
REVIEW

The impact of diabetes on the pathogenesis of sepsis

G. C. K. W. Koh & S. J. Peacock & T. van der Poll &
W. J. Wiersinga

Received: 4 April 2011 /Accepted: 21 June 2011 /Published online: 30 July 2011
# The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Diabetes is associated with an increased suscep-
tibility to infection and sepsis. Conflicting data exist on
whether the mortality of patients with sepsis is influenced
by the presence of diabetes, fuelling the ongoing debate on
the benefit of tight glucose regulation in patients with
sepsis. The main reason for which diabetes predisposes to
infection appears to be abnormalities of the host response,
particularly in neutrophil chemotaxis, adhesion and intra-
cellular killing, defects that have been attributed to the
effect of hyperglycaemia. There is also evidence for defects
in humoral immunity, and this may play a larger role than
previously recognised. We review the literature on the
immune response in diabetes and its potential contribution
to the pathogenesis of sepsis. In addition, the effect of

diabetes treatment on the immune response is discussed,
with specific reference to insulin, metformin, sulphonylureas
and thiazolidinediones.
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Introduction

Patients with diabetes mellitus have an increased risk of
developing infections and sepsis [1, 2], and constitute 20.1–
22.7% of all sepsis patients [3, 4]. This association was first
observed a thousand years ago by Avicenna (980–1027),
who noted that diabetes was frequently complicated by
tuberculosis [5]. In the pre-insulin era, Joslin noted, in a
series of 1,000 cases, that diabetic coma was usually
precipitated by infection [6], and infection remains an
important cause of death in diabetics [7]. Much of the
literature does not distinguish between types of diabetes
and regards all complications as secondary to hyper-
glycaemia and independent of diabetes aetiology.

We review the pathogenesis of infection in the diabetic
patient and the altered host response, focusing on data from
human studies.

Risk of infection and clinical considerations

A small number of conditions are strongly associated with
diabetes, including malignant otitis externa [8–10], emphyse-
matous pyelonephritis [11–14], emphysematous cholecystitis
[15, 16], Klebsiella liver abscesses [17], rhinocerebral
mucormycosis [18, 19] and melioidosis [20]. However, these
are rare, and most infections in diabetics are those that occur
also in the general population. Two population-based studies
have proved pivotal to our understanding of the susceptibil-
ities of patients with diabetes [1, 2]: a study of 523,749
Canadians with diabetes and an equal number of matched
controls [2] found that diabetes increased the risk for cystitis
(risk ratio 1.39–1.43), pneumonia (1.46–1.48), cellulitis
(1.81–1.85) and tuberculosis (1.12–1.21). A study of 7,417
Dutch patients with diabetes found a higher incidence of
lower respiratory tract infection (adjusted odds ratios [ORs]
1.42 for type 1 diabetes and 1.32 for type 2), urinary tract
infection (1.96 and 1.24), and skin and mucous membrane
infection (1.59 and 1.33) [1]. The association between
diabetes and tuberculosis was re-confirmed by a recent
meta-analysis [21].

Although diabetes mellitus is implicated in suscepti-
bility to infection, its influence on the subsequent clinical
course and outcome is less clear. Some studies have
shown an association with increased mortality [22–25],
others found no effect [4, 26–34], while still others found
improved survival [15, 16, 35]. The largest of these (12.5
million sepsis cases) [15] found that diabetics were less
likely to develop acute respiratory failure and linked this
to two previous studies which found that diabetics seem to
be protected from acute lung injury [36, 37]. The largest
single study to show an adverse effect of diabetes on
mortality in sepsis was conducted in 29,900 Danish

patients with community-acquired pneumonia and found
that patients with diabetes had a higher risk of mortality
(OR 1.2) [24].

The reasons for the different outcomes between these
studies are unclear, but may relate to differences in the
study population, varying outcome measures and differ-
ences in statistical analysis and in diabetes drug
prescription habits between countries [38]. Population-
based studies are less prone to selection bias compared to
hospital-based studies, but more detailed clinical informa-
tion is usually available in hospital-based studies. In terms
of outcome measures, studies with outcomes at longer
time points (e.g. 6 months versus 28-day mortality) are
more likely to find informative differences, but are much
more difficult to conduct [39]. Observational studies often
make use of multi-variable regression techniques to
correct for confounders (a common, but incorrect, ap-
proach to model-building is to include all measured
parameters and then remove parameters on the basis of
their p-value). Over-adjustment or unnecessary adjustment
for variables that are not confounders can produce biased
or spurious results [40]. Patients with diabetes also have
multiple co-morbidities that may worsen outcomes: it is
debatable whether these co-morbidities should be adjusted
for, since many are caused by diabetes and, therefore,
cannot be regarded as confounders [41]. Nevertheless, a
number of studies have attempted to adjust for these
comorbidities [23, 24, 26]. The possible influences of drug
treatment are described below.

Diabetes and the immune system

In 1904, Lassar suggested that high levels of glucose
may drive infection by serving as a nutrient source for
bacteria [42], but in 1911, Handmann showed that
glucose supplementation did not enhance bacterial
growth [43], and proposed, instead, a defect in immune
function. Da Costa and Beardsley first demonstrated the
existence of an immune defect in 1907 [44]. The
subsequent literature on this topic is complicated by the
fact that different techniques have been used over the
years, and gaps of a decade or more may separate
experiments, making it difficult to compare results. Most
studies have shown defects in neutrophil function, with
good evidence for abnormalities in adhesion, chemotaxis
and intracellular killing, but evidence for a phagocytosis
defect are contradictory. The evidence that neutrophil
defects are solely responsible for the increases in the
susceptibility of diabetics to infection is equivocal [45]; there
is good evidence that humoral responses in diabetics are
poorer and may play a larger role than previously
recognised.
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General markers of inflammation

Diabetes is associated with elevations in C-reactive protein
(CRP) [46], tumour necrosis factor alpha (TNF-α) [47],
interleukin (IL)-6 [46] and IL-8 [48], but no differences are
seen in circulating cell surface markers or coagulation
markers between patients with and without diabetes in the
context of sepsis. In a cohort of 1,799 patients with
community-acquired pneumonia (CAP) [49], concentrations
of pro-inflammatory cytokines (TNF-α, IL-6 and IL-10),
coagulation (anti-thrombin, Factor IX and thrombin–anti-
thrombin complexes) and fibrinolysis (PAI-1 and D-dimer)
biomarkers were similar in subjects with and without
diabetes at presentation and in the first week of hospital-
isation [49]. In addition, monocyte expression of CD120a,
CD120b, HLA-DR, TLR4 and TLR2 on monocytes was not
different between the groups [49]. These results are
consistent with a cohort study of 830 sepsis patients, in
whom plasma concentrations of IL-6 and TNF-α were
elevated to the same extent in patients with and without
diabetes, both at admission and at follow-up [4]. In this
second study, diabetes was not found to exacerbate the
known pro-coagulant response seen in sepsis [4]. Since
sepsis and diabetes both induce a pro-inflammatory and pro-
coagulant state, and since both interfere with the host
response, the lack of a strong influence of diabetes on the
pro-inflammatory and coagulation pathways during sepsis is
remarkable. Preclinical studies in healthy volunteers have
shown that acute hyperglycaemia and insulin resistance may
both directly influence inflammation and coagulation [50,
51], but these changes may not be detectable on the
background of the much larger abnormalities attributable to
sepsis. There is also evidence that local responses may be
impaired in diabetes, e.g. levels of urinary IL-6 and IL-8 are
lower in diabetic women with bacteriuria [52]. Endothelial
activation has been implicated in the pathogenesis of sepsis
[53] and diabetes is itself known to activate endothelium. A
recent study of 207 sepsis patients (of whom 30% had
diabetes) showed that markers of endothelial cell activation
(plasma E-selectin and soluble fms-like tyrosine kinase-1
[sFLT-1]) were higher in diabetes [54].

Neutrophils

Adhesion

The recruitment of neutrophils to a site of inflammation
requires endothelial adhesion followed by transmigration
and exit from the circulation, a process requiring the
expression by neutrophils of integrins (e.g. CD11a/CD18
and CD11b/CB18) [55, 56], which then bind to endothelial
cell adhesion molecules (e.g. ICAM-1 [57–59]). A study in
which neutrophils were harvested from 26 patients with

diabetes and an equal number of controls demonstrated that
adhesion to bovine aortic endothelium was increased for
neutrophils from diabetics, but only if the endothelium was
also incubated with plasma from patients with diabetes
[60]. Increased adhesion appears to be due to both an
increase in the expression of integrins by diabetic neutro-
phils and of adhesion molecules by endothelium. Diabetic
neutrophils have increased the expression of CD11b and
CD11c [61], and glucose itself appears to be able to
stimulate the expression of ICAM-1 by endothelial cells
[57–59, 62–64], possibly via an osmotic effect [63, 64].

Chemotaxis

Chemotaxis is the ability of neutrophils to detect and move
towards a chemical inflammatory stimulus. Studies may be
divided by technique: those using the two-chamber Boyden
technique [65] have produced conflicting results [66, 67],
but those using the subagarose technique [68] (which
includes a negative control, which Boyden’s technique lacks)
have reproducibly shown a defect in diabetes [61, 69].

Phagocytosis

Phagocytosis is the engulfment and ingestion of foreign
bodies by a cell, allowing neutrophils to remove and
destroy pathogens. The evidence for a defect in phagocy-
tosis in diabetes is contradictory, with some reporting a
defect [70–73], but others not [61, 74]. These inconsisten-
cies may be attributed to differences in methodology:
neutrophils will not phagocytose unopsonised particles, so
bacteria and cells need first to be incubated with serum
containing C3b or IgG. Many studies have used autologous
serum [70–73], but those that have used a standard serum
or opsonin have found no defect [61, 74]. In 1976, Bagdade
found that phagocytosis of Streptococcus pneumonia was
reduced in neutrophils recovered from eight patients with
poorly controlled diabetes, but this defect improved with
diabetes treatment [70]. Notably, control neutrophils incu-
bated with serum taken from patients with diabetes also
demonstrated a defect in phagocytosis, implying that the
defect was, in fact, due to defective opsonisation and not to
a deficit in neutrophil function per se: in other words, the
defect is humoral. In 1984, Davidson et al. studied the
ingestion of Candida guilliermondii by neutrophils from 11
patients with diabetes and found that phagocytosis was
reduced. However, if pre-opsonised yeast cells were used,
then phagocytosis was no different from controls, again
suggesting that a humoral defect must exist [72]. Delamaire
et al. used a single control serum for all samples to remove
the possibility of a difference in opsonisation [61],
convincingly demonstrating that no phagocytosis defect
exists.
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Killing

Neutrophils have two distinct mechanisms for killing bacteria,
intracellular and extracellular. Phagocytosed bacteria are
killed by superoxide anions and other oxygen-derived species.
Culture-based methods have demonstrated a defect in the
intracellular killing of Staphylococcus aureus [69, 75, 76],
Streptococcus pneumoniae [71, 77] and Candida albicans
[78]. More recent studies have confirmed this finding used
chemiluminescence methods [79–82], a superior method
compared to culture, because it separates the effect of
phagocytosis from that of intracellular killing. The killing
defect cannot be corrected by incubation with normal serum
[76], suggesting that it is cellular in origin, but improves with
glycaemic control [81].

Neutrophils are also able to kill bacteria extracellularly
by expelling chromatin, which combines with granule
proteins to form neutrophil extracellular traps (NETs) [83].
Interestingly, β-hydroxybutyrate (a ketone body present in
diabetic ketoacidosis) has been shown to inhibit the
formation of NETs [84], but the relevance of this finding
to patients remains to be demonstrated.

Monocytes

Monocytes in diabetes have been less well studied than
neutrophils, but also appear to have defects of chemotaxis [85]
and phagocytosis [86, 87]. Adhesion to endothelium is also
enhanced [88, 89]. In contrast to neutrophils, intracellular
killing seems to be enhanced [90]. Monocytes obtained from
24 diabetic patients produced similar amounts of TNF-α
when compared to healthy controls when stimulated with
lipopolysaccharide (LPS), but the IL-6 levels were higher in
patients with type 1 diabetes [91].

Lymphocytes

Few studies have investigated the effect of diabetes on
lymphocyte function. One measure of lymphocyte function
is transformation in response to a mitogen or bacterial
antigen. Studies containing acidotic patients appear to find
that responses are diminished [92, 93] and that correction of
the acidosis leads to prompt resolution of the defect [93],
but more recent studies have found deficient proliferative
T-cell responses, even in treated patients [82, 94]. Diabetic
T-cells express higher levels of CD152, a downregulator of
the immune response [95]. Three other studies failed to find
a defect [67, 96, 97].

Humoral defects

In 1907, Da Costa and Beardsley [44, 98] found that sera
from diabetes patients were less able to opsonise S. aureus

compared to sera from controls. In 1973, Farid and
Anderson surveyed 46 patients and found that IgG levels
were lower in insulin-treated diabetics, but not patients on
oral treatments or diet alone. More recently, a study of 66
patients with type 1 diabetes demonstrated that total IgG
levels were lower in uncontrolled diabetics as measured by
HbA1c [99]. Also, the apparent defect in neutrophil
phagocytosis appear to be humoral and not cellular in
origin (see above).

The best evidence for a humoral defect in diabetic
patients comes from vaccine studies. It was described as
early as 1930 that deficient agglutinin responses are seen
in the diabetic patients after subcutaneous typhoid
vaccination [100, 101]. Multiple studies have shown that
patients with diabetes are less likely to mount a protective
antibody response to hepatitis B vaccination [102–105],
leading some authorities to recommend routinely adding a
booster dose to the standard regimen for patients with
diabetes [102, 106]. The literature on influenza vaccina-
tion is more mixed (reviewed by Brydak and Machala
[107]). Pozzilli et al. looked at 52 diabetic patients and
found fewer activated lymphocytes in patients with type 2
diabetes following influenza vaccination, but no differ-
ences in antibody responses [108]. Muszkat et al.,
studying a more elderly population, found lower antibody
responses in patients with type 2 diabetes [109]. Diabetes
is also associated with a waning in the duration of
protection afforded by tetanus vaccination, although the
initial response appears to be normal [110, 111]. Diabetics
appear to respond well to pneumococcal polysaccharide
vaccine [112], although there are no studies studying the
duration of protection in diabetic patients. There are no
studies specifically linking humoral responses in sepsis to
diabetes.

Complement abnormalities

Inherited deficiencies of component 4 (C4) have been
implicated in the pathogenesis of type 1 diabetes [113–
115], but whether this contributes to susceptibility to
infection in type 1 diabetics is not known. By contrast,
obesity and elevated insulin levels (as which occurs in
type 2 diabetes) appear to be associated with elevations in
C3 [116]. Karlsson et al., looking for biomarkers for
maturity-onset diabetes of the young (MODY), found that
complement C5 and C8 are both elevated in diabetes,
regardless of aetiology [117], a possible mechanism for
these abnormalities being that complement activation can
be driven by glycated immunoglobulins [118]. One
explanation for why diabetic sera are less able to opsonise
bacteria may be that glucose attacks the thioester bond of
complement C3 and prevents it from binding to the
bacterial surface [119].
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The role of hyperglycaemia

Warren noted in 1930 that the risk of infection in diabetic
patients was inversely proportional to the degree of diabetes
control [120], a finding replicated in 1982 by Rayfield
[121]. The strongest evidence for the role of glycaemic
control in preventing infection comes from the surgical
literature. In a single-centre study of 8,910 cardiac surgery
patients, glycaemic control in the immediate post-operative
period was associated with a reduction in the risk of deep
wound infection. In a multi-centre observational study of
55,408 diabetic post-surgical patients, the risk of post-
operative infection was increased if serum glucose concen-
trations exceeded 8.3 mM [122]. Not all studies from the
last 10 years have been able to replicate this finding: most
notably, a carefully designed Australian study of 68 patients
in the community failed to find a relationship between
glycaemic control and infection risk [123], but the median
HbA1c in that study was only 7.4%.

Diabetes medications and the immune response
during sepsis

Insulin

Stegenga et al. dissected out the separate roles of insulin
and glucose in infectious disease pathogenesis by studying
healthy volunteers in whom insulin and glucose levels were
maintained at preset levels for 6–8 h using tightly
controlled infusions of insulin, glucose, somatostatin and
glucagon, and intravenous E. coli LPS given to simulate
sepsis [124]. Hyperglycaemia reduced neutrophil degranu-
lation following LPS administration (independent of insulin
concentration). Neither hyperinsulinaemia nor hyperglycae-
mia affected plasma cytokine levels (TNF-α, IL-6, IL-8 or
IL-10) [125]. A second study using a similar design found
intranuclear NF-κB downregulation following insulin infu-
sion [126]. In an intensive care unit (ICU) setting, high-
dose insulin therapy was associated with the more rapid
resolution of CRP levels and white blood cell counts,
suggesting that an anti-inflammatory effect of insulin might
be beneficial in sepsis [127].

Diabetic leukocytes display a reduced rate of glycolysis
in vitro [128], which can be corrected by insulin supple-
mentation [129]. The energy required for chemotaxis is
supplied almost entirely by glycolysis [130], as their
mitochondria are metabolically inactive [131] and insulin
supplementation is able to reverse the chemotaxis defect
seen in diabetes [66].

Clinical evidence for a benefit of intensive insulin
therapy in sepsis [3, 132, 133] is contradictory. A single-
centre study demonstrated a reduction in cardiothoracic

ICU mortality with intensive intravenous insulin [132], a
second single-centre study at the same centre, but on the
medical ICU, found no effect on mortality [133], and a
subsequent multi-centre trial concluded that intensive
insulin therapy increased mortality [3]. A recent meta-
analysis concluded that, in critically ill patients, tight
glucose control does not reduce mortality, but does increase
the risk of severe hypoglycaemia [134].

Metformin

Metformin is prescribed as the first line treatment in Europe
because it is associated with a 36% reduction in the all-cause
mortality compared with diet alone [135]. There is little
evidence for an immunomodulatory effect of metformin,
although one study reported an association with reduced pro-
inflammatory cytokine macrophage migration inhibitory
factor (MIF) levels in obesity [136]. The main complication
of metformin treatment in the context of sepsis is the risk of
lactic acidosis [137], due to the metformin-mediated inhibi-
tion of pyruvate dehydrogenase promoting anaerobic respi-
ration. This has prompted some authorities to recommend
withdrawing metformin in sepsis [138].

Sulphonylureas

The best studied sulphonylurea in the context of sepsis is
glibenclamide (= glyburide, United States adopted name
[USAN]). Glibenclamide inhibits monocyte IL-1 secretion
and has been used for over ten years in the laboratory
specifically for that purpose [139]. The mechanism for this
is the inhibition of inflammasome assembly [140], although
the exact protein target has not been identified. Other
sulphonylureas may not share this property [140]. Gliben-
clamide was associated with reduced inflammation and a
halving in mortality in melioidosis, an infection strongly
associated with diabetes [38]. Glibenclamide also has a
direct pressor effect on vascular smooth muscle in vitro
[141], and it has been proposed that glibenclamide therapy
might find use as a vasopressor in septic shock [142]. Two
small clinical studies in septic shock failed to find any
effect on blood pressure [143, 144], although neither study
was designed to look for an effect on mortality.

Thiazolidinediones

Observational studies of diabetic patients on the thiazolidi-
nediones have demonstrated the suppression of nuclear
factor-κB [145, 146]. Rosiglitazone reduced renal injury
[147] and improved other markers of end-organ damage
[148] in murine sepsis models, while ciglitazone reduced
bacterial burdens and local inflammation in a murine model
of pneumococcal pneumonia [149], suggesting that thiazo-
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lidinediones may find use as an adjunctive treatment for
sepsis [150].

Conclusions

Infection remains an important cause of morbidity and
mortality in diabetics, probably due to abnormalities of the
host response, particularly in neutrophil chemotaxis, adhe-
sion and intracellular killing. Humoral defects exist (both in
antibody responses and complement opsonisation) and may
explain earlier reports of a defect in phagocytosis, but are
poorly studied in the pathogenesis of sepsis. Very little is
known about the molecular mechanisms by which diabetes
produces these effects, but the functional modification of
host proteins and osmotic effects have both been proposed.
For newly recognised phenomena such as neutrophil
extracellular traps (NETs), we know almost nothing of the
effect of diabetes, although preliminary evidence is that
they may be important. Epidemiological studies of diabetes
have produced conflicting results, and some of this
difference may be explained by differences in the study
design and epidemiological techniques used. Many studies
have, so far, ignored the effects of drugs on the host
response, and this omission may also explain the
conflicting results in the literature.
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