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Abstract

Network analysis provides deep insight into real complex systems. Revealing the link between topological and functional
role of network elements can be crucial to understand the mechanisms underlying the system. Here we propose a
Cytoscape plugin (GIANT) to perform network clustering and characterize nodes at the light of a modified Guimerà-Amaral
cartography. This approach results into a vivid picture of the a topological/functional relationship at both local and global
level. The plugin has been already approved and uploaded on the Cytoscape APP store.
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Introduction

The network paradigm helps modeling the multiscale character

of biological systems: ‘‘networks’’ is the generic name for graphs,

which represent a set of nodes linked by edges. Complex systems

are, thus, easily represented by graphs, whose nodes are the system

elements and edges represent the relation between them.

The network structure allows for a natural combination of

different scales: each node inherits its role in the system by its

location in the network (top-down causation), while the global

properties of the whole network depend upon the edges (bottom-

up causation).

Biological networks (e.g., protein-protein interaction networks,

protein contact maps, gene expression networks, ) very often

display a scale-free architecture lying halfway between random

networks, whose wiring is assigned according to a Gaussian

distribution of link probability, and regular networks, whose nodes

all show the same degree (number of edges pertaining to a single

node). One of the most challenging tasks for biological scale-free

networks analysis is to assign a functional role to each node

depending on its location in the network.

In their innovative work, Han et al. [1] estimated the dynamics

of hubs (high-degree nodes) from the analysis of messenger RNA

expression profiles. The authors examined how much hubs in the

yeast interactome are co-expressed with their interaction partners,

computing the average Pearson correlation coefficient (APCC)

between the hub mRNA expression and its nearest neighbors.

They found APCC distribution follows a bimodal distribution

singling out two distinct hub populations: they called ‘‘party hubs’’

those nodes that are highly correlated in expression with their

partners (high APCC) and ‘‘date hubs’’ those showing more

limited co-expression with their own partners (lower APCC). This

distinction matches with permanent (party hubs) and transient

interactions (date hubs) [1]. Eventually, the authors showed that a

link exists between this hub classification and the network

tolerance against node breakdown: scale-free networks are

particularly resilient to random node removal (failure), albeit

extremely sensitive to the targeted removal of hubs (attack) [2,3].

The work by Han et al. [1] is just one out of many applications

of network approach in the biology and biotechnology realm (see

[4] for a comprehensive review). The by far most part of the

network applications deals with the mesoscopic properties of the

graphs representing a link between structural and functional

properties of systems.

In their seminal work [5], Guimerà and Amaral developed a

methodology for the multiscale network analysis passing by the

network module identification (network clustering): they classified

nodes according to their inter and intra-module connectivity, by

identifying two descriptors, the participation coefficient P and the

within-module z-score z, for the inter and intra-module connec-

tivity, respectively. This method has been largely applied in many

different fields, from metabolic networks [5] to brain functionality

[6,7], passing by non biological application [8]. The analysis of P,z
space shows peculiar features when derived for protein contact

networks [9–12], providing a meaningful functional characteriza-

tion of local and global network properties.

Here we propose a Cytoscape plugin, GIANT (GuImerà

Amaral NeTwork) implementing our modified interpretation of

the Guimerà and Amaral cartography. This plugin identifies

modules in a network by three different clustering methods:

spectral, k-means and MCL (Markov CLuster) algorithm. The

proposed approach fits with any clustering algorithm, such as

those implemented in clusterMaker [13]. The output is the

network cartography in the P,z plane, highlighting nodes role

according to our modified Guimerà and Amaral classification.

We show the application to two case studies of biological

relevance: the protein contact network of hemoglobin and the co-
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expression network of Vitis Vinifera. The color map superimposed

to the Cytoscape network view shows a clear relation between the

nodes role and their P,z description.

Materials and Methods

The plugin runs through the Cytoscape software [14] and

allows the developers to use it as an independent Java library and

to implement custom software. The installation of GIANT is

possible directly via the Cytoscape plugin manager (menu Plugin

w Manage Plugins, section Clustering, selecting the latest version

of GIANT); alternatively, the plugin, along with the source code

and video tutorials, is directly accessible for download from

the GIANT official website http://www.iasi.cnr.it/,dsantoni/

GIANT/giant.html. GIANT has been developed following the

classical MVC (Model-View-Controller) pattern. Figure 1 shows

the GIANT UML class diagram and the process execution when

clustering analysis is launched. The Main class provides the

integration with the Cytoscape environment and drives the plugin

user interface (GUI) (GIANT class implements the generic

interface Application). Each GUI event, provided by the plugin,

connects to a controller that maps it to a specific action. All classes

that represent an action extend the abstract class Action (and all its

methods). Figure 1 reports the action classes, corresponding to the

clustering algorithms in the plugin. Each clustering action class

starts the related algorithm. The clustering algorithms are

developed in the JavaML library included in GIANT: the library

is written in Java and is available from www.java-ml.sourceforge.

net/under the GNU GPL license. The library implements a

collection of machine learning and data mining algorithms, readily

usable and easily extensible API for both software developers and

research scientists. The algorithms strictly follow their respective

interfaces, that are user-friendly and simple.

GIANT has been accepted by the Cytoscape community and is

presently available for the download on the official Cytoscape APP

Store http://apps.cytoscape.org/apps/giant. The plugin was

successfully tested on the 2.8 and 3 releases of Cytoscape and it

was tested on Windows, Linux and OS X operating systems ( in 5

or higher version of the Java Runtime Environment).

2.1 Clustering algorithms
The plugin implements three clustering algorithms: spectral

Meila-Shi [15], MCL [16] and k-means [17]. It is worth noting the

cartography is totally independent from clustering algorithm: the

user can upload an already determined partition.

2.1.1 Spectral clustering algorithm. The spectral cluster-

ing algorithm takes as input the unweighted adjacency matrix of

the network and the number k of clusters. Graph nodes are

partitioned according to the components of the first k eigenvectors.

The first step is to compute the Laplacian matrix L depending

on the unweighted adjacency matrix A:

L~D{A

D is the diagonal degree matrix, whose generic element Dii is

the i-th node degree. The algorithm applies either to the

unnormalized or the normalized Laplacian matrix.

Once the eigenvectors u1,u2,:::,un of the Laplacian matrix L are

computed, a matrix U[Rn|k is built, whose ith column

corresponds to the ith eigenvector. The rows of matrix U
correspond to nodes, partitioned into clusters according to their

coordinates in matrix U by means of the k-means algorithm (see

next subsection).

2.1.2 k-means algorithm. k-means is an unsupervised

learning and partitioning clustering algorithm. The algorithm

aims at minimizing the objective function Sum of the Squared

Error (SSE), i.e. the sum of the squared distances of each node

from the closest cluster centroid:

SSE~
Xk

i~1

X
x[Ci

dist(ci,x)2

Figure 1. GIANT classes flow chart. Action classes are shown for the clustering algorithms implemented in the plugin: spectral clustering, MCL
and k-means. Spectral clustering can be run in two mode, normalised and unnormalized. Each clustering action class starts the related algorithm in a
new thread to maximize the performance.?
doi:10.1371/journal.pone.0105001.g001
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where k is the number of the clusters, Ci is the ith cluster, x is an

object (i.e. a point in the ith cluster), dist is the standard Euclidean

(L2) distance between two objects in a Euclidean space and ci is

the centroid of the ith cluster. It is easy to demonstrate the best

centroid (minimum cluster’s SSE) is the cluster center of mass:

ci~
1

mi

X
x[Ci

xi

mi being the number of nodes in the ith cluster. The abscissa of

the elbow in the SSE vs. k plot represents the optimal number of

clusters. In GIANT, k-means acts on distances between nodes

adopting as metrics the shortest paths and the Hamming distances

computed on the adjacency matrix.

2.1.3 Markov Cluster algorithm. The MCL algorithm is a

fast and scalable unsupervised cluster algorithm for networks based

on simulation of (stochastic) flow in graphs. The algorithm

simulates a flow on the graph to compute next powers of the

associated adjacency matrix. At each iteration, an inflation step is

applied to enhance the contrast between regions of strong and

weak flow in the graph. The process converges towards a partition

of the graph, with a set of high-flow regions (the clusters), parted

by boundaries with no flow. The value of the inflation parameter

strongly influences the number of clusters.

2.2 Node classification
Once the modules (clusters) are identified, the intra and inter-

module connectivities are represented respectively by:

N the within-module z-score [18]

zi~
kin

i {k

s

where kin
i is the the number of links of node i with nodes in its own

module, Ci, k and sin
Ci

are, respectively, the average value and the

standard deviation of the overall degree distribution;

N the participation coefficient (modified with respect to its

original definition [18] ) describes the attitude of the node to

connect to nodes in modules other than theirs:

Pi~1{
kin

i

ki

� �2

ki being the total degree of node i.
We adopted a modified version of Guimerà and Amaral

participation coefficient P [18], that has helped us to identify

nodes in the R4 region of the Guimerà-Amaral cartography (work

in progress) not detectable by the original algorithm. R4 region

collects nodes with fewer than 35% of their links within their own

module, i.e., with a strong inter-cluster connectivity character

(P§0:75).

The original Guimerà and Amaral definition of P [18]

approaches to an upper threshold corresponding to node links

uniformly distributed among modules (i.e., Pmax~1{1=N , where

N is the number of modules). Thus, for instance, when we part the

hemoglobin contact network into 4 modules, 0.75 is the maximum

value for P, corresponding to the lower bound of the R4 region.

Therefore, if we had used the original definition of P, we could not

Figure 2. Screenshot of GIANT plugin. GIANT outcome to the hemoglobin (PDB code 1HBB) protein contact network application: the Guimerà-
Amaral cartography, the protein contact network and the output table are reported. The nodes color corresponds to their role in the cartography (see
Table 1).
doi:10.1371/journal.pone.0105001.g002
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highlight the R4 nodes corresponding to the sub-units contacts,

which in turn have a high functional relevance in the protein

structure (connector nodes colored in black in Figure 2C).

According to P,z values, the plugin reports the node classifi-

cation (see Table 1): ‘module hubs’ (z§2:5, i.e. hubs within their

own module), ‘module non hubs’ (zv2:5, i.e. node that are not

hubs within their module but that can still have a hub role in the

whole network). According to the participation coefficient P, the

non-hubs nodes can be divided into four regions (R1, R2, R3, R4)

and the hubs nodes into three regions (R5, R6, R7).

2.3 User’s Guide
As a first step, the user must upload the network in.abc format:

this file format requires two fields separated by a white space on

each line. The first and second fields are labels specifying source

and destination node, respectively. The file can contain an

optional third column representing the nodes interaction. A file

containing clusters data can be loaded, if available. The file to

upload must be .idx type, containing two columns with the ID of

the nodes and the relative cluster indication; alternately, the user

can use the built-in clustering algorithms. K-means algorithm is

based on two different metrics: shortest paths and Hamming

distances, computed on the nodes adjacency vectors. Spectral

clustering relies on two running modes: normalized and un-

normalized.

Once the network is uploaded, the user must check the Use
Built-in Clustering Algorithm option and choose the kMeans
algorithm. In the KMEANS INITIALIZER left panel, there are

two options: in the Cluster Validation section, once defined the

minimum k_min and the maximum k_max number of clusters,

within this range the Sum Square Error as a function of k (number

of clusters) is displayed. The second option is that the user can

directly decide the number of clusters k. The user can also upload,

if any, a file with node attributes as required by Cytoscape

environment for network visualization.

Once data are loaded and clusters made available, the

Guimerà-Amaral cartography is computed (see previous section).

Results are provided as a table containing a summary of P,Z
values associated to each node as well as node degree, the region R
(according to Guimerà-Amaral cartography) and all other features

uploaded as node attributes. Practical video tutorials can be

downloaded from the web site http://www.iasi.cnr.it/,dsantoni/

GIANT/giant.html. GIANT is downloadable directly from

Cytoscape APP store http://apps.cytoscape.org/apps/giant or

from its official web site: http://www.iasi.cnr.it/,dsantoni/

GIANT/giant.html, where a video tutorial is also available.

2.3.1 Requirements.

N Operating system(s): tested on Windows, Linux and OSx

operating systems

N Programming language: Java

N Other requirements: Java Runtime Environment 5.0 or

higher

Results and Discussion

We applied the GIANT plugin to two different scenarios of

biological relevance: the contact network of hemoglobin structure

and the co-expression network of Vitis Vinifera. These two

different networks allow to study the relation between topology

and function at two different levels of biological organization:

structural and gene expression regulation level.

3.1 Scenario 1: Hemoglobin structure
Hemoglobin occupies a unique niche in the proteome: this

multimeric protein drives the delicate balance of oxygen and

carbon monoxide exchanges between blood and tissues. Hemo-

globin, at odds with other molecular systems, essentially works by

alone with any relevant interaction with other biomolecular

systems. This implies we can fully trace back its functional

properties from its structure, as witnessed by the large amount of

literature dealing with the link between hemoglobin mutations and

functional properties [19].

Human hemoglobin structure (PDB code 1HBB) is made up of

four sub-units (see Figure 3A), whose mutual spatial relations are

at the basis of the so-called allosteric effect, due to the shift

between two different configurations (T and R) at the basis of the

cooperative binding and release of oxygen and carbon dioxide

[20]. The identification of a peculiar topological role of the

residues that connect the four sub-units can be considered a strong

proof of the relevance of the GIANT approach.

Figure 2 reports the GIANT output for the analysis of the

hemoglobin contact network. We transformed the protein

structure data (spatial position of atoms) into a contact networks

by putting an edge between residues (the nodes of the network)

whose spatial distance of the corresponding a - carbons is

comprised within 4 and 8 A, thus including only non-covalent

intramolecular interactions [9,12,21].

Spectral clustering parts the contact network into four clusters,

roughly corresponding to protein sub-units. Relying on this

partition GIANT builds the modified Guimerà-Amaral cartogra-

phy (see Figure 3B) and gives a pictorial representation of the

network (see Figure 3C). Node colors correspond to their role in

the modified Guimerà-Amaral cartography. R4 nodes (P§0:8,

Table 1. Guimerà - Amaral cartography: nodes role.

Regions Within-module z-score Participation coefficient

module non-hubs R1: Ultra-peripheral node zv2:5 Pv0:05

R2: Peripheral node zv2:5 0:05vPv0:625

R3: Non-hub connectors zv2:5 0:625vPv0:8

R4: Non-hub kinless nodes zv2:5 Pw0:8

module hubs R5: Provincial hubs zw2:5 Pv0:3

R6: Connector hubs zw2:5 0:3vPv0:75

R7: Kinless hubs zw2:5 Pw0:75

doi:10.1371/journal.pone.0105001.t001
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black colored) correspond to residues placed at the boundaries of

the hemoglobin sub-units. White nodes correspond to region R1

(P*0, ultra-peripheral nodes). These nodes communicate only

within their own module, remaining confined within the core of

the hemoglobin sub-units. The unbiased identification of connec-

tor nodes by the algorithm is a proof-of-concept of the relation

between structure topology and protein function. Spectral

clustering of protein contact network produces characteristic P,z
diagrams, (‘‘dentist’s chair’’, due to their shape [9]); this shape has

been tested to be strongly invariant across a 1420 protein

molecules dataset [9]: the invariance of the protein cartography

suggests the chance to extend the observed topology-function

relation of hemoglobin to other protein systems. 4A). Notice that

the quasi-parallel lines of the graph do not correspond to clusters

and still defy a simple explanation.

3.2 Scenario 2: Gene co-expression network in Vitis
vinifera

Fruit ripening processes involve an highly coordinated set of

events at both macroscopic and molecular levels. In order to check

the crucial steps in ripening, the genome-wide gene co-expression

could give some important hints. The shift between different

development patterns is mediated by specific genes, namely

transcription factors [22], able to activate (inactivate) different

development modules (clusters of co-expression genes).

We make the hypothesis that a similar model applies to Vitis
vinifera ripening: genes co-expressed across different modules

could be responsible for the activation of different plant

development stages.

The gene expression dataset used to build the co-expression

network comes from the Gene Expression Omnibus under the series

entry GSE36128 [23]. It consists of 29550 genes of Vitis vinifera
whose expression value has been measured using microarrays from

54 samples taken from different tissues and stages. Two samples

refer to leaves senescence and to pollen, while the other 52 samples

can be divided into two groups: 25 samples of red/mature/woody

organs and 27 samples of green/vegetative organs.

In the plant co-expression network, a link occurs if the absolute

value of the correlation between the gene expression profiles is

greater than 0.8; this threshold minimizes the number of

connected components for both green and red tissues.

We built two co-expression networks, one for the green tissues

and one for the red tissues (see Figure 4C): the cartography of

these networks resembles the ‘dentist’s chair’ we described above

for hemoglobin contact network. To test the nature of the shape

invariance of the P,z plane, we compared the co-expression

networks with two simulated architectures corresponding to a

Figure 3. Guimerà-Amaral cartography for hemoglobin. A) X-ray-resolved molecular structure of hemoglobin protein (source Protein Data
Bank PDB). B) Guimerà-Amaral cartography for hemoglobin; clusters are computed by spectral clustering algorithm. C) Hemoglobin protein contact
network. The nodes colors correspond to their Guimerà-Amaral role.
doi:10.1371/journal.pone.0105001.g003
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random (Erdos-Renyi [24] Figure 4A) and a scale-free (Baràbasi)

network with 1000 nodes and two clusters [25] (see Figure 4B).

In both scale-free Barabàsi and the Vitis Vinifera co-expression

networks, we found again the characteristic dentist’s chair in the P,z
plane but not for random network. The strong invariance of the P,z
portraits is extremely intriguing, given it suggests the existence of still

hidden mesoscopic principles of scale-free networks.

The R4 region of co-expression network for red tissues (ripened

fruit) is enriched in transcription factors for the post-harvest

development stage. Given the green tissues do not partecipate into

fruit ripening and are made up of only one developmental stage,

they do not show any relevant enrichment in transcription factors.

Conclusions

It is noteworthy that a purely topological description of nodes,

by the agency of the intermediate mesoscopic layer through

modules identification, allows for the elucidation of the functional

role of the biological network elements. This is particularly evident

in the case of hemoglobin molecule where the network description

exactly matched the structural role of the corresponding amino

acid residues in terms of between- within- subunits location.

In the case of co-expression network, the topology function

relationship is still hypothetical but suggests importante lines of

experimentation The Cytoscape plugin GIANT provides a powerful

tool for an accurate analysis of complex networks, offering a

multiscale perspective from nodes local properties to general network

architecture. This integration was possibile thanks to the quantitative

description of the network at a mesoscopic (clustering) level, allowing

a prompt view of nodes role. The plugin interface is simple and user-

friendly and a practical video tutorials can be downloaded from the

web site http://www.iasi.cnr.it/,dsantoni/GIANT/giant.html.

Moreover, Cytoscape community accepted GIANT plugin, which

is actually available for the download on the official Cytoscape APP

Store. The modular architecture of the plugin allows to expand the

system so to include other clustering algorithms.
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Figure 4. Guimerà-Amaral cartography. Guimerà-Amaral cartography for different networks: A) the random network of Erdos-Renyi with 1000
nodes and 50.000 edges [24]; B) the scale-free network of Barabàsi [25] with 1000 nodes and two clusters; C) the Vitis Vinifera co-expression network
for vegetative (left) and woody organs (right).
doi:10.1371/journal.pone.0105001.g004
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2. Jeong H, Mason S, Barabàsi A, Oltvai Z (2001) Lethality and centrality in

protein networks. Nature 411: 41–42.

3. Oliva G, Di Paola L, Giuliani A, Pascucci F, Setola R (2013) Assessing protein

resilience via a complex network approach. In: Network Science Workshop

(NSW), 2013 IEEE 2nd. IEEE, pp. 131–137.
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25. Barabàsi A, Albert R (1999) Emergence of scaling in random networks. Science
286: 509.

GIANT

PLOS ONE | www.plosone.org 7 October 2014 | Volume 9 | Issue 10 | e105001


