expression of BAD, BAX, and caspase-9/3 compared
to the untreated control in a diethylnitrosamine (DEN)-induced hepatocellular carcinoma
(HCC) rat model. Overall, polymeric or lipid NPs with BA are promising candidates for
treating breast, pancreas, and liver cancers and have outperformed BA controls, indicating
that further study on BA-NPs is required in humans to determine their pharmacodynamic
and pharmacokinetic profiles.

4.3. Curcumin

It is well known that curcumin (diferuloylmethane:CU)—a hydrophobic polyphenol—
modulates enzymes, transcription factors, kinases, inflammatory cytokines, growth factors,
and proapoptotic and antiapoptotic proteins in several cancers [119]. Though CU has been
shown to be a potent anticancer compound in numerous cancers in vitro and in vivo, sev-
eral clinical trials have found that its efficacy is limited in humans because of characteristics
that reduce its bioavailability, such as low water solubility, poor absorption, a high rate of
metabolism, the inactivity of metabolic products, and/or rapid elimination and clearance
from the body [120,131]. As one of the approaches to overcome the disadvantages of CU,
NPs that include liposomal encapsulation and emulsions have been employed for many
years [132]. Li et al. [133] indicated that liposomal CU enhanced cytotoxicity and apoptosis
in LoVo and Colo205 colorectal cancer cells and exerted significant (p < 0.05) synergistic ef-
fects with oxaliplatin in a colorectal xenograft model via the inhibition of CD31, VEGF, and
IL-8 and the activation of PARP cleavage. Similarly, Pandelidou et al. [134] demonstrated
that egg phosphatidylcholine (EPC) liposomes conjugated with CU showed significantly
better cytotoxicity compared to the CU control in HCT116 and HCT15 colorectal cancer
cells. Notably, Arya et al. [135] demonstrated that CU-loaded chitosan/polyethylene glycol
(PEG)-blended PLGA NPs exhibited significant cytotoxic, anti-invasive, and apoptotic
effects compared to the CU control in Panc-1 and Mia Paca-2 pancreatic cancer cells via the
activation of BAX, caspase-3, and PAPR cleavage and the inhibition of BCL-2. Moreover,
Khan et al. [136] reported that CU-loaded chitosan nanoparticles (CLCsNPs) produced
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better antitumor effects in cervical cancers compared to chitosan NPs (CsNPs) alone. Fur-
thermore, CU-resveratrol-gelucire 50/13 (CRG) SLNs had better cytotoxicity in HCT116
cells compared to CU-resveratrol-gelucire 50/13-HPβCD (CRG-CD) [137] due to their
greater bioavailability, and the adverse effects were limited [131]. Overall, CU NPs have
shown significant anticancer activity in several cancers and are promising as potential
combinatorial agents with classical anticancer drugs.

4.4. EGCG

Accumulating evidence has confirmed that epigallocatechin gallate (EGCG), a flavone-
3-ol polyphenol from green tea, is mainly absorbed in the intestine [138] and inhibits NF-κB,
epithelial–mesenchymal transition (EMT), and cellular invasion in several cancers via its
interaction with DNA methyltransferases (DNMTs), histone deacetylases (HDACs), Pin1,
TGFR-II, MMP-2, and MMP-9. In an aim to improve the insolubility, instability, and low
tissue distribution of EGCG, Chu et al. [139] investigated polymeric CU/EGCG-loaded
NPs in an orthotopic prostate tumor model. The NPs exerted stronger antitumor effects
compared to the CU/EGCG combination control by targeting CD34 and P-selectin since
hyaluronic acid targets CD44 and fucoidan targets P-selection in tumor vasculature. Zhang
et al. [140] demonstrated that, compared to EGCG alone, polymeric EGCG-loaded PLGA
NPs had enhanced anticancer activity in A549 and H1299 lung cancer cells. The anticancer
effects occurred via the inhibition of NF-κB and its related proteins, such as Bcl-2, Bcl-xL,
COX-2, TNF-α, cyclin D1, c-Myc, TWIST1, and MMP-2. Similarly, Velavan et al. [141]
demonstrated that BSA-encapsulated magnetite nanoparticles (MNPs) loaded with EGCG
(nano-EGCG) showed better antitumor efficacy in A549 lung cancer cells compared to
EGCG alone via increased ROS/RNS modulation of Nrf2/keap1 signaling and the loss of
the mitochondrial membrane potential, leading to apoptosis. Additionally, Radhakrishnan
et al. [142] indicated that bombesin-conjugated EGCG-loaded SLNs resulted in increased
cytotoxicity in MDA-MB-231 breast cancer cells and reduced the tumor size of B16F10
cells compared to EGCG or the bombesin-conjugated EGCG (EB-SLN) group. Similarly,
Hajipour et al. [143] reported that arginyl-glycyl-aspartic acid (RGD)-containing ECGC-
loaded nanostructured lipid carriers (EGCG-loaded NLC-RGD) enhanced the cytotoxic and
apoptotic effects of doxorubicin (DOX) in MDA-MB-231 breast cancer cells compared to
EGCG-loaded NLCs. Notably, Chavva et al. [144] demonstrated that EGCG–gold nanopar-
ticles (E-GNPs) showed better cytotoxicity and cellular uptake in PC-3 and MDA-MB-231
cells compared to free EGCG or citrate GNPs via the inhibition of NF-κB, BCL-2, and
BCL-xL and the activation of Bax and cleaved caspase-7/3. Overall, though some nanopar-
ticles with EGCG have been found to be effective in vitro and in vivo by compensating
for the weaknesses of EGCG, further study with EGCG-NPs is required to establish the
pharmacodynamic and pharmacokinetic profiles for future clinical application.

4.5. Ferulic Acid

Ferulic acid (FA), which is commonly found in vegetables, sweet corn, bamboo shoots,
and rice grain [145], is known to have cytotoxic and apoptotic effects via the inhibition of
PI3K/AKT signaling in pancreatic and cervical cancers [146,147]. Recently, to improve the
EPR effect of FA, Cui et al. [148] studied the antitumor effects of FA-modified selenium
nanoparticles (FA-Se NPs) in HepG2 cells and reported increased ROS production, MMP
disruption, and caspase-9/3 activation compared to FA alone, while ZnO nanoparticles
(ZnONPs)-FA (FAC), compared to ZnONPs or FA alone, suppressed hepatocellular cancer
progression via ROS production; the inhibition of MMP-2 Bcl-2, and Bcl-xL; and the
activation of Bax, Bad, cleaved caspase-3, and cleaved PARP [149]. Furthermore, Thakkar
et al. [150] reported that the chemopreventive effect of FA and aspirin (ASP) encapsulated
by chitosan-coated solid lipid nanoparticles (c-SLNs) occurred via the inhibition of PCNA
and Ki67 and the activation of p-RB, p21, and p-ERK1/2 in MIA, PaCa-2, and Panc-1
pancreatic cancer cells. Further study is required in humans to determine the PD and
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PK profiles of FA-NPs, both alone and in combination with classical anticancer drugs, for
future clinical trials.

4.6. Gambogic Acid

Gambogic acid (GA), a component of the dry resin (gamboge) from the Garcinia hanburyi
tree, is known to have antitumor effects in prostate [151], lung [152], stomach [152], and
liver [153] cancers. GA induces apoptosis in cancer cells by increasing ROS production and
inhibiting the NF-κB, MAPK/ERK, and PI3K/AKT signaling pathways. Studying poly-
meric NPs with GA, Xu et al. showed that the apoptotic effect of L-methionine poly(ester
amide) (Met-PEA-PEG) via high intracellular ROS production in PC-3 cells was better
than that of GA alone [154]. Furthermore, Wang et al. [155] demonstrated the improved
apoptotic effect of hyaluronic acid-grafted polyethylenimine-poly(D,L-lactide-co-glycolide)
(HA-PEI-PLGA) NPs via the activation of caspase-3/8 and the inhibition of survivin
and Bcl-2 in triple-negative breast cancer (TNBC) compared to GA alone. Similarly, He
et al. [156] reported that GA-loaded folate-conjugated Arg-based poly(ester urea urethane)s
NPs (GA-loaded FA-Arg-PEUU NPs) induced more powerful apoptotic and anti-metastatic
effects via the inhibition of MMP-2/9 and mitochondrial membrane potential and the
activation of DNA fragmentation compared to GA alone in HeLa and A549 cells. Notably,
Fang et al. [157] showed that magnetic NPs containing Fe3O4 as a carrier for GA (GA
MNPs-Fe3O4) had a stronger apoptotic effect in LoVo colon cancer cells compared to GA
alone via the activation of caspase-9/3 and the suppression of p-PI3K, p-AKT, and p-BAD.
Overall, polymeric or metal NPs with GA can enhance drug delivery and thereby increase
anticancer activity compared to GA alone and should be studied in future clinical trials.

4.7. Ginsenosides

Ginsenosides or panaxosides are a class of steroid glycosides and triterpene saponins
derived from Panax ginseng. The major protopanaxadiols include ginsenoside Rb1, Rb2,
Rg3, Rh2, and Rh3, while the major protopanaxatriols are ginsenoside Rg1, Rg2, and
Rh1 [158,159]. To increase their low oral bioavailability and achieve efficient drug release,
several NPs, including liposomes, emulsions, and micelles, have been conjugated with
ginsenosides for cancer therapy [160]. Ren et al. [161] reported that Fe3O4 NPs with
ginsenoside Rg3 (NpRg3) significantly inhibited HCC development and metastasis via
the remodeling of unbalanced gut microbiota and metabolism compared to Rg3 or Fe3O4
alone. Similarly, Qiu et al. [162] reported that Rg3 co-loaded with poly(ethylene glycol)-
block-poly(L-glutamic acid-co-L-phenylalanine) (mPEG-b-P(Glu-co-Phe)) NPs (Rg3-NPs)
significantly reduced proliferating cell nuclear antigen (PCNA) and increased caspase-
7/9/3 compared to Rg3 alone in a colon cancer xenograft mouse model. Kim et al. [44]
revealed that Rh2 hyaluronic acid-functionalized zinc oxide (Rh2HAZnO) enhanced p53,
pp38, Bax, PARP, and ROS production and reduced the expression of Bcl-2 compared to Rh2
alone in A549 lung cancer, HT29 colon cancer, and MCF7 breast cancer cells. Additionally,
Dong et al. [163] demonstrated that folic acid (FA)-modified BSA and Rg5 NPs (FA-Rg5-
BSA NPs) significantly enhanced cellular uptake and apoptotic cell death compared to
the Rg5 or Rg5-BSA NP group in MCF-7 cells and a xenograft mouse model. Overall,
several ginsenosides encapsulated by NPs have been found to exert anticancer effects by
increasing the drug delivery efficiency. However, further study in humans is recommended
to analyze the pharmacodynamic and pharmacokinetic profiles for clinical applications and
the scale-up of ginsenosides, either alone or in combination with classical anticancer drugs.

4.8. Kaempferol

Kaempferol (3,4′,5,7-tetrahydroxyflavone; KPF), a natural flavonol, is present in many
edible plants, such as tea, kale, beans, leek, tomato, strawberries, broccoli, cabbage, and
grapes, and common medicinal plants (Aloe vera, Ginkgo biloba, Rosmarinus officinalis,
Crocus sativus, Hypericum perforatum) [164]. Though KPF is known to have antioxidant,
anti-inflammatory, estrogenic, anxiolytic, analgesic, antimicrobial, cardioprotective, neu-
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roprotective, antidiabetic, and anticancer activities [164,165], it has some shortcomings,
such as poor drug delivery due to low water solubility and bioavailability in clinical ap-
plication [95]. To improve the bioavailability of KPF, it has been used in several types of
NPs in cancer cells. Luo et el. [166] comparatively evaluated the efficacy of five different
types of NPs with the incorporation of KPF, such as poly(ethylene oxide)-poly(propylene
oxide)-poly(ethylene oxide) (PEO-PPO-PEO poly(DL-lactic acid-co-glycolic acid) (PLGA),
PLGA-polyethylenimine (PEI), glycol chitosan, and poly(amidoamine) (PAMAM) den-
drimer in ovarian cancer cells. In A2780/CP70 and OVCAR-3 ovarian cancer cells, PEO-
PPO-PEO and PLGA NPs reduced cell viability, whereas PLGA-PEI, glycol chitosan, and
PAMAM dendrimer NPs did not show significant efficacy, implying that PLGA NPs may
be a promising candidate for cancer treatment. Additionally, Govindaraju et al. reported
that KPF-conjugated gold nanoclusters (K-AuNCs) had stronger cytotoxicity in A549 cells
compared to KPF alone, and they did not damage HK-2 normal kidney cells [167]. Notably,
Chuang et al. [168] suggested that gelatin nanoparticles (GNPs) with KPF encapsulation
(GNP-KA) inhibited the viability and migration of human umbilical vein endothelial cells
(HUVECs) and suppressed vessel formation in mice cornea compared to KPF alone via the
inhibition of MMP-2, MMP-9, and VEGF. Interestingly, Colombo et al. [169] reported that
a KPF-loaded mucoadhesive nanoemulsion (KPF-MNE) more effectively permeated the
mucosa, and the retention of KPF in the nasal mucosa was significantly improved, making
it an effective therapeutic candidate for glioma treatment. Overall, NPs with materials such
as polymers, metals, lipids, and gelatin encapsulated with KPF enhanced the antitumor
efficacy of KPF without harming normal cells, implying that polymeric, lipid, metal, and
gelatin NPs with KPF are potent antitumor candidates for cancer therapy.

4.9. Lycopene

Lycopene (LYC), a member of the carotenoid family that naturally occurs in tomatoes
and guava watermelon, is known to have anticancer activity in prostate, colorectal, and
gastric cancers [170]. To enhance its efficacy and bioavailability, several types of NPs have
been used with lycopene in cancer therapy [171]. Vasconcelos et al. [172] demonstrated
that poly(ε-caprolactone) lipid-core NPs containing lycopene-rich extract from red guava
(nano-LEG) were more effective and safe in MCF-7 breast cancer cells compared to the LYC
control via the inhibition of NF-kB activation and ROS production. Similarly, Jain et al. [173]
reported that lycopene-loaded solid lipid NPs (LYC-SLNs) exerted a synergistic effect with
methotrexate in MCF-7 breast cancer cells, and cellular uptake of LYC-SLNs was higher
compared to LYC alone. Furthermore, Jain et al. [173] demonstrated that LYC-loaded whey
protein NPs (LYC-WPI-NPs) enhanced the bioavailability and prophylactic effect of LYC
in MCF-7 breast cancer cells compared to LYC alone. Similarly, the results reported by
Huang et al. [174] suggest that a nanoemulsion of LYC and gold nanoparticles (AN) has
potential as a potent therapeutic agent against colon cancer. The AN–LYC nanoemulsion
significantly reduced the expression of procaspases-8, -3, and -9, PARP-1, Bcl-2, Akt, NF-κB,
and pro-MMP-2/9 and enhanced the expression of Bax and E-cadherin. Overall, lycopene
encapsulated with lipid, metal, and polymeric NPs appear to be more potent antitumor
agents than lycopene alone in prostate, ovarian, lung, and breast cancers.

4.10. Resveratrol

Resveratrol (RES), a non-flavonoid polyphenol and a phytoestrogen, is known to have
antioxidant, anti-inflammatory, cardioprotective, anticancer, and anti-multidrug resistance
(MDR) effects [175,176]. However, since the poor bioavailability of resveratrol in humans
has been a critical issue, recent studies have focused on its delivery system, formulation,
and interaction with other compounds [177]. Senthil Kumar et al. [178] demonstrated that
chitosan-coated-transresveratrol (RSV) and ferulic acid (FER)-loaded solid lipid nanopar-
ticles (SLNs) conjugated with folic acid (FA) (C-RSV-FER-FA-SLNs) exhibited enhanced
cytotoxic activity and G0/G1 stage arrest compared to free RSV-FER or RSV-FER-SLNs in
HT-29 colon cancer cells. Furthermore, Park et al. [179] reported that resveratrol-capped
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gold nanoparticles (Rev-AuNPs) inhibited breast cancer progression via the suppression
of NF-kB, AP-1, Akt, ERK, MMP-9, and COX-2 and the upregulation of HO-1 compared
to RES alone in MCF-7 breast cancer cells. Furthermore, Song et al. [180] demonstrated
that epidermal growth factor-modified docetaxel and RES co-encapsulated lipid-polymeric
hybrid NPs (EGF DTX/RSV LPNs) significantly inhibited the viability and proliferation of
HCC827 and NCIH2135 non-small cell lung cancer cells (NSCLCs) compared to DTX/RSV
LPNs or free DTX/RSVDTX. Similarly, Wang et al. [181] reported that resveratrol-loaded
solid lipid nanoparticles (RES-SLNs) induced enhanced apoptosis via the upregulated
ratio of Bax/Bcl-2 and the suppression of cyclin D1 and c-Myc compared to RES alone in
MDA-MB-231 cells. Karthikeyan et al. [182] reported that the anticancer effects of RES-
loaded gelatin nanoparticles (RSV-GNPs) were improved in NCI-H460 cells compared to
resveratrol alone via the upregulation of Bax, p53, p21, and caspase-3; the downregulation
of Bcl-2 and NF-κB; and G0/G1 arrest. Similarly, Guo et al. [183] revealed that resveratrol–
bovine serum albumin nanoparticles (RES-BSANP) induced apoptosis via the activation
of apoptosis-inducing factor (AIF), cytochrome c, and Bax in SKOV3 ovarian cancer cells.
Furthermore, Fan et al. [184] reported that resveratrol-loaded oxidized mesoporous carbon
nanoparticles (oMCNs-RES) showed better cytotoxicity and promoted the drug loading
efficiency and solubility of RES compared to resveratrol alone in MDA-MB-231 breast can-
cer cells. Overall, combining RES with NPs containing materials such as polymers, lipids,
proteins, carbon nanotubes, and metals enhances the antitumor effects of RES by improving
drug delivery and bioavailability, suggesting the potential for further clinical triald of RES
NPs in cancer patients in the future. Overall, the potency of the nano-phytochemicals men-
tioned in this review has been verified, and thus, they are worthy of further development
for clinical translation. Additionally, the molecular mechanism of action, pharmacokinetic
profiles, toxicological profiles of nano-phytochemicals should be further explored, though
nano-phytochemicals bring benefits in cancer therapy via efficient drug delivery, stability,
EPR effect and low clearance by RES.
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Table 1. Efficacy and molecular mechanism of nano-phytochemicals in several cancers.

Botanical Name Natural
Compound Structure Type of Nanoparticles Efficacy Mechanism Concentration Cancer Cell Line References

Anacardium
occidentale Anacardic acid
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cylcinD1, c-Myc, TWIST1, MMP-2↓ 

EGCG: 12.5, 25 μM 
EGCG-NPs: 12.5, 25 μM 

Lung cancer A549, H1299 [140] 

Lipid 
(EB-SLN) 

Apoptosis↑ 
Migration↓ 

 
EGCG: 65.4 ± 4.9 μg/mL 
EGCG-SLN: 6.9 ± 1.1 μg/mL 
EB-SLN: 3.2 ± 1.7 μg/mL 

Breast cancer 
MDA-MB-231, 
B16F10 in vivo 
(C57/BL6 mice) 

[142] 

Lipid 
(NLC-RGD) 

Apoptosis↑  EGCG-loaded NLC-RGD: 45 μg/mL Breast cancer MDA-MB-231 [143] 

Protein 
(EGCG-loaded BSA-
MNPs) 

Apoptosis↑ 
ROS↑ 

Nrf2↑→Keap1↓→HO-1↑→ Bcl-2↓, Bax↑, 
Bak↑, Bim↑, puma↑ 

EGCG-loaded BSA-MNPs: 8μM Lung cancer A549 [141] 

Polymer
(PLGA-mPEG)

Apoptosis↑
ROS↑
tumor volume↓

ROS↑
GEM NP: 17.59 ± 2.91 ng/mL
GEM+BA NP: 7.62 ± 0.84 ng/mL
2~8.5 mg/kg

Pancreatic cancer
in vivo

Panc1
Ehrlich tumor model [128]

Polymer
(B-PLAG) Apoptosis↑ i-NOS↓ Bcl-2↓, Bcl-xl↓, BAD↑

→ c-caspase3, c-caspase9↑
Betulinic acid: 100 mg/kg
B-PLAG: 100 mg/kg Liver cancer in vivo [130]

Lipid
(BA-loaded
magnetoliposomes)

Apoptosis↑
Migration↓ 25 µM Breast cancer MDA-MB-231,

MCF7 [129]

Curcuma longa Curcumin
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Botanical Name 
Natural  
Compound 

Structure 
Type of Nanoparti-
cles 

Efficacy Mechanism Concentration Cancer Cell Line References 

Anacardium  
occidentale  

Anacardic acid 

 

Protein 
(Docetaxel-loaded 
AA-GEM-BSA) 

Apoptosis↑ 
Tumor size↓ 

HSP90, Hsp70, GRP78, Hsp70, CDK-4, 
MMP-9, Bcl-2, and Mcl-1↓ 

AA-GEM-BSA NP: 10, 15, 20 ug/mL;  
BSA NP: 10, 15, 20 ug/mL; 
In vivo: 0.5 mg/mL 

Breast cancer 
in vivo 

MCF-7,  
MDA-MB-231 
DMBA induced 
breast cancer 
model 

[125] 

Betula pubescens Betulinic acid 

 

Polymer 
(PLGA-mPEG) 

Apoptosis↑ 
ROS↑ 
tumor volume↓ 

ROS↑ 
GEM NP: 17.59 ± 2.91 ng/mL 
GEM+BA NP: 7.62 ± 0.84 ng/mL 
2~8.5 mg/kg 

Pancreatic cancer 
in vivo 

Panc1 
Ehrlich tumor 
model 

[128] 

Polymer 
(B-PLAG) 

Apoptosis↑ 
i-NOS↓ Bcl-2↓, Bcl-xl↓, BAD↑  
→ c-caspase3, c-caspase9↑  

Betulinic acid: 100 mg/kg 
B-PLAG: 100 mg/kg 

Liver cancer in vivo [130] 

Lipid 
(BA-loaded magne-
toliposomes) 

Apoptosis↑ 
Migration↓ 

 25 μM Breast cancer 
MDA-MB-231, 
MCF7 

[129] 

Curcuma longa Curcumin 

 

Polymer 
(CLCs) 

Proliferation↓  
Apoptosis↑ 

Bax ↑, Bcl-2 ↓ 

CLCsNPs: Caski→154.59 ug/mL,  
C33A→144.77 ug/mL, 
Hela→166.49 ug/mL, 
SiHa→188.55 ug/mL 

Cervical cancer 
Caski, C33A,  
HeLA, SiHa 

[136] 

Polymer 
(chitosan/PEG-CUR) 

Apoptosis↑ 
Invasion↓ 
Migration↓ 

Bax ↑, Bcl-2 ↓→ c-caspase-3 ↑ → c-PARP ↑ 
Curcumin: 10 uM 
chitosan/PEG-CUR: 10 uM 

Pancreatic cancer 
PANC-1,  
Mia Paca-2 

[135] 

Lipid 
(Liposomal-CUR) 

Proliferation↓ 
Apoptosis↑ 
Angiogenesis↓ 

CD31↓, VEGF↓, IL-8↓, PARP↑ 
10 μmol/L 
In vivo: 40 mg/kg Colorectal cancer 

Colo205 
LoVo  [133] 

Lipid 
(EPC-CUR) 

Apoptosis↑  molar ratio of curcumin/EPC 1:14 Colorectal cancer HCT116, HCT15 [134] 

Lipid  
curcumin-resvera-
trol-gelucire 50/13-
HPβCD (CRG-CD) 

Apoptosis↑ 
Proliferation↓ 

 
CUR-RES-gelucire 50/13-HPβCD  
: 9.9 μM 
CUR-RES-gelucire 50/13: 6.9 μM 

Colorectal cancer HCT116 [137] 

Camellia sinensis EGCG 

 

Polymeric 
(EGCG-Loaded 
FU/HA/PEG-Gelatin 
NPs) 

Apoptosis↑ 
Anti-tumor  
efficacy↑ 

 
FU/HA/PEG-gelatin/EGCG:CU = 
0.600:0.600:3.750:1.000:0.025 

Prostate cancer Luc PC3 [139] 

Polymer 
(EGCG-PLGA-NP) 

Apoptosis↑ 
Proliferation↓ 

NF-κB↓→ Bcl-2, Bcl-xL, COX-2, TNF-α,  
cylcinD1, c-Myc, TWIST1, MMP-2↓ 

EGCG: 12.5, 25 μM 
EGCG-NPs: 12.5, 25 μM 

Lung cancer A549, H1299 [140] 

Lipid 
(EB-SLN) 

Apoptosis↑ 
Migration↓ 

 
EGCG: 65.4 ± 4.9 μg/mL 
EGCG-SLN: 6.9 ± 1.1 μg/mL 
EB-SLN: 3.2 ± 1.7 μg/mL 

Breast cancer 
MDA-MB-231, 
B16F10 in vivo 
(C57/BL6 mice) 

[142] 

Lipid 
(NLC-RGD) 

Apoptosis↑  EGCG-loaded NLC-RGD: 45 μg/mL Breast cancer MDA-MB-231 [143] 

Protein 
(EGCG-loaded BSA-
MNPs) 

Apoptosis↑ 
ROS↑ 

Nrf2↑→Keap1↓→HO-1↑→ Bcl-2↓, Bax↑, 
Bak↑, Bim↑, puma↑ 

EGCG-loaded BSA-MNPs: 8μM Lung cancer A549 [141] 

Polymer
(CLCs)

Proliferation↓
Apoptosis↑ Bax ↑, Bcl-2 ↓

CLCsNPs: Caski→154.59 ug/mL,
C33A→144.77 ug/mL,
Hela→166.49 ug/mL,
SiHa→188.55 ug/mL

Cervical cancer Caski, C33A,
HeLA, SiHa [136]

Polymer
(chitosan/PEG-CUR)

Apoptosis↑
Invasion↓
Migration↓

Bax ↑, Bcl-2 ↓→ c-caspase-3 ↑
→ c-PARP ↑

Curcumin: 10 uM
chitosan/PEG-CUR: 10 uM Pancreatic cancer PANC-1,

Mia Paca-2 [135]

Lipid
(Liposomal-CUR)

Proliferation↓
Apoptosis↑
Angiogenesis↓

CD31↓, VEGF↓, IL-8↓,
PARP↑

10 µmol/L
In vivo: 40 mg/kg Colorectal cancer Colo205

LoVo [133]

Lipid
(EPC-CUR) Apoptosis↑ molar ratio of curcumin/EPC 1:14 Colorectal cancer HCT116, HCT15 [134]

Lipid
curcumin-resveratrol-
gelucire 50/13-HPβCD
(CRG-CD)

Apoptosis↑
Proliferation↓

CUR-RES-gelucire 50/13-HPβCD
: 9.9 µM
CUR-RES-gelucire 50/13: 6.9 µM

Colorectal cancer HCT116 [137]

Camellia sinensis EGCG

Int. J. Mol. Sci. 2021, 22, x FOR PEER REVIEW 14 of 27 
 

 

Table 1. Efficacy and molecular mechanism of nano-phytochemicals in several cancers. 

Botanical Name 
Natural  
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Structure 
Type of Nanoparti-
cles 

Efficacy Mechanism Concentration Cancer Cell Line References 

Anacardium  
occidentale  

Anacardic acid 

 

Protein 
(Docetaxel-loaded 
AA-GEM-BSA) 

Apoptosis↑ 
Tumor size↓ 

HSP90, Hsp70, GRP78, Hsp70, CDK-4, 
MMP-9, Bcl-2, and Mcl-1↓ 

AA-GEM-BSA NP: 10, 15, 20 ug/mL;  
BSA NP: 10, 15, 20 ug/mL; 
In vivo: 0.5 mg/mL 

Breast cancer 
in vivo 

MCF-7,  
MDA-MB-231 
DMBA induced 
breast cancer 
model 

[125] 

Betula pubescens Betulinic acid 

 

Polymer 
(PLGA-mPEG) 

Apoptosis↑ 
ROS↑ 
tumor volume↓ 

ROS↑ 
GEM NP: 17.59 ± 2.91 ng/mL 
GEM+BA NP: 7.62 ± 0.84 ng/mL 
2~8.5 mg/kg 

Pancreatic cancer 
in vivo 

Panc1 
Ehrlich tumor 
model 

[128] 

Polymer 
(B-PLAG) 

Apoptosis↑ 
i-NOS↓ Bcl-2↓, Bcl-xl↓, BAD↑  
→ c-caspase3, c-caspase9↑  

Betulinic acid: 100 mg/kg 
B-PLAG: 100 mg/kg 

Liver cancer in vivo [130] 

Lipid 
(BA-loaded magne-
toliposomes) 

Apoptosis↑ 
Migration↓ 

 25 μM Breast cancer 
MDA-MB-231, 
MCF7 

[129] 

Curcuma longa Curcumin 

 

Polymer 
(CLCs) 

Proliferation↓  
Apoptosis↑ 

Bax ↑, Bcl-2 ↓ 

CLCsNPs: Caski→154.59 ug/mL,  
C33A→144.77 ug/mL, 
Hela→166.49 ug/mL, 
SiHa→188.55 ug/mL 

Cervical cancer 
Caski, C33A,  
HeLA, SiHa 

[136] 

Polymer 
(chitosan/PEG-CUR) 

Apoptosis↑ 
Invasion↓ 
Migration↓ 

Bax ↑, Bcl-2 ↓→ c-caspase-3 ↑ → c-PARP ↑ 
Curcumin: 10 uM 
chitosan/PEG-CUR: 10 uM 

Pancreatic cancer 
PANC-1,  
Mia Paca-2 

[135] 

Lipid 
(Liposomal-CUR) 

Proliferation↓ 
Apoptosis↑ 
Angiogenesis↓ 

CD31↓, VEGF↓, IL-8↓, PARP↑ 
10 μmol/L 
In vivo: 40 mg/kg Colorectal cancer 

Colo205 
LoVo  [133] 

Lipid 
(EPC-CUR) 

Apoptosis↑  molar ratio of curcumin/EPC 1:14 Colorectal cancer HCT116, HCT15 [134] 

Lipid  
curcumin-resvera-
trol-gelucire 50/13-
HPβCD (CRG-CD) 

Apoptosis↑ 
Proliferation↓ 

 
CUR-RES-gelucire 50/13-HPβCD  
: 9.9 μM 
CUR-RES-gelucire 50/13: 6.9 μM 

Colorectal cancer HCT116 [137] 

Camellia sinensis EGCG 

 

Polymeric 
(EGCG-Loaded 
FU/HA/PEG-Gelatin 
NPs) 

Apoptosis↑ 
Anti-tumor  
efficacy↑ 

 
FU/HA/PEG-gelatin/EGCG:CU = 
0.600:0.600:3.750:1.000:0.025 

Prostate cancer Luc PC3 [139] 

Polymer 
(EGCG-PLGA-NP) 

Apoptosis↑ 
Proliferation↓ 

NF-κB↓→ Bcl-2, Bcl-xL, COX-2, TNF-α,  
cylcinD1, c-Myc, TWIST1, MMP-2↓ 

EGCG: 12.5, 25 μM 
EGCG-NPs: 12.5, 25 μM 

Lung cancer A549, H1299 [140] 

Lipid 
(EB-SLN) 

Apoptosis↑ 
Migration↓ 

 
EGCG: 65.4 ± 4.9 μg/mL 
EGCG-SLN: 6.9 ± 1.1 μg/mL 
EB-SLN: 3.2 ± 1.7 μg/mL 

Breast cancer 
MDA-MB-231, 
B16F10 in vivo 
(C57/BL6 mice) 

[142] 

Lipid 
(NLC-RGD) 

Apoptosis↑  EGCG-loaded NLC-RGD: 45 μg/mL Breast cancer MDA-MB-231 [143] 

Protein 
(EGCG-loaded BSA-
MNPs) 

Apoptosis↑ 
ROS↑ 

Nrf2↑→Keap1↓→HO-1↑→ Bcl-2↓, Bax↑, 
Bak↑, Bim↑, puma↑ 

EGCG-loaded BSA-MNPs: 8μM Lung cancer A549 [141] 

Polymeric
(EGCG-Loaded
FU/HA/PEG-Gelatin NPs)

Apoptosis↑
Anti-tumor
efficacy↑

FU/HA/PEG-gelatin/EGCG:CU =
0.600:0.600:3.750:1.000:0.025 Prostate cancer Luc PC3 [139]

Polymer
(EGCG-PLGA-NP)

Apoptosis↑
Proliferation↓

NF-κB↓→ Bcl-2, Bcl-xL,
COX-2, TNF-α,
cylcinD1, c-Myc, TWIST1,
MMP-2↓

EGCG: 12.5, 25 µM
EGCG-NPs: 12.5, 25 µM Lung cancer A549, H1299 [140]

Lipid
(EB-SLN)

Apoptosis↑
Migration↓

EGCG: 65.4 ± 4.9 µg/mL
EGCG-SLN: 6.9 ± 1.1 µg/mL
EB-SLN: 3.2 ± 1.7 µg/mL

Breast cancer MDA-MB-231, B16F10
in vivo (C57/BL6 mice) [142]

Lipid
(NLC-RGD) Apoptosis↑ EGCG-loaded NLC-RGD: 45 µg/mL Breast cancer MDA-MB-231 [143]

Protein
(EGCG-loaded BSA-MNPs)

Apoptosis↑
ROS↑

Nrf2↑→Keap1↓→HO-1↑→
Bcl-2↓, Bax↑, Bak↑, Bim↑,
puma↑

EGCG-loaded BSA-MNPs: 8 µM Lung cancer A549 [141]

Metal
(GNPs) Apoptosis↑

Bcl-2↓, Bcl-xL↓, Bax,
c-caspase7↑, c-caspase3↑
NF-kb/p65↓ (Nuclear)

50 µg/mL Breast cancer
Prostate cancer

MCF10-A,
MDA-MB-231,
RWPE1, PC3

[144]
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Metal  
(GNPs) 

Apoptosis↑ 
Bcl-2↓, Bcl-xL↓, Bax, c-caspase7↑, c-caspase3↑ 
NF-kb/p65↓ (Nuclear) 

50 μg/mL 
Breast cancer 
Prostate cancer 

MCF10-A,  
MDA-MB-231, 
RWPE1, PC3 

[144] 

Ferula communis Ferulic acid 

 

Polymer 
(chitosan-SLNs) 

Apoptosis↑  
Tumor growth↓ 

PCNA, Ki67↓, p-ERK1/2↑→p21, p-Rb ↑ 
In vitro: 40 and 25 μM of FA and ASP 
In vivo: 75 and 25 mg/kg of FA and ASP 

Pancreatic cancer 
PANC-1,  
MIA-PaCa-2 

[150] 

Metal 
(FA-Se) 

Apoptosis↑ 
ROS↑ 

MMP↓ 
Caspase 3, Caspase 9 activation ↑ 

FA-Se-NPs: 5, 10, 20 μg/ml Liver cancer HepG2 [148] 

Metal 
(ZnO) 

Cell cycle arrest↑ 
Apoptosis↑ 
Nodular  
formation↓ 

ROS↑, MMP↓,  
DNA damage↑→ Bcl-2↓, Bcl-xL↓, Bax↑, Bad↑,  
c-caspase-3↑, c-PARP↑,  

 Liver cancer HepG2, Huh-7 [149] 

Garcinia hanburyi Gambogic acid 

 

Polymer 
(Met-PEA-PEG) 

ROS↑Prolifera-
tion↓Apoptosis↑ 

 0.1~1.0 μg/mL 
Prostate cancer 
Cervical cancer em-
bryo 

PC3, 
Hela, NIH 3T3 

[154] 

Polymer 
(PEI-PLGA) 

Proliferation↓ 
Apoptosis↑ 

pTRAIL/GA-HA/PPNPs → caspase3↑, caspase8↑, 
survivin↓, Bcl-2↓ 

0.0125~1 μM Breast cancer 
MCF-7,  
MDA-MB-231, 4T1 

[155] 

Polymer 
(Arg-PEUUs) 

Migration ↓ 
Invasion ↓ 

FA/Arg/GA/PEUU → MMP-2, MMP-9↓ GA: 0.6 μg/mL 
Cervical cancer 
Lung cancer 
Colorectal cancer 

Hela,  
A549 
HCT116 

[156] 

Metal 
(Fe3O4) 

Proliferation↓ 
Apoptosis↑ 

PI3K↓→ Akt↓→Bad↓→caspase9,3↑ 0.25~0.75 μg/mL Colorectal cancer LoVo [157] 

Panax ginseng 

Ginsenoside Rg3 

 

Lipid 
(mPEG-b-P(Glu-co-
Phe)) 

Apoptosis ↑ 
Proliferation↓ 

PCNA↓, caspase3↑ Rg3-NPs: 50 μg/mL −1 Colorectal cancer 
SW480, SW620,  
CL40, CCD-18Co 

[162] 

Metal 
(Fe3O4-NpRg3) 

Survival↑ 
Proliferation↓ 
Invasion↓ 
Immune response↑ 

 
Fe3O4 : 70 mg kg−1 

Rg3 : 70 mg kg−1 

Fe3O4-Rg3 : 70 mg kg−1 
in vivo in vivo [161] 

Ginsenoside Rg5 

 

Protein 
(FA-Rg5-BSA NP) 

Apoptosis ↑ 
Proliferation↓ 
Tumor growth ↓ 
Cellular uptake↑ 

Rg5-BSA NP(pH7.4) < FA-Rg5-BSA NP(pH7.4) 
FA-Rg5-BSA: 50 μM, 0.5 mg/kg  
Rg5-BSA: 50 μM, 0.5 mg/kg  

Breast cancer 
Mouse fibroblast cell  

MCF-7 
L929  

[163] 

Ginsenoside Rh2 

 

Carbon 
(Rh2HAZnO) 

ROS↑ 
Apoptosis ↑ 

MAPK, p38↑, p53↑→caspase7↑, caspase9↑, 
BAX↑, ROS↑, PARP↑ 

Rh2HAZnO: 20 μg/mL 
Lung cancer 
Colorectal cancer 
Breast cancer 

A549, 
HT29, 
MCF7 

[44] 

Polymer
(chitosan-SLNs)

Apoptosis↑
Tumor growth↓

PCNA, Ki67↓,
p-ERK1/2↑→p21, p-Rb ↑

In vitro: 40 and 25 µM of FA and
ASPIn vivo: 75 and 25 mg/kg of FA
and ASP

Pancreatic cancer PANC-1,
MIA-PaCa-2 [150]

Metal
(FA-Se)

Apoptosis↑
ROS↑

MMP↓
Caspase 3, Caspase 9
activation ↑

FA-Se-NPs: 5, 10, 20 µg/ml Liver cancer HepG2 [148]

Metal
(ZnO)

Cell cycle arrest↑
Apoptosis↑
Nodular
formation↓

ROS↑, MMP↓,
DNA damage↑→ Bcl-2↓,
Bcl-xL↓, Bax↑, Bad↑,
c-caspase-3↑, c-PARP↑,

Liver cancer HepG2, Huh-7 [149]

Garcinia hanburyi Gambogic acid
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Metal  
(GNPs) 

Apoptosis↑ 
Bcl-2↓, Bcl-xL↓, Bax, c-caspase7↑, c-caspase3↑ 
NF-kb/p65↓ (Nuclear) 

50 μg/mL 
Breast cancer 
Prostate cancer 

MCF10-A,  
MDA-MB-231, 
RWPE1, PC3 

[144] 

Ferula communis Ferulic acid 

 

Polymer 
(chitosan-SLNs) 

Apoptosis↑  
Tumor growth↓ 

PCNA, Ki67↓, p-ERK1/2↑→p21, p-Rb ↑ 
In vitro: 40 and 25 μM of FA and ASP 
In vivo: 75 and 25 mg/kg of FA and ASP 

Pancreatic cancer 
PANC-1,  
MIA-PaCa-2 

[150] 

Metal 
(FA-Se) 

Apoptosis↑ 
ROS↑ 

MMP↓ 
Caspase 3, Caspase 9 activation ↑ 

FA-Se-NPs: 5, 10, 20 μg/ml Liver cancer HepG2 [148] 

Metal 
(ZnO) 

Cell cycle arrest↑ 
Apoptosis↑ 
Nodular  
formation↓ 

ROS↑, MMP↓,  
DNA damage↑→ Bcl-2↓, Bcl-xL↓, Bax↑, Bad↑,  
c-caspase-3↑, c-PARP↑,  

 Liver cancer HepG2, Huh-7 [149] 

Garcinia hanburyi Gambogic acid 

 

Polymer 
(Met-PEA-PEG) 

ROS↑Prolifera-
tion↓Apoptosis↑ 

 0.1~1.0 μg/mL 
Prostate cancer 
Cervical cancer em-
bryo 

PC3, 
Hela, NIH 3T3 

[154] 

Polymer 
(PEI-PLGA) 

Proliferation↓ 
Apoptosis↑ 

pTRAIL/GA-HA/PPNPs → caspase3↑, caspase8↑, 
survivin↓, Bcl-2↓ 

0.0125~1 μM Breast cancer 
MCF-7,  
MDA-MB-231, 4T1 

[155] 

Polymer 
(Arg-PEUUs) 

Migration ↓ 
Invasion ↓ 

FA/Arg/GA/PEUU → MMP-2, MMP-9↓ GA: 0.6 μg/mL 
Cervical cancer 
Lung cancer 
Colorectal cancer 

Hela,  
A549 
HCT116 

[156] 

Metal 
(Fe3O4) 

Proliferation↓ 
Apoptosis↑ 

PI3K↓→ Akt↓→Bad↓→caspase9,3↑ 0.25~0.75 μg/mL Colorectal cancer LoVo [157] 

Panax ginseng 

Ginsenoside Rg3 

 

Lipid 
(mPEG-b-P(Glu-co-
Phe)) 

Apoptosis ↑ 
Proliferation↓ 

PCNA↓, caspase3↑ Rg3-NPs: 50 μg/mL −1 Colorectal cancer 
SW480, SW620,  
CL40, CCD-18Co 

[162] 

Metal 
(Fe3O4-NpRg3) 

Survival↑ 
Proliferation↓ 
Invasion↓ 
Immune response↑ 

 
Fe3O4 : 70 mg kg−1 

Rg3 : 70 mg kg−1 

Fe3O4-Rg3 : 70 mg kg−1 
in vivo in vivo [161] 

Ginsenoside Rg5 

 

Protein 
(FA-Rg5-BSA NP) 

Apoptosis ↑ 
Proliferation↓ 
Tumor growth ↓ 
Cellular uptake↑ 

Rg5-BSA NP(pH7.4) < FA-Rg5-BSA NP(pH7.4) 
FA-Rg5-BSA: 50 μM, 0.5 mg/kg  
Rg5-BSA: 50 μM, 0.5 mg/kg  

Breast cancer 
Mouse fibroblast cell  

MCF-7 
L929  

[163] 

Ginsenoside Rh2 

 

Carbon 
(Rh2HAZnO) 

ROS↑ 
Apoptosis ↑ 

MAPK, p38↑, p53↑→caspase7↑, caspase9↑, 
BAX↑, ROS↑, PARP↑ 

Rh2HAZnO: 20 μg/mL 
Lung cancer 
Colorectal cancer 
Breast cancer 

A549, 
HT29, 
MCF7 

[44] 

Polymer
(Met-PEA-PEG)

ROS↑
Proliferation↓
Apoptosis↑

0.1~1.0 µg/mL
Prostate cancer
Cervical cancer
embryo

PC3,
Hela, NIH 3T3 [154]

Polymer
(PEI-PLGA)

Proliferation↓
Apoptosis↑

pTRAIL/GA-HA/PPNPs→
caspase3↑, caspase8↑,
survivin↓, Bcl-2↓

0.0125~1 µM Breast cancer MCF-7,
MDA-MB-231, 4T1 [155]

Polymer
(Arg-PEUUs)

Migration ↓
Invasion ↓

FA/Arg/GA/PEUU→
MMP-2, MMP-9↓ GA: 0.6 µg/mL

Cervical cancer
Lung cancer
Colorectal cancer

Hela,
A549
HCT116

[156]

Metal
(Fe3O4)

Proliferation↓
Apoptosis↑

PI3K↓→
Akt↓→Bad↓→caspase9,3↑ 0.25~0.75 µg/mL Colorectal cancer LoVo [157]

Panax ginseng

Ginsenoside Rg3
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Metal  
(GNPs) 

Apoptosis↑ 
Bcl-2↓, Bcl-xL↓, Bax, c-caspase7↑, c-caspase3↑ 
NF-kb/p65↓ (Nuclear) 

50 μg/mL 
Breast cancer 
Prostate cancer 

MCF10-A,  
MDA-MB-231, 
RWPE1, PC3 

[144] 

Ferula communis Ferulic acid 

 

Polymer 
(chitosan-SLNs) 

Apoptosis↑  
Tumor growth↓ 

PCNA, Ki67↓, p-ERK1/2↑→p21, p-Rb ↑ 
In vitro: 40 and 25 μM of FA and ASP 
In vivo: 75 and 25 mg/kg of FA and ASP 

Pancreatic cancer 
PANC-1,  
MIA-PaCa-2 

[150] 

Metal 
(FA-Se) 

Apoptosis↑ 
ROS↑ 

MMP↓ 
Caspase 3, Caspase 9 activation ↑ 

FA-Se-NPs: 5, 10, 20 μg/ml Liver cancer HepG2 [148] 

Metal 
(ZnO) 

Cell cycle arrest↑ 
Apoptosis↑ 
Nodular  
formation↓ 

ROS↑, MMP↓,  
DNA damage↑→ Bcl-2↓, Bcl-xL↓, Bax↑, Bad↑,  
c-caspase-3↑, c-PARP↑,  

 Liver cancer HepG2, Huh-7 [149] 

Garcinia hanburyi Gambogic acid 

 

Polymer 
(Met-PEA-PEG) 

ROS↑Prolifera-
tion↓Apoptosis↑ 

 0.1~1.0 μg/mL 
Prostate cancer 
Cervical cancer em-
bryo 

PC3, 
Hela, NIH 3T3 
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Polymer 
(PEI-PLGA) 

Proliferation↓ 
Apoptosis↑ 

pTRAIL/GA-HA/PPNPs → caspase3↑, caspase8↑, 
survivin↓, Bcl-2↓ 

0.0125~1 μM Breast cancer 
MCF-7,  
MDA-MB-231, 4T1 
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(Arg-PEUUs) 

Migration ↓ 
Invasion ↓ 

FA/Arg/GA/PEUU → MMP-2, MMP-9↓ GA: 0.6 μg/mL 
Cervical cancer 
Lung cancer 
Colorectal cancer 

Hela,  
A549 
HCT116 
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Metal 
(Fe3O4) 

Proliferation↓ 
Apoptosis↑ 

PI3K↓→ Akt↓→Bad↓→caspase9,3↑ 0.25~0.75 μg/mL Colorectal cancer LoVo [157] 

Panax ginseng 

Ginsenoside Rg3 

 

Lipid 
(mPEG-b-P(Glu-co-
Phe)) 

Apoptosis ↑ 
Proliferation↓ 

PCNA↓, caspase3↑ Rg3-NPs: 50 μg/mL −1 Colorectal cancer 
SW480, SW620,  
CL40, CCD-18Co 
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Metal 
(Fe3O4-NpRg3) 
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Invasion↓ 
Immune response↑ 

 
Fe3O4 : 70 mg kg−1 

Rg3 : 70 mg kg−1 

Fe3O4-Rg3 : 70 mg kg−1 
in vivo in vivo [161] 
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(FA-Rg5-BSA NP) 
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Tumor growth ↓ 
Cellular uptake↑ 
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Ginsenoside Rh2 
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Table 1. Cont.

Botanical Name Natural
Compound Structure Type of Nanoparticles Efficacy Mechanism Concentration Cancer Cell Line References
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Crocus sativus Kaempferol 

 

Polymer 
(kaempferol-PEO-
PPO-PEO, 
kaempferol-PLAG) 

Proliferation↓ Efficacy:  
Kaempferol < K-PEO-PPO-PEO,K- PLAG 

PEO-PPO-PEO: 25 μM 
PLGA: 25 μM 
PLAG-PEI: 25 μM 
Chitosan: 25 μM 
PAMAM: 25 μM 
Kaempferol: 25 μM 

Ovarian surface epithe-
lial cell 
Ovarian cancer 

IOSE397, 
A2780/CP70, 
OVCAR-3 

[166] 

Lipid 
(KPF-MNE) 

Proliferation↓ 
Cellular uptake↑ 
Apoptosis↑  

 KPF: 1 μM 
KPF-MNE: 1 μM Glioma cell 

C6 rat 
ex vivo 
in vivo 

[169] 

Metal 
(K-AuNCs) 

Proliferation↓ 
Cytotoxicity↑  K-Au: 12.5 μg/mL Lung cancer HK-2 

A549 [168] 

Gelatin 
(GNP-KA) 

Proliferation↓ 
Angiogenesis↓ MMP-2, MMP-9, VEGF↓ KA: 7.4 μg/mL 

GNP-KA: 150 μg/mL 
Human umbilical vascu-
lar cells 

HUVEC 
in vivo [167] 

Solanum lycopersicum  Lycopene 

 

Polymeric 
(LYC-WPI-NPs) 

Apoptosis↑ 
Bioavailability↑ 
ROS↑ 

 LYC-WPI-NPs: 15.0 mg/kg/animal  in vivo MCF-7 
in vivo [173] 

Lipid 
(poly-ɛ-caprolactone 
lipid-core) 

ROS↑ ROS↑→ NF-κB↓ NanoLEG: 200 μg/mL Breast cancer MCF-7 
HMC-3 [172] 

Metal 
(rGO-AgNPs) + TSA 

ROS↑ 
Apoptosis↑ 
DNA damage↑ 

MDA↑ GSH↓ 
MMP↓ 
p53↑→Bax↑, Bak↑→Bcl-2↓ 
Rad51↑→ γH2AX↑ 

rGO-Ag: 0.30 µM 
TSA: 0.20 µM Ovarian cancer SKOV3 [185] 

Metal 
(LP–AN) Apoptosis↑ BcL-2↓ Bax↑→ caspase 8, 3, 9, PARP-1↑ 

AKT↓→β-catenin↓→ NF-κB↓→MMP-2, MMP-9↓ 
AN: 0.16 ppm  
LP: 0.4 μM 

Colorectal cancer 
Lung fibroblast  

 HT-29 
 MRC-5 [174] 

Vitis vinifera Resveratrol 

 

Polymer (Chitosan-
coated RSV-FER-FA-
SLNs) 

Apoptosis↑Cell cycle 
arrest↑  

CyclinD1, cdk2, cdk4, cdk6, cyclinE, cyclinB↓cyto-
chrome C↑→ c-caspase9↑→ c-caspase3↑ 

C-RSV-FER-FA-SLN: 10 μg/mL RSV-FER-
FA-SLN: 25 μg/mL  Colorectal Cancer HT-29  [178] 

Lipid 
(EGF DTX/ 
RSV LPNs) 

Apoptosis↑ 
Proliferation ↓  In vivo: EGF DTX/RSV LPN: 50 mg/kg 

In vitro: 0~100 μg/mL Lung cancer HCC827, NCIH2135 
in vivo [180] 

Lipid  
(Res-SLN) 

Proliferation ↓ 
Migration ↓ 
Invasion ↓ 
Apoptosis ↑ 

c-Myc↓→ Bax/Bcl-2 ↑ → cyclinD1↓  Resveratrol: 40 μM 
Res-SLN: 40 μM Breast cancer  MDA-MB-231 [181] 

Protein  
(RSV-GNP) 

ROS↑ 
Cell cycle arrest ↑ 
Apoptosis ↑ 

p53 ↑→ Bax/Bcl-2, c-cas-9, -3, p21↑   Lung cancer NCI-H460 [182] 

Protein 
(RES-BSANP) Apoptosis ↑ AIF↑, cytochrome c ↑ → Bax ↓ RES-BSANP: 50 μM Ovarian cancer SKOV3 [183] 

Metal 
(Rev-AuNPs) 

Invasion↓, 
migration↓, 

NF-κB↓→ AP-1↓→ MMP-9↓, COX-2↓ 
Akt↓, ERK↓→ MMP-9↓, COX-2↓ 
HO-1↑→ MMP-9↓ 

Rev: 10 μM 
Rev-AuNPs: 10 μM Breast cancer MCF-7 [179] 

carbon 
(oMCNs-RES) 

Proliferation↓ 
Apoptosis↑ c-caspase3↑, c-PARP↑ Resveratrol: 100 μM 

oMCNs-RES: 200 μM Breast Cancer MDA-MB-231 [184] 

Polymer
(kaempferol-PEO-PPO-PEO,
kaempferol-PLAG)

Proliferation↓
Efficacy:
Kaempferol <
K-PEO-PPO-PEO,K- PLAG

PEO-PPO-PEO: 25 µM
PLGA: 25 µM
PLAG-PEI: 25 µM
Chitosan: 25 µM
PAMAM: 25 µM
Kaempferol: 25 µM

Ovarian surface
epithelial cell
Ovarian cancer

IOSE397,
A2780/CP70,
OVCAR-3

[166]

Lipid
(KPF-MNE)

Proliferation↓
Cellular uptake↑
Apoptosis↑

KPF: 1 µM
KPF-MNE: 1 µM Glioma cell

C6 rat
ex vivo
in vivo

[169]

Metal
(K-AuNCs)

Proliferation↓
Cytotoxicity↑ K-Au: 12.5 µg/mL Lung cancer HK-2

A549 [168]

Gelatin
(GNP-KA)

Proliferation↓
Angiogenesis↓ MMP-2, MMP-9, VEGF↓ KA: 7.4 µg/mL

GNP-KA: 150 µg/mL
Human umbilical
vascular cells

HUVEC
in vivo [167]
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oMCNs-RES: 200 μM Breast Cancer MDA-MB-231 [184] 

Polymer
(Chitosan-coated
RSV-FER-FA-SLNs)

Apoptosis↑Cell cycle arrest↑

CyclinD1, cdk2, cdk4, cdk6,
cyclinE, cyclinB↓
cytochrome C↑→
c-caspase9↑→ c-caspase3↑

C-RSV-FER-FA-SLN: 10 µg/mL
RSV-FER-FA-SLN: 25 µg/mL Colorectal Cancer HT-29 [178]

Lipid
(EGF DTX/
RSV LPNs)

Apoptosis↑
Proliferation ↓

In vivo: EGF DTX/RSV LPN:
50 mg/kg
In vitro: 0~100 µg/mL

Lung cancer HCC827, NCIH2135
in vivo [180]
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Migration ↓
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Res-SLN: 40 µM Breast cancer MDA-MB-231 [181]

Protein
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p53 ↑→ Bax/Bcl-2, c-cas-9, -3,
p21↑ Lung cancer NCI-H460 [182]

Protein
(RES-BSANP) Apoptosis ↑ AIF↑, cytochrome c ↑ → Bax ↓ RES-BSANP: 50 µM Ovarian cancer SKOV3 [183]
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NF-κB↓→ AP-1↓→
MMP-9↓, COX-2↓
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HO-1↑→MMP-9↓

Rev: 10 µM
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Apoptosis↑ c-caspase3↑, c-PARP↑ Resveratrol: 100 µM

oMCNs-RES: 200 µM Breast Cancer MDA-MB-231 [184]
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5. Clinical Implications

Since nanotechnology can offer new solutions for the development of cancer diag-
nosis and therapeutics, several antitumor nanodrugs have been tested in preclinical and
clinical trials over the past decade [186]. To date, seven anticancer nanodrugs, namely,
Doxil, DaunoXome, Eligar, Abraxane, Marquibo, Onivyde, and Mycocet, have entered the
pharmaceutical market, while Astragen (for acute promyelocytic leukemia), Lipoplatin
(for pancreatic, head and neck, and breast cancers), Aurimmune (CYT-6091) (for head and
neck cancer), and Paclical (for ovarian cancer) are still undergoing Phase II/III clinical
trials [187,188].

Recently, several phytochemicals have been reported as promising anticancer can-
didates with significant efficacy in vitro and in vivo. However, many clinical trials have
revealed that they lack efficacy in humans, mainly due to poor bioavailability, insolubility,
instability, rapid clearance, and toxicity [95]. As a nano-phytochemical, albumin-bound
paclitaxcel (PTX; Abraxane) derived from Taxus brevifolia was found be more effective in de-
livering PTX to tumors and reducing its toxicity in normal cells compared to PTX alone [103].
Furthermore, to overcome the poor bioavailability of curcumin in humans [120,131], com-
bining it with piperine to block the metabolic pathway of curcumin [189,190], the use of a
colloidal NP THERACURMIN [191] as a standardized curcuminoid mixture, the applica-
tion of its corresponding lecithin formulation (Meriva) as a phospholipid complex [192],
and structural analogs [193] have been suggested for efficient cancer therapy. As in re-
cent nano-research that found that several anticancer phytochemical-encapsulated NPs
were more effective compared to NP controls [139], Gota et al. [194] reported the potency
of solid lipid curcumin NPs: 22.43 ng/mL curcumin was detected at a dose of 650 mg,
while it was not detected in the plasma of osteosarcoma patients. Similarly, a clinical trial
(NCT03140657) showed that the solubility of curcumin in nanomicelles was increased by
100 thousand times, and another clinical trial (NCT01403545) revealed that intravenous
injection of liposomal curcumin was well tolerated and safe, except for the formation of
transient red blood cell echinocytes at dosages ≥ 120 mg/m2 [195], implying the potential
use of curcumin NPs for the clinical treatment of cancer in the future. However, though
numerous studies with nanocurcumin formulations using liposomes, polymers, conjugates,
cyclodextrins, micelles, dendrimers, and other nanoparticles have shown favorable out-
comes in vitro and in vivo, clinical trials with nanocurcumin have not yet been conducted
in cancer patients. Hence, to develop anticancer nano-phytochemical drugs, many preclini-
cal and clinical trials should be conducted in a large number of cancer patients to gather
information on the safety, toxicity, and efficacy of nano-phytochemical formulations alone
or in combination with classical anticancer agents.

6. Conclusions and Perspectives

Over the past decade, the advanced progress in nanobiotechnology and nanomaterial
science has contributed to imaging diagnosis and targeted cancer therapy by providing
efficient drug delivery systems. A variety of organic nanoparticles (NPs) (such as polymeric
conjugates, lipid-based carriers (liposomes and micelles), dendrimers, and ferritin) and
inorganic NPs (such as carbon nanotubes, quantum dots, ceramic NPs, magnetic NPs, and
gold/silver NPs) encapsulated with classical anticancer drugs or phytochemicals have
been developed to promote enhanced permeability and retention (EPR) in cancer. How-
ever, smart nanoencapsulation designs and synthesis of potent anticancer phytochemicals
are required to better understand the physicochemical properties of NPs, such as their
shape, size, charge, surface chemistry, and toxicity, since many natural compounds, such as
anacardic acid, betulinic acid, curcumin, EGCG, ferulic acid, gambogic acid, ginsenosides,
kaempferol, lycopene, and resveratrol, have been found to be effective in culture cells
and animals with low toxicity. However, many phytochemicals have not shown signifi-
cant anticancer efficacy due to their poor solubility, stability, rapid clearance through RES
phagocytosis, drug distribution, degradation, and resistance in humans [196]. In contrast,
phytochemical-encapsulated NPs have been shown to enhance antitumor effects in several
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cancers via the inhibition of PI3K/AKT, NF-κB, ERK, and anti-apoptotic proteins (such
as survivin, Bcl-2, and Bcl-XL) and the activation of PARP, caspases-8, - 9, and -3, BAX,
and p53 due to enhanced bioavailability, solubility, stability, and EPR effects compared to
free phytochemicals or NPs alone (Figure 3). Nonetheless, the difference between nano-
phytochemicals and free phytochemicals or NPs alone for a specific molecular target should
be further elucidated by evaluating the synergistic or additive effects between NPs and free
phytochemicals. In addition, though the EPR effect works only in solid tumors via passive
targeting, while active targeting through functionalization with ligands (including proteins,
antibodies, and peptides) works in hematological malignancies, the complexity and the het-
erogeneity of tumor phenotypes should be considered for effective clinical translation [197].
Moreover, the median and mean delivery efficiencies are reported to only be 0.70% and
1.48% of the injected dose (ID) of NPs, respectively, which is considered a major drawback
for clinical translation [198,199]. Hence, for the clinical translation of nano-phytochemicals,
it is crucial to design EPR-potentiating combination therapy, evaluate the extent of the EPR
effect, and utilize ultrasound, radiation, hyperthermia, and photodynamic therapy as a
physical targeting strategy to achieve an efficient EPR effect in EPR-insensitive tumors
before and during clinical trials [105]. Additionally, the reliability and reproducibility of
NP–phytochemical encapsulations should be ensured, and their possible toxicity, suitable
administration routes (oral, intravenous, transdermal), and pharmacodynamic and phar-
macokinetic profiles should be determined in many preclinical and randomized clinical
trials because some phytochemicals can have adverse side effects [200], though they are
known to generally be less toxic compared to synthetic anticancer drugs [201]. Furthermore,
further study is required to elucidate the detailed molecular mechanism of nanodrugs
within the tumor environment for active drug delivery; prolong the circulation time; and
explore the RES evasion, sensitive drug release, and targeted co-delivery of different com-
pounds [202]. Finally, along with the above-mentioned challenges that must be overcome,
an appropriate strategy for lowering manufacturing costs and scaling up the production of
anticancer phytochemical candidates should be developed to ensure their success on the
pharmaceutical market.
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