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Objective: Escherichia coli is a common Gram-negative human pathogen. The emergence of E. coli with multiple-antibiotic-resistant 
phenotypes has become a serious health concern. This study reports the whole-genome sequences of third-generation cephalosporin- 
resistant (3GC-R) and multidrug-resistant (MDR) E. coli EC6868 and explores the acquired antibiotic-resistance genes (ARGs) as well 
as their genetic contexts.
Methods: E. coli EC6868 was isolated from a vaginal secretion sample of a pregnant patient in China. The antimicrobial susceptibility was 
assessed, and whole-genome sequencing was conducted. The acquired ARGs, insertion sequence (IS) elements, and integrons within the 
genome of E. coli EC6868 were identified, and the genetic contexts associated with the ARGs were analyzed systematically.
Results: E. coli EC6868 was determined to belong to ST69 and harbored a 144.9-kb IncF plasmid (pEC6868-1) with three replicons 
(Col156, IncFIBAP001918, and IncFII). The ESBL gene blaCTX-M-27 was located on the structure “∆ISEcp1-blaCTX-M-27-IS903B”, which 
was widely present in the species of Enterobacteriales. Other ARGs carried by plasmid pEC6868-1 were mainly located on the 18.9-kb 
IS26-composite transposon (five copies of intact IS26 and one copy of truncated IS26) composing of IS26-mphA-mrx(A)-mphR(A)-IS 
6100, ∆TnAs3-eamA-tet(A)-tetR(A)-aph(6)-Id-aph(3”)-Ib-sul2-IS26, and a class 1 integron, which was widely present on IncF 
plasmids of E. coli, mainly distributed in ST131, ST38, and ST405. Notably, pEC6868 in our study was the first report on 
a plasmid harboring the 18.9-kb structure in E. coli ST69 in China.
Conclusion: The 3GC-R E. coli ST69 strain with an MDR IncF plasmid carrying blaCTX-M-27 and other ARGs, conferring resistance 
to aminoglycosides, macrolides, sulfonamides, tetracycline, and trimethoprim, was identified in a hospital in China. Mobile genetic 
elements including ISEcp1, IS903B, IS26, Tn3, IS6100 and class 1 integron were found within the MDR region, which could play 
important roles in the global dissemination of these resistance genes.
Keywords: Escherichia coli, vaginal secretion, plasmid, blaCTX-M-27, genetic context

Introduction
Both Gram-negative and Gram-positive bacteria are responsible for urogenital tract infections. However, among Gram- 
negative bacterial agents, Escherichia coli is the most common causative agent.1,2 Based on data from the China 
Antimicrobial Surveillance Network (CHINET), in 2022, E. coli had the highest detection rate, comprising 18.97% of 
clinical isolates. Uropathogenic E. coli strains were recognized as typical bacterial agents for urinary tract infections, 
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these groups of infectious diseases are more common among women rather than men, as well as female reproductive 
tract.3,4 In 2021, a meta-analysis of 82 studies, with a sample size of 33,118, indicated that the prevalence of E. coli in 
vaginal samples from pregnant women is 32% and that of extended-spectrum-lactamase (ESBL)-producing E. coli in 
pregnant women is 34%.5 Perinatal infections caused by E. coli can result in premature birth, a low birth weight, and an 
increased risk of neonatal infection and death.6,7 Notably, due to the misuse or overuse of antibiotics, antimicrobial 
resistance (AMR) is considered to feature among the top 10 threats to global health.8 The emergence and global spread of 
antibiotic-resistant E. coli have caused difficulties in clinical treatment and have become a public health threat.9 Third- 
generation cephalosporins are the most commonly used class of antibiotics in gynecology/obstetrics and pediatrics 
departments to treat infections caused by E. coli;10,11 however, the prevalence of E. coli resistant to third-generation 
cephalosporins is increasing.12

Enterobacteriales bear different antibiotic resistance genes encoding Extended-Spectrum-ß-Lactamases (ESBLs) and 
Metallo-ß-Lactamases (MBLs) on their chromosomes and mobile genetic elements such as plasmids and transposons.13 

In E. coli (typical representative of Enterobacteriales), ESBLs mainly confer third-generation cephalosporin resistance.14 

TEM- and SHV-type ESBLs were initially described in the 1980s.15,16 The first CTX-M-type ESBL (CTX-M-1), with 
higher hydrolytic activity against cefotaxime than against ceftazidime, emerged in 1995.17 Since then, several variants of 
CTX-M-1 have been found,18 and these are now the most prevalent ESBLs all over the world, with E. coli as their major 
bacterial host.19

Mobile genetic elements (eg plasmid, insertion sequence (IS), transposon, and integron) play a major role in facilitating the 
spread of resistance genes.20 ESBL genes are mainly located on plasmids, and among the ESBL-carrying plasmids from 
E. coli, the most common replicon types are IncF, IncI1, IncN, IncHI1, and IncHI2.21 ESBL genes are always associated with 
many ISs (such as IS26, ISCR1, ISEcp1, and IS10), transposons (such as Tn2), and integrons.22–24 Here, we report a multidrug 
resistant (MDR) E. coli ST69 strain carrying an IncF plasmid harboring blaCTX-M-27 and other antibiotic resistance genes 
(ARGs) and present a comparative analysis of the MDR region of the IncF plasmid.

Materials and Methods
For this study, the data collection and analysis are shown in Figure S1.

Bacterial Strains and Identification
The strain EC6868 was isolated from the vaginal secretions of a 39-year-old pregnant woman at the Zhuhai People’s 
Hospital in December 2021. Species identification and antimicrobial susceptibility testing were conducted using a fully 
automatic VITEK 2 COMPACT system (BioMérieux, France) according to the manufacturer’s instructions. The results 
of antimicrobial sensitivity were interpreted based on the Clinical and Laboratory Standards Institute guidelines (M100- 
S24). The identity of EC6868 was further confirmed through 16S rRNA gene sequencing by using bacterial universal 
primers (27F/1492R).

Whole-Genome Sequencing, Assembly, and Annotation
Whole-genome sequencing of strain EC6868 was conducted by Genewiz Biotechnology Co. Ltd. (Suzhou, China) by 
using the Illumina paired-end sequencing and PacBio long reads sequencing. PacBio reads were assembled using 
HGAP4.0/Falcon 0.3 of WGS-Assembler 8.2.25 The genome assembly was then polished with the software Pilon 
1.2226 using Illumina reads. The assembled genome (both chromosome and plasmids) of strain EC6868 was submitted 
to the GenBank database27 and annotated using the NCBI Prokaryotic Annotation Pipeline (PGAP).28

Bioinformatics Analysis of the Genome of Strain EC6868
Acquired ARGs in the genome of strain EC6868 were identified using the websever ResFinder 4.1,29 with a minimum 
coverage of 60% and a minimum identity of 90%. Multilocus sequence typing (MLST) of strain EC6868 was performed 
using MLST 2.0,30 selecting the database as “Escherichia coli #1” and using seven housekeeping genes, including adk, 
fumC, gyrB, icd, mdh, purA, and recA. Replicon types of the plasmids contained by strain EC6868 were determined using 
PlasmidFinder 2.1,31 with the database “Enterobacteriales”, minimum coverage of 60%, and minimum identity of 95%. 
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The ISs adjacent to the ARGs in the EC6868 genome were identified using ISfinder.32 Sequence similarity search was 
performed using MegaBLAST33 scans against the GenBank nr database. BLAST Ring Image Generator (BRIG) 0.9534 

and Easyfig2.2.535 were used for plasmid comparisons.

Nucleotide Sequence Accession Numbers
The genome sequence of strain EC6868, which contained a chromosome and two plasmids, was submitted to GenBank 
under the accession numbers CP095083–CP095085.

Results
Identification and Antimicrobial Susceptibility Testing of Strain EC6868
Strain EC6868 isolated from vaginal secretions of a pregnant woman, was identified as E. coli by the automatic VITEK 2 
COMPACT system, which was then confirmed via 16SrRNA gene sequencing. E. coli strain EC6868 showed resistance 
to cephalosporins, including cefuroxime, cefuroxime axetil, and ceftriaxone, but conferred intermediate-level ceftazidime 
resistance (Table S1). In addition, it showed resistance to trimethoprim/sulfamethoxazole and intermediate-level resis-
tance to levofloxacin (Table S1).

Genomic Features of the E. coli Strain EC6868
Genomic analysis revealed that the genome of E. coli strain EC6868 comprised a 5.25-Mb chromosome and two 
plasmids with sizes of 144,934 bp (pEC6868-1) and 7919 bp (pEC6868-2). MLST analysis indicated that E. coli strain 
EC6868 belonged to sequence type (ST) 69. PlasmidFinder results indicated that plasmid pEC6868-1 contained three 
replicons (Col156, IncFIBAP001918, and IncFII), whereas plasmid pEC6868-2 was an untypeable plasmid.

ResFinder results indicated that E. coli EC6868 carried multiple ARGs located on both chromosomes and the plasmid 
pEC6868-1. The chromosome of E. coli EC6868 was found to harbor disinfectant-resistance genes (sitABCD). Further, 
the multidrug-resistance plasmid pEC6868-1 harbored ARGs conferring resistance to extended-spectrum cephalosporins 
(blaCTX-M-27), aminoglycosides (aph(6)-Id, aph(3”)-Ib, and aadA5), macrolides (erm(B) and mph(A)-mrx(A)-mphR(A)), 
sulphonamides (sul1 and sul2), tetracycline (tet(A)-tetR(A)), and trimethoprim (dfrA17). Plasmid pEC6868-1 also 
harbored the antiseptic-resistance gene ΔqacE.

Comparative Analysis of the MDR Region of Plasmid pEC6868-1
The ARGs, as well as the adjacent IS elements carried by plasmid pEC6868-1, were located on the ~31.2-kb fragment of 
the plasmid, forming a large MDR region. The MDR region of pEC6868-1, flanked by ∆IS1R and ∆IS1R-∆IS26, which 
was nearly identical to part of the E. coli plasmid pB16EC0698-3 (100.00% coverage and 99.78% identity; Figure 1). In 
the MDR region of pEC6868-1, IS26 was found to be located upstream of the macrolide-resistance gene ermB and its 
leading peptide gene ermB(L) (Figure 1). The ESBL gene blaCTX-M-27 was located on an ISEcp1-mediated transposition 
unit, with a truncated ISEcp1 (∆ISEcp1) located upstream of blaCTX-M-27 and IS903B located downstream of blaCTX-M-27, 
forming the genetic structure ∆ISEcp1-blaCTX-M-27-IS903B (Figure 1). Based on the region ∆ISEcp1-blaCTX-M-27-IS 
903B, the BLAST search hit from the database of GenBank (on November 16th, 2023), with the minimum coverage of 
100% and minimum identity of 99%, showed that 1109 strains contain the structure (Figure 2). The structure was widely 
present in the species of Enterobacteriales, including Klebsiella pneumoniae (549), E. coli (347), Salmonella enterica 
(106), Proteus mirabilis (44) and the other 23 species (63) (Figures 2 and S2).

Interestingly, except for ermB-ermB(L) and blaCTX-M-27, other ARGs carried by plasmid pEC6868-1 were located on 
the 18.9-kb IS26-composite transposon. Overall, the 18.9-kb IS26-composite transposon was composed of three parts as 
follows: (1) the mphA-mrx(A)-mphR(A) operon conferring macrolide resistance was flanked by IS26 and IS6100, forming 
the IS26-mphA-mrx(A)-mphR(A)-IS6100 transposable structure (Figure 1); (2) one fragment of pEC6868-1 containing 
tet(A)-tetR(A), aph(6)-Id, aph(3”)-Ib, and sul2 located adjacent to IS26-∆TnAs3-eamA and IS26-mphA-mrx(A)-mphR(A)- 
IS6100 (Figure 1); (3) notably, a complex class 1 integron, including intI1, dfrA17, aadA5, ∆qacE, and sul1, was also 
found in the MDR region of plasmid pEC6868-1, located adjacent to IS26-∆ISKpn72-∆IS1R-∆IS26 (Figure 1).
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Based on the 18.9-kb IS26-composite transposon of plasmid pEC6868-1, the BLAST searches against the nr database of 
GenBank showed that the 18.9-kb region was widely present on plasmids of E. coli (77 plasmids), mainly distributed in ST131, 
ST38, and ST405 (Figure 3). Notably, pEC6868 in our study was the first report on a plasmid harboring the 18.9-kb IS26- 
composite transposon in E. coli ST69 in China. Another ST69 strain of E. coli containing the 18.9-kb structure was found in the 
United States, 2017 (Table S2). Surprisingly, 75 of the 77 plasmids harboring the 18.9-kb IS26-composite transposon were found 
to be the IncF plasmids, including IncFIA, IncFIB and IncFII subtypes, accounting for 97.4% of all the 18.9-kb structure- 
harboring plasmids of E. coli. In addition, four plasmids harboring the 18.9-kb IS26-composite transposon were also found in 
K. pneumoniae (Figures 3 and S2).

Moreover, we found that the region within this 18.9 kb IS26-composite transposon, containing IS26-mphA-mrx(A)- 
mphR(A)-IS6100 and the complex class 1 integron, was not only present on the plasmids but also on the chromosomes of 
some pathogens, such as E. coli, K. pneumoniae, Klebsiella michiganensis, Proteus mirabilis, Shigella flexneri, and 
Morganella morganii (Figure 4).

Figure 1 Comparative analysis of multidrug-resistance (MDR) region of plasmid pEC6868-1 and that of Escherichia coli plasmid pB16EC0698-3 generated using BRIG. 
Resistance, transposase, and integrase genes are shown in red, blue, and purple, respectively.
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Discussion
In this study, we report a third-generation cephalosporin-resistant strain, E. coli ST69 (EC6868), isolated from the 
vaginal secretions of a 39-year-old pregnant woman. E. coli ST69 was determined to be one of the multidrug 
resistant E. coli clones of phylogenetic group D, which are widespread among different hosts, often causing urinary 
tract infections and exhibiting resistance to antibiotics.36–38 ST69 E. coli strains have been reported to carry the 
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Figure 2 An overview of the species of Enterobacteriales harboring the structure “∆ISEcp1-blaCTX-M-27-IS903B.”.
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Figure 3 Details of replicon types and STs of host strains of the 81 plasmids harboring 18.9-kb IS26-composite transposon. Phylogenetic cladogram based on the presence/ 
absence of orthologous gene families of the 81 plasmids harboring 18.9-kb IS26-composite transposon were constructed. Ec and Kp represent E. coli and K. pneumoniae, 
respectively.
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blaVIM-harboring IncA plasmid,39 blaNDM-1-harboring IncI1 plasmid,40 and mcr-1-harboring IncHI2 plasmid.41 In 
this work, we report that the ST69 E. coli strain carries one hybrid plasmid, with three replicons (Col156, 
IncFIBAP001918, and IncFII), harboring blaCTX-M-27. IncF plasmids, comprising one of the most common incompat-
ibility types, have been identified globally in Enterobacteriales. Moreover, they vary in size (50–200 kb) and 
replicon types, which harbor huge amount of ARGs and confer resistance to all major classes of antibiotics, such 
as beta-lactams, chloramphenicol, aminoglycosides, quinolones, and tetracyclines.42–45 Notably, the IncF-blaCTX-M 

association found in E. coli EC6868 in our study has been widely observed in E. coli isolates of both human and 
animal origins; for example, the IncF plasmid R100 is responsible for the spread of blaCTX-M-14 in the UK and 
France.46,47

Strain EC6868 in our study was found to be a CTX-M-type ESBL-producing E. coli isolate. CTX-M-14 and CTX- 
M-15 are the most common variants of CTX-M, and CTX-M-27 has increased rapidly in terms of its prevalence.48 

Notably, the detection of CTX-M-27 in E. coli isolates from patient has been rising and is particularly alarming due to its 
presence in clonal groups including ST10, ST69, and ST131.49,50 The ∆ISEcp1 marker was located upstream of 
blaCTX-M-27 and carried by pEC6868-1 (ΔISEcp1-blaCTX-M-27-IS903B) was found in another study, which points that 
the conserved region responsible for transmission of blaCTX-M-27 was ISEcp1-blaCTX-M-27-IS903B.51 ISEcp1 belongs to 
the IS1380 family,52 and the ISEcp1-like element is associated with several blaCTX-M gene types in Enterobacteriaceae, 
including blaCTX-M-14, blaCTX-M-24, blaCTX-M-22, and blaCTX-M-79.53 IS903B, located downstream of blaCTX-M-27 carried 

Figure 4 Comparison of the gene cluster containing IS26-mphA-mrx(A)-mphR(A)-IS6100 and the complex class 1 integron carried by plasmid pEC6868-1with chromosomes 
of other pathogenic bacteria other than Escherichia coli. Resistance, transposase, and integrase genes are shown in red, blue, and yellow, respectively.
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by pEC6868-1, is a small insertion element of 1057 bp that is transposed predominantly via a conservative “cut-and- 
paste” mechanism.54

Five copies of intact IS26 and one ∆IS26 were found within the MDR region of plasmid pEC6868-1. The 820-bp 
IS26 was first described in 198355 and was determined to be present in numerous early antibiotic-resistant bacteria, 
playing a critical role in disseminating ARGs among Gram-negative bacteria.56 IS26 is frequently associated with genes 
encoding antibiotic resistance factors,57 and it can contribute to the expression of the ARGs by supplying a promoter −35 
region which can be coupled with a −10 region in the adjacent ARG.58

In this study, two translocatable units conferring macrolide resistance, IS26-ermB(L)-erm(B) and IS26-mphA-mrx(A)- 
mphR(A)-IS6100, were detected in plasmid pEC6868-1. In IS26-ermB(L)-erm(B), the ermB encodes a ribosomal 
methylase which can reduce the affinity of macrolides for the ribosome, resulting in high level of macrolide 
resistance.59 Macrolide antibiotics promote ribosome stalling on the ErmB(L) (regulatory leader peptide), ultimately 
inducing the expression of ermB.60 In the gene cluster mphA-mrx(A)-mphR(A) for high-level macrolide inactivation, 
mphA encodes a phosphotransferase that inactivates erythromycin and mrx(A) encodes a protein required for expression 
of MphA, whereas MphR(A) encoded by mphR(A) negatively regulates the expression of mphA at the transcriptional 
level.61 The IS26-mph(A)-mrx(A)-mph(R)(A)-IS6100 unit, which is linked to the global dissemination of macrolide- 
resistance genes,62 is the most common form in plasmids carrying mphA.63

Class 1 integrons are prevalent genetic elements that play a key role in the spread of antibiotic resistance,64 allowing 
bacteria to capture and exchange ARGs embedded in the gene cassettes. Moreover, acquisition of gene cassettes is catalyzed 
by integrase encoded by int1, which is a site-specific recombinase.65 Class 1 integrons are structurally composed of three core 
elements, specifically an integrase gene (intI1), a primary recombination site (attI1), and a common promoter enabling the 
transcription of gene cassettes.66 In all integrons, detection rate of class 1 integrons in clinical isolates is highest at 50–70%, 
which is linked to the production and spread of antibiotic-resistant bacteria.67,68

Conclusion
Here, we describe the genomic characteristics of a 3GC-R and ESBL-producing E. coli strain EC6868 belonging to 
ST69 harboring blaCTX-M-27 isolated from a pregnant patient in China. The strain carried multiple-resistance genes 
conferring resistance to aminoglycosides, macrolides, sulfonamides, tetracycline, and trimethoprim. The blaCTX-M-27 

gene located on a hybrid plasmid pEC6868-1 (IncFII/IncFIB/Col156). The ESBL gene blaCTX-M-27 was flanked by 
the truncated ISEcp1 (∆ISEcp1) and the IS903B (∆ISEcp1-blaCTX-M-27-IS903B), which was widely present in the 
species of Enterobacteriales, especially in K. pneumoniae, E. coli, and Salmonella enterica. Except for blaCTX-M-27, 
other ARGs carried by plasmid pEC6868-1 were mainly located on the 18.9-kb IS26-composite transposon (five 
copies of intact IS26 and one copy of truncated IS26). The 18.9-kb structure was widely present on IncF plasmids of 
E. coli, mainly distributed in ST131, ST38, and ST405. Notably, pEC6868 in our study was the first report on 
a plasmid harboring the 18.9-kb structure in E. coli ST69 in China. In addition, Tn3, IS6100 and class 1 integron 
also play important role in the dissemination of acquired ARGs carried by the plasmid pEC6868-1 of E. coli strain 
EC6868.
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