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A B S T R A C T   

Background: Colonoscopy remains the gold-standard screening for colorectal cancer. However, significant miss 
rates for polyps have been reported, particularly when there are multiple small adenomas. This presents an 
opportunity to leverage computer-aided systems to support clinicians and reduce the number of polyps missed. 
Method: In this work we introduce the Focus U-Net, a novel dual attention-gated deep neural network, which 
combines efficient spatial and channel-based attention into a single Focus Gate module to encourage selective 
learning of polyp features. The Focus U-Net incorporates several further architectural modifications, including 
the addition of short-range skip connections and deep supervision. Furthermore, we introduce the Hybrid Focal 
loss, a new compound loss function based on the Focal loss and Focal Tversky loss, designed to handle class- 
imbalanced image segmentation. For our experiments, we selected five public datasets containing images of 
polyps obtained during optical colonoscopy: CVC-ClinicDB, Kvasir-SEG, CVC-ColonDB, ETIS-Larib PolypDB and 
EndoScene test set. We first perform a series of ablation studies and then evaluate the Focus U-Net on the CVC- 
ClinicDB and Kvasir-SEG datasets separately, and on a combined dataset of all five public datasets. To evaluate 
model performance, we use the Dice similarity coefficient (DSC) and Intersection over Union (IoU) metrics. 
Results: Our model achieves state-of-the-art results for both CVC-ClinicDB and Kvasir-SEG, with a mean DSC of 
0.941 and 0.910, respectively. When evaluated on a combination of five public polyp datasets, our model 
similarly achieves state-of-the-art results with a mean DSC of 0.878 and mean IoU of 0.809, a 14% and 15% 
improvement over the previous state-of-the-art results of 0.768 and 0.702, respectively. 
Conclusions: This study shows the potential for deep learning to provide fast and accurate polyp segmentation 
results for use during colonoscopy. The Focus U-Net may be adapted for future use in newer non-invasive 
colorectal cancer screening and more broadly to other biomedical image segmentation tasks similarly 
involving class imbalance and requiring efficiency.   

1. Introduction 

Globally, colorectal cancer (CRC) ranks third in terms of incidence, 
and second only to lung cancer as a leading cause of cancer death [1]. 
The absence of specific symptoms in the early stages of disease often 
results in delays in diagnosis and treatment, with the stage of disease at 
diagnosis strongly linked to prognosis. In the United States, the 5-year 
relative survival rate for Stage I colon cancer is 92%, decreasing to 
12% in those with Stage IV [2]. 

In 1988, Vogelstein proposed the adenoma-carcinoma sequence 

model for CRC carcinogenesis, describing the transition from benign 
adenoma to adenocarcinoma with associated well-defined histology at 
each stage [3]. Importantly, there is a prolonged, identifiable and 
treatable preclinical phase lasting years prior to malignant trans-
formation [4,5]. As a result, CRC is highly suitable for population level 
screening, which has been shown to be effective at reducing overall 
mortality [6,7]. 

Non-invasive CRC screening tests include stool-based tests, such as 
the faecal occult blood test, and more recent blood-based tests, such as 
Epi proColon® (Epigenomics AG, Berlin, Germany). Capsule colon 
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endoscopy and CT colonography are newer, non-invasive radiological 
investigations useful for screening high-risk individuals unsuitable for 
colonoscopy. Invasive options include flexible sigmoidoscopy and co-
lonoscopy, offering direct visualisation and the ability to obtain biopsy 
specimens for histological analysis. Sigmoidoscopy is limited to cancer 
in the rectum, sigmoid and descending colon, and colonoscopy remains 
the gold-standard screening tool for CRC with the highest sensitivity and 
specificity [8]. However, colonoscopy is associated with significant miss 
rates for polyp detection, contributed by both patient and polyp-related 
factors [9–11]. The risk of missing polyps significantly increases in pa-
tients with two or more polyps, with higher miss rates for flat or sessile 
compared to pedunculated or sub-pedunculated polyps and miss rates 
vary from 2% for adenomas ≥ 10 mm to 26% for adenomas < 5 mm. 

The difficulty in detecting polyps during colonoscopy presents an 
opportunity to incorporate computer-aided systems to reduce polyp miss 
rates [12]. Polyps may remain hidden from the field of view, for which a 
real-time Artificial Intelligence (AI) model has been developed to assess 
the quality of colonoscopy [13]. Alternatively, polyps may enter the 
field of view but remain undetected by the operator. In this case, polyp 
segmentation approaches not only aim to detect polyps, but to also 
accurately delineate the polyp border from surrounding mucosa. Early 
automated methods to segment polyps relied on hand-crafted feature 
extraction, using either shape-based [14–16] or texture and 
colour-based analysis [17,18]. While considerable advancements were 
made, the accuracy of polyp segmentation remained low with 
hand-crafted features unable to capture the scale of polyp heterogeneity 
[19]. 

This paper is structured as follows. Section 2 outlines the state-of-the- 
art of polyp segmentation on colonoscopy images. Section 3 describes 
the architecture of the proposed Focus U-Net. Section 4 describes the 
analysed datasets and the evaluation metrics used in this study. Section 
5 present the experimental results. Finally, Section 6 provides a dis-
cussion and concluding remarks. 

2. Related work 

In recent years, significant improvements have been achieved by 
adopting automatic methods based on deep learning. The introduction 
of Fully Convolutional Networks (FCN) enabled Convolutional Neural 
Network (CNN) architectures to tackle semantic image segmentation 
tasks [20]. The application of FCNs to polyp segmentation has yielded 
impressive results [21,22]. Currently, the state-of-the-art approaches are 
largely based on the U-Net, a modified FCN architecture developed for 
biomedical image segmentation [23]. The U-Net consists of an encoding 
network used to capture the image context, followed by a symmetrical 
decoding network enabling localisation of salient regions. UNet++ ex-
tends the U-Net by incorporating a series of nested skip connections, 
reducing the semantic gap between the features maps of the encoder and 
decoder networks prior to fusion [24–26]. The ResUNet++ combines 
residual units with the spatial attention-based Atrous Spatial Pyramidal 
Pooling (ASPP) and channel attention-based squeeze-and-excitation 
block [25,26]. Similarly, both attention components are incorporated 
into the DoubleU-Net, which further leverages transfer learning from the 
first U-Net to generate features as input into the second network [27]. 
Despite excellent segmentation results with these models, the large 
memory and associated long inference time limits use in clinical practice 
where real-time polyp segmentation is required. Recently, several effi-
cient models with significantly faster inference times, in addition to 
greater accuracy, have been proposed. Priotising efficiency over per-
formance, PolypSegNet introduces the depth dilated inception module, 
enabling efficient feature extraction across a range of receptive field 
sizes [28]. Similarly, ColonSegNet is a light-weight network that in-
cludes residual connections and channel attention to achieve real-time 
polyp segmentation [29]. PraNet uses a two-step process that involves 
initial localisation of the polyp area, followed by progressive refining of 
the polyp boundary, resembling the method by which humans identify 

polyps [30]. HarDNet-MSEG uses a low memory latency HarDNet68 
backbone [31], together with a Cascaded Partial Decoder [32] for fast 
and accurate polyp segmentation. Progressively normalised 
self-attention network introduces a self-attention module that in-
corporates channel-split, query-dependent and normalisation rules to 
improve computational efficiency [33]. The feedback attention network 
(FANet) uses a form of hard attention based on an iterative refinement 
method using Otsu thresholding [34]. 

In this paper, we introduce a novel attention-gated U-Net architec-
ture, named the Focus U-Net, which uses a new attention module known 
as the Focus Gate (FG), incorporating both spatial and channel-based 
attention with a focal parameter to control the degree of background 
suppression. Using this architecture, we achieve state-of-the-art results 
across five public polyp segmentation datasets. With an efficient and 
accurate polyp segmentation algorithm, we provide the latest 
advancement towards using AI in colonoscopy practice, with the aim of 
assisting clinicians by increasing polyp detection rates. 

3. The proposed focus U-Net architecture 

In this section, we introduce the techniques used in the Focus U-Net, 
beginning with the FG and associated channel and spatial attention 
modules, followed by explanations of deep supervision and loss function 
optimisation. 

3.1. Overview of the focus U-Net 

The architecture of the Focus U-Net is shown in Fig. 1. Similar to the 
U-Net, the Focus U-Net begins with an encoding network, capturing 
features relevant to polyps such as edges, texture and colour. The 
deepest layer of the network contains the richest information relating to 
image features, at the cost of spatial resolution, and forms the gating 
signal used as input into the FG. The FG uses the gating signal to refine 
incoming signals from the encoding network in the form of long-range 
skip connections, by highlighting specific image features and regions 
that are integrated into the decoding network. Successive upsampling in 
the decoding network enables polyp localisation at progressively higher 
resolution, with the final output producing the segmentation map 
defining, if present, the precise shape and location of the polyp. Short- 
range skip connections and deep supervision create additional path-
ways for information transfer, diversifying the features extracted and 
providing shortcuts for the loss to propagate backwards to the deeper 
layers when updating parameters. 

3.2. Attention Gates and the Focus Gate 

The concept of attention mechanisms in neural networks is inspired 
by cognitive attention, where relevant stimuli in the visual field are 
identified and selectively processed. In the context of neural networks, 
distinctions are made between hard and soft attention, as well as global 
and local attention [35,36]. Hard attention calculates attention scores 
for each region of the image to select the regions to attend. This requires 
a stochastic sampling process, which is a non-differentiable calculation 
relying on reinforcement learning to update parameters [37]. In 
contrast, soft attention is deterministic and assigns regions of interest 
(ROIs) with higher weight, with the benefit that this process is differ-
entiable and therefore trainable by standard backpropagation [38,39]. 
The distinction between global and local attention refers to whether the 
whole input or only a subset of the input is attended [40]. For training of 
neural networks, a combination of soft and local attention is often fav-
oured [41]. 

Attention Gates (AGs) provide neural networks with the capacity to 
selectively attend to inputs. The use of AG first originated in the context 
of machine translation as part of Natural Language Processing (NLP) 
[40,42–44], but has also more recently shown success in Computer 
Vision, with particular interest in the Attention U-Net for medical image 
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segmentation [41,45]. 
The structure of the additive AG is illustrated in Fig. 2 [41]. This AG 

receives two inputs, the gating signal and associated skip connection 
generated at that level. The gating signal originates from the deepest 

layer of the neural network, where feature representation is the greatest 
at the cost of significant down-sampling. In contrast, skip connections 
arise in more superficial layers, where feature representation is coarser, 
but image resolution is relatively spared. The AG uses contextual 

Fig. 1. Architecture of the proposed Focus U-Net. The gating signal originates from the deepest layer in the network and refines incoming skip connection input at 
each depth. Deep supervision is represented by the dark green arrows generating outputs at each depth. 

Fig. 2. Top: schematic of the additive AG. 
The gating signal and skip connection are 
first resized and then combined to form 
attention coefficients. Multiplication of the 
original skip connection with the attention 
coefficients provides spatial context high-
lighting ROIs. Bottom: schematic of the 
Focus Gate. The gating signal and skip 
connection are first resized and then com-
bined prior to spatial and object-related 
feature extraction. The attention co-
efficients pass through an additional focal 
filter controlling the degree of background 
suppression. Finally, multiplying the orig-
inal skip connection with the attention co-
efficients provides both spatial and feature 
context highlighting regions and features of 
interest.   
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information from the gating signal to prune the skip connection, high-
lighting ROIs and therefore reducing false positive predictions. To 
accomplish this, the initial stage involves simultaneous upsampling of 
the gating signal and downsampling of the skip connection to produce 
equivalent image dimensions enabling element-wise addition. Although 
computationally more expensive, additive attention has been shown to 
achieve higher accuracy than multiplicative attention [40]. 

The resulting matrix is passed through a ReLU activation, followed 
by global average pooling along the channel axis and final sigmoid 
activation, generating a matrix of attention weights, also known as the 
attention coefficients i ∈ [0, 1]. 

The final step is an element-wise multiplication of the upsampled 
attention coefficients with the original skip connection input, providing 
spatial context to the skip connection prior to fusion with outputs from 
the decoder network. 

Before describing the FG, illustrated in the bottom of Fig. 2, we first 
describe two of its main components, namely the channel attention 
module and the spatial attention module. 

3.3. Channel attention module 

The global average pooling operation in the additive AG extracts the 
spatial context to localise the ROIs. However, by pooling across the 
channel axis, information conveyed by the channels relating to objects 
features, such as edges and colour, is lost. On the contrary, by assigning 
weights along the channel axis, channel interdependencies may be 

explicitly modelled, enabling networks to better recalibrate the features 
used for segmentation [46–49]. Squeeze-and-excitation (SE) blocks 
achieve this by initial feature aggregation using global average pooling 
along the spatial axis, known as the ‘squeeze’ operation, followed by two 
fully connected layers with ReLU and sigmoid activations producing the 
‘excitation’ operation [46,50]. The two fully connected layers involve 
dimensionality reduction to control model complexity, with implica-
tions for computation and performance. Efficient Channel Attention 
(ECA) [51] avoids dimensionality reduction by modelling cross-channel 
interaction with an adaptive kernel size k, defined by: 

k=
⃒
⃒
⃒
⃒
log 2(C)

γ
+

b
γ

⃒
⃒
⃒
⃒

odd 
(1)  

, where C is the channel dimension, while b and γ are set to 2 and 1, 
respectively. 

A separate insight incorporated into the Convolutional Block 
Attention Module (CBAM) for channel attention involves using a global 
max pooling operation in addition to global average pooling, providing 
two complementary spatial contexts prior to feature recalibration [48]. 

The channel module used in the FG is illustrated in Fig. 3. We extend 
the ideas provided by ECA and CBAM by using initial global average and 
global max pooling to generate two separate spatial contexts, followed 
by feature recalibration using an adaptive convolutional kernel size 
avoiding dimensionality reduction. Finally, a sigmoid activation re-
distributes the values between [0, 1], generating attention coefficients 

Fig. 3. Top: schematic of the channel attention module used in the Focus Gate. Global max pooling and global average pooling generate two complementary spatial 
contexts prior to channel weighting. Bottom: schematic of the spatial attention module used in the Focus Gate. Global max pooling and global average pooling 
generate two complementary channels contexts prior to spatial context generation. 
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along the channel axis. 

3.4. Spatial attention module 

Complementary to the channel attention module, spatial attention 
modules involve feature aggregation along the channel axis [47,48,52]. 
While dimensional reduction is not an issue for spatial attention mod-
ules, the replacement of fully connected layers with a convolutional 
layer requires an additional kernel size parameter. Larger kernel sizes 
provide a larger receptive field, with better performance but at the cost 
of computational efficiency [52]. The spatial attention module used in 
the FG is illustrated in Fig. 3. Again, we extend the ideas provided by 
ECA and CBAM by using initial global average and global max pooling 
along the channel axis, generating two separate channel contexts, fol-
lowed by spatial recalibration with an adaptive convolutional kernel 
size. In contrast to ECA, the spatial dimension is inversely proportional 
to the channel dimension, and therefore we modify the original equation 
and determine kernel size k for the spatial attention module by: 

k =
⃒
⃒
⃒
⃒
log 2(Cmax + C0 − C)

γ
+

b
γ

⃒
⃒
⃒
⃒

odd
(2)  

where Cmax is the maximum channel dimension of the network, C0 is the 
channel dimension for the first layer, and C is the channel dimension for 
current layer. The parameters b and γ are set to 2 and 1, respectively 
[51]. This provides an efficient compromise by scaling the kernel size in 
proportion to the input dimension, with larger kernel sizes reserved for 
larger inputs. 

3.5. Focus gate 

Having introduced both spatial and channel attention modules, in 
this section we describe the structure of the FG (Fig. 2). 

Similar to the attention gate, the gating signal is generated from the 
deepest layer of the network. The upsampling operation is replaced with 
a learnable kernel weight using a transposed convolution, but otherwise 
the skip connection and gating signal are resampled to matching 

dimensions. Following element-wise addition and non-linear activation, 
spatial and channel attention coefficients are processed in parallel, 
analogous to processing of the dorsal “where” and ventral “what” 
pathways, respectively, of the two-streams hypothesis for visual pro-
cessing [53]. The spatial and channel attention coefficients are com-
bined with element-wise multiplication, and passed through a tunable 
filter involving element-wise exponential parameterised by the focal 
parameter prior to resampling. 

The concept of a focal parameter originates from work on loss 
function optimisation, where the contributions of easy examples are 
downweighed enabling the learning of harder examples [54,55]. Here, 
we apply the focal parameter to the matrix of attention coefficients, 
enhancing the contrast between foreground and background objects by 
controlling the degree of background suppression. Following sigmoid 
activation, all attention coefficient values are redistributed i ∈ [0, 1]. 
This enables higher values of the focal parameter to significantly reduce 
the weights of irrelevant regions and features, while salient regions and 
important features are relatively spared. The effect of altering the focal 
parameter is illustrated in Fig. 4. 

Careful tuning of the focal parameter is required, to suppress back-
ground regions while preserving attention for borders between fore-
ground and background where attention coefficients take middle values. 

3.6. Deep supervision 

The vanishing and exploding gradients problems are well-recognised 
issues with training deep CNNs [56,57]. The Focus U-Net incorporates 
two separate, complementary mechanisms to overcome this. Firstly, 
short-range skip connections, in addition to the long-range skip con-
nections characteristic of the U-Net, allow the error signal to propagate 
to earlier layers more directly. However, this comes at the cost of 
computational efficiency, and therefore for the Focus U-Net, we leverage 
filter factorisation introduced by the Inception network and incorpo-
rated into the MultiResUNet, providing an efficient implementation 
while maintaining performance gains [58,59]. 

In contrast, deep supervision encourages semantic discrimination of 

Fig. 4. The effect of modifying the focal parameter in the Focus Gate. The brighter colours in the heatmaps are associated with higher activations, here corresponding 
to the polyp location. Higher focal parameter values lead to increased background suppression. 
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intermediate feature maps at each level by assigning a loss to outputs at 
multiple layers [60,61]. Equal weighting of outputs produces 
sub-optimal results due to converging to solutions favouring improved 
performance of deeper layers at the cost of performance of the final 
layer. To overcome this, more complicated solutions have been devel-
oped, such as multi-scale training [55], or fine-tuning using a fully 
connected layer [41]. To preserve efficiency, here we assign weights w 
to different output layers according to Eq. (3): 

w = 2− (stride  length×stride  width), (3)  

where the stride length and width refer to the final transposed convo-
lution stride dimensions required to resample the feature map to the 
original image dimension. 

Intuitively, higher weights are therefore assigned to the layers 
requiring a smaller degree of upsampling, with the greatest weight 
assigned to the final output, followed by an exponential decrease in 
weighting with increasing depth of the network. 

3.7. Hybrid Focal loss 

The training of neural networks is based on solving the optimisation 
problem defined by the loss function. For semantic segmentation tasks, a 
popular choice of loss function is the sum of the Dice similarity coeffi-
cient (DSC) loss and cross entropy (CE) loss: 

ℒtotal  = DSC + ℒCE, (4)  

with: 

DSC =
2TP

2TP + FP + FN
, (5)  

ℒCE(y, ŷ) = − (ylog(ŷ)+ (1 − y)log(1 − ŷ)), (6)  

where TP, FP and FN refer to true positives, false positives and false 
negatives respectively, and y, ŷ ∈ {0,1}N where ̂y refers to the predicted 
value and y refers to the ground truth label. 

However, with class imbalanced tasks such as polyp segmentation, 
the resulting segmentation using the Dice loss often leads to high pre-
cision but low recall rate [62]. By weighting false negative predictions 
more heavily, the Tversky loss improves recall-precision balance: 

ℒTversky  = 1 − TI, (7)  

where the Tversky index (TI) is defined as: 

TI =
∑N

I=1p0ig0i
∑N

i=1p0ig0i + α
∑N

i=1p0ig1i + β
∑N

i=1p1ig0i
, (8)  

p0i is the probability of pixel i belonging to the foreground class and p1i is 
the probability of pixel belonging to background class; g0i is 1 for fore-
ground and 0 for background and conversely g1i takes values of 1 for 
background and 0 for foreground. 

Complementary to weighting the positive and negative examples, 
applying focal parameters to both the Tversky and cross entropy loss 
enables the downweighting of background objects in favour of fore-
ground object segmentation, and produces the Focal Tversky loss and 
Focal loss, respectively [54,55]: 

ℒFTL = (1 − TI)γ
, (9)  

ℒFL = − α(1 − pt)
y⋅ℒCE, (10)  

where α controls the class weights. 
Finally, we define the Hybrid Focal loss (HFL) as the sum of the Focal 

Tversky loss and Focal loss: 

ℒHFL = ℒFTL + ℒFL. (11) 

To mitigate suppression of the loss near convergence, we supervise 
the last layer without the focal parameters [55]. 

4. Materials and evaluation methods 

4.1. Dataset descriptions 

We assess the ability of the Focus U-Net to accurately segment polyps 
using five public datasets containing images of polyps taken during 
optical colonoscopy: CVC-ClinicDB [63], Kvasir-SEG [64], 
CVC-ColonDB [65], ETIS-Larib PolypDB [66] and EndoScene test set 
(CVC-T) [67]. CVC-ClinicDB, CVC-ColonDB, ETIS-Larib PolypDB and 
CVC-T were created by the Hospital Clinic, Universidad de Barcelona, 
Spain, while the Kvasir-SEG database was produced by the Vestre Viken 
Health Trust, Norway. 

The CVC-ClinicDB database consists of 612 frames containing polyps 
with image resolution 288 × 368 pixels, generated from 23 video se-
quences from 13 different patients using standard optical colonoscopy 
interventions. The Kvasir-SEG database consists of 1000 polyp images 
collected and verified by experienced gastroenterologists. Images vary 
in size from 332 × 487 to 1920 × 1072 pixels. CVC-ColonDB consists of 
300 images of resolution 500 × 574 pixels obtained from 15 video se-
quences with a random sample of 20 frames per sequence. ETIS-Larib 
PolypDB similarly consists of 300 images, with image resolution 1225 
× 966 pixels. Lastly, CVC-T consists of 182 frames containing polyps 
from 8 patients derived from either the CVC-ClinicDB and CVC-ColonDB 
datasets, with image resolutions of 288 × 384 or 500 × 574 pixels. 

4.2. Experimental setup and implementation details 

For our experiments, we use the Medical Imaging Segmentation with 
Convolutional Neural Networks (MIScnn) open-source Python library 
[68]. For all datasets, images and associated ground truth masks are 
provided in the png file format. For the Kvasir-SEG dataset, we resize all 
images to 512 × 512 pixels following pre-processing methods used in 
previous models [30,31], but otherwise resize images to 288 × 384 
pixels for all other datasets. Pixel values are normalised to [0, 1] using 
the z-score. We perform full-image analysis with a batch size of 16, 
except for the Kvasir-SEG dataset where the large image sizes required 
the batch size to be reduced to 8. We use the Focus U-Net architecture as 
described previously with a final softmax activation layer. 

For the ablation studies, we use the CVC-ClinicDB dataset, with five- 
fold cross validation using random assignment. We evaluate the baseline 
performance of the U-Net [23] and Attention U-Net [41], and sequen-
tially assess the performance with subsequent additions of the Focus 
Gate, Hybrid Focal loss, short-range skip connections and deep super-
vision. Similar to hyperparameter selection of Focal loss functions [54, 
55,69], we perform a grid-search, selecting values for the focal param-
eter γ ∈ [1,3]. Model parameters are initialised with Xavier initialisa-
tion, and each model is trained for 100 epochs using Stochastic Gradient 
Descent with Nesterov momentum (μ = 0.99). We set the initial learning 
rate at 0.01, and follow a polynomial learning decay rate schedule [70]: 
(

1 − epoch
epoch max

)0.9

. (12) 

For fairer comparison, we do not apply any data augmentation 
techniques at this stage. 

In contrast, when attempting for state-of-the-art results on the CVC- 
ClinicDB dataset, we train our final model using five-fold cross valida-
tion for 500 epochs and use the following data augmentation techniques: 
scaling, rotation, elastic deformation, mirror and gamma trans-
formations. For both evaluation on the Kvasir-SEG dataset and evalua-
tion on the combination of all five public datasets, we follow the single 
train-test split used in Refs. [30,31], and train each model for 1000 
epochs with the same data augmentation settings for result 
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reproducibility and comparisons. 
For the Hybrid Focal loss, we follow the optimal hyperparameters 

reported in the original studies. We set α = 0.3 and β = 0.7 for the 
Tversky index, α = 0.25, γ = 2 for the Focal loss and α = 0.3, β = 0.7 and 
γ = 3/4 for the Focal Tversky loss [54,55,62]. 

For all cases, the validation loss is evaluated at the end of each epoch, 
and the model with the lowest validation loss is selected as the final 
model. All experiments are programmed using Keras with TensorFlow 
backend and trained with NVIDIA P100 GPUs, with CUDA version 10.2 
and cuDNN version 7.6.5. Source code is available at: https://github.co 
m/mlyg/Focus-U-Net. 

4.3. Evaluation metrics 

To assess segmentation accuracy, we follow recommendations from 
Ref. [64], and use DSC and intersection over union (IoU) as the two main 
metrics. DSC is previously defined in Eq. (5), and IoU is defined as: 

IoU =
TP

TP + FP + FN
. (13) 

The IoU metric penalises single instances of poor pixel classification 
more heavily than DSC, providing similar but complementary perspec-
tives on assessing segmentation accuracy. We further assess recall and 
precision: 

 Recall  = TP
TP + FN

, (14)  

 Precision  =
TP

TP + FP
. (15) 

In the context of polyp segmentation, recall, also known as sensi-
tivity, measures the proportion of the pixels corresponding to the polyp 
that are correctly identified. In contrast, precision, also known as the 
positive predictive value, measures the proportion of pixels correctly 
labelled as representing the polyp. While both are accounted for in the 
DSC metric, measuring recall and precision provides additional infor-
mation regarding the false positive and false negative rates. 

Finally, we evaluate model efficiency by calculating the frames per 
second (FPS) using the mean inference time: 

 FPS  =
1

mean inference time
. (16)  

5. Experimental results 

We first perform a series of ablation studies to evaluate individual 
components of the Focus U-Net, followed by separate evaluations on the 
CVC-ClinicDB and Kvasir-SEG datasets, and finally evaluate against a 
test set combining five public polyp datasets. 

The results from the ablation study are shown in Table 1. 
Performance gains are observed with successive addition of each 

component, and with all components present there is a significant 
improvement with a DSC score of 0.875 ± 0.016 compared to the U-Net 
(0.828 ± 0.021) and Attention U-Net (0.801 ± 0.019). The Focus U-Net 
achieves similar FPS performance to the Attention U-Net and compa-
rable FPS performance to the U-Net, justifying the improvement in ac-
curacy with minimal efficiency losses. 

The results for the CVC-ClinicDB dataset are shown in Table 2. 
The Focus U-Net achieves state-of-the-art results with a mDSC score 

of 0.941 and a mIoU score of 0.893, outperforming the ResUNet++ with 
Conditional Random Field (CRF) and DoubleU-Net. Focus U-Net also has 
the best recall-precision balance, while PolypSegNet achieves the 
highest precision at the cost of recall, and conversely the ResUNet++

with CRF achieves high recall at the cost of precision. 
Next, we evaluate our model on the Kvasir-SEG dataset. The results 

are shown in Table 3. The Focus U-Net achieves state-of-the-art results 
with a mDSC score of 0.910 and mIoU score of 0.845. The highest mIoU 
is achieved by HarDNet-MSEG [31]. 

Finally, Table 4 shows the results for the evaluation on five public 
polyp datasets. It is worth noting that, for a fair comparison, the eval-
uations metrics are shown only for the approaches that focused on 
segmentation performance over computational efficiency. 

The Focus U-Net achieves the highest score across four of the five 
datasets with a mDSC of 0.938 and mIoU of 0.889 on the CVC-ClinicDB, 
mDSC of 0.878 and mIoU of 0.804 for CVC-ColonDB, mDSC of 0.832 and 
mIoU of 0.757 for ETIS-LaribPolypDB, mDSC of 0.920 and mIoU of 
0.860 for CVC-T and mDSC of 0.910 and mIoU of 0.853 for the Kvasir- 
SEG dataset. Importantly, the combined score takes into account the 
relative number of images of each dataset, and the Focus U-Net achieves 
a mDSC of 0.878 and mIoU of 0.702, a 14% increase in mDSC over the 

Table 1 
Results from training on the CVC-ClinicDB for the U-Net, Attention U-Net and Focus U-Net. The best result is seen with the addition of the Focus Gate, short skip 
connections, deep supervision and use of the Hybrid Focal loss.  

Model Loss 
function 

Focal parameter 
γ 

Short skip 
connections 

Deep 
supervision 

mDSC mIoU Recall Precision FPS 

U-Net DSC + CE – ⨯ ⨯ 0.828 ± 0.021 0.747 ± 0.022 0.817 ± 0.024 0.877 ± 0.021 27 
Attention U- 

Net 
DSC + CE – ⨯ ⨯ 0.801 ± 0.019 0.705 ± 0.023 0.799 ± 0.012 0.844 ± 0.030 25 

Focus U-Net DSC + CE 1 ⨯ g ⨯ 0.838 ± 0.018 0.755 ± 0.018 0.833 ± 0.016 0.876 ± 0.028 25 
Focus U-Net DSC + CE 1.25 ⨯ ⨯ 0.844 ± 0.011 0.762 ± 0.011 0.844 ± 0.018 0.876 ± 0.020 25 
Focus U-Net DSC + CE 1.5 ⨯ ⨯ 0.842 ± 0.025 0.755 ± 0.027 0.845 ± 0.038 0.866 ± 0.016 25 
Focus U-Net DSC + CE 2 ⨯ ⨯ 0.817 ± 0.025 0.728 ± 0.030 0.817 ± 0.023 0.859 ± 0.026 25 
Focus U-Net DSC + CE 3 ⨯ ⨯ 0.825 ± 0.022 0.736 ± 0.022 0.820 ± 0.035 0.863 ± 0.022 25 
Focus U-Net DSC + CE 1.25 ✓ ⨯ 0.867 ± 0.018 0.800 ± 0.011 0.852 ± 0.023 0.908 ± 

0.017 
25 

Focus U-Net HFL 1.25 ✓ ⨯ 0.869 ± 0.013 0.797 ± 0.014 0.870 ± 0.017 0.892 ± 0.010 2 
Focus U-Net HFL 1.25 ✓ ✓ 0.875 ± 

0.016 
0.801 ± 
0.017 

0.878 ± 
0.013 

0.889 ± 0.018 25  

Table 2 
Results for the CVC-ClinicDB dataset. Boldface numbers denote the highest 
values for each metrics.  

Model mDSC mIoU Recall Precision 

FCN–8S [21] 0.810 – 0.748 0.883 
Multi-scale patch-based CNN [71] 0.813 – 0.786 0.809 
FCN [72] 0.830 – 0.773 0.900 
MultiResUNet [59] – 0.821 – – 
cGAN [73] 0.872 0.795 – – 
U-Net [23] 0.878 0.788 0.787 0.933 
Multiple encoder-decoder network [74] 0.889 0.894 – – 
PraNet [30] 0.898 0.840 – – 
PolypSegNet [28] 0.915 0.862 0.911 0.962 
ResUNet++ with CRF [26] 0.920 0.890 0.939 0.846 
Double U-Net [27] 0.924 0.861 0.846 0.959 
FANet [34] 0.934 0.894 0.934 0.940 
Focus U-Net 0.941 0.893 0.956 0.930  
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previous state-of-the-art (HarDNet-MSEG, mDSC = 0.768) and 15% in-
crease in mIoU (HarDNet-MSEG, mIoU = 0.702). The greatest im-
provements are observed in the most challenging datasets, namely the 

CVC-ColonDB and ETIS-LaribPolypDB datasets. For CVC-ColonDB, a 
20% increase in mDSC is observed over the previous state-of-the-art 
(HarDNet-MSEG, mDSC = 0.731) and an 87% increase in mDSC 
compared to the previously top performing Selective Feature Aggrega-
tion (SFA) model. Even more significantly, for ETIS-LaribPolypDB, a 
23% increase in mDSC is observed over the previous state-of-the-art 
(HarDNET-MSEG, mDSC = 0.677) and a 180% increase in mDSC 
compared to SFA. 

Examples of polyp segmentations for the five datasets are shown in 
Fig. 5. 

The accuracy of segmentations obtained from the intermediate layer 
highlights the ability for the deepest layers to localise the polyp effec-
tively. The Focus U-Net generalises well with consistently accurate 
segmentations across all datasets. For the images corresponding to the 
poorest segmentation quality, these are either objectively challenging 
polyps to identify, or in many cases poor-quality images such as in the 
CVC-ColonDB example. 

Table 3 
Results for the Kvasir-SEG dataset. Boldface numbers denote the highest values 
for each metrics.  

Model mDSC mIoU Recall Precision 

U-Net [23] 0.715 0.433 0.631 0.922 
Double U-Net [27] 0.813 0.733 0.840 0.861 
FCN8 (VGG16 backbone) [20] 0.831 0.737 0.835 0.882 
PSPNet (ResNet50 backbone) [75] 0.841 0.744 0.836 0.890 
HRNet [76] 0.845 0.759 0.859 0.878 
ResUNet++ with CRF [26] 0.851 0.833 0.876 0.823 
DeepLabv3+ (ResNet101 backbone) [77] 0.864 0.786 0.859 0.906 
U-Net (ResNet34 backbone) [23] 0.876 0.810 0.944 0.862 
FANet [34] 0.880 0.81 0.906 0.901 
PolypSegNet [28] 0.887 0.826 0.925 0.917 
HarDNet-MSEG [31] 0.904 0.848 0.923 0.907 
Focus U-Net 0.910 0.845 0.916 0.917  

Table 4 
Results for evaluation on five public polyp datasets. The combined score takes into account the number of images used for each dataset, enabling cross dataset 
comparisons.  

Dataset (number of images)  

CVC-ClinicDB (61) CVC-ColonDB (380) ETIS-LaribPolypDB (196) CVC-T (60) Kvasir-SEG (100) Combined Score 

Model mDSC mIoU mDSC mIoU mDSC mIoU mDSC mIoU mDSC mIoU mDSC mIoU 

SFA [78] 0.700 0.607 0.469 0.347 0.297 0.217 0.467 0.329 0.723 0.611 0.476 0.367 
U-Net++ [24] 0.794 0.729 0.483 0.410 0.401 0.344 0.707 0.624 0.821 0.743 0.546 0.476 
ResUNet++ [25] 0.796 0.796 – – – – – – 0.813 0.793 – – 
U-Net [23] 0.823 0.755 0.512 0.444 0.398 0.335 0.710 0.627 0.818 0.746 0.561 0.493 
PraNet [30] 0.899 0.849 0.709 0.640 0.628 0.567 0.871 0.797 0.898 0.840 0.740 0.675 
HarDNet-MSEG [31] 0.932 0.882 0.731 0.660 0.677 0.613 0.887 0.821 0.912 0.857 0.768 0.702 
Focus U-Net 0.938 0.889 0.878 0.804 0.832 0.757 0.920 0.860 0.910 0.853 0.878 0.809  

Fig. 5. Examples of the best and worst cases in terms of DSC from each of the five public datasets. The solid green line represents the ground truth mask. The dashed 
magenta line corresponds to the predictions yielded by the Focus U-Net. The intermediate prediction is derived from the deepest layer of the network, while the final 
prediction is used for evaluation. 
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6. Discussion and conclusion 

In this paper, we introduce a novel dual attention-gated U-Net ar-
chitecture, named the Focus U-Net, which uses a Focus Gate to 
encourage learning of salient regions combined with a focal parameter 
controlling suppression of irrelevant background regions. Moreover, 
with the additions of short-range skip connections and deep supervision, 
as well as optimisation based on the Hybrid Focal loss, the Focus U-Net 
outperforms the state-of-the-art results across five public polyp datasets. 
Importantly, the proposed architecture performs consistently well across 
all datasets, demonstrating an ability to generalise to unseen data from 
different datasets. Visualising the resulting polyp segmentations con-
firms the segmentation quality, with poorer segmentations associated 
with a combination of either poorer image quality or objectively more 
challenging polyps to identify. 

The proposed Focus U-Net is the latest addition to lightweight, yet 
accurate, polyp segmentation models, achieving state-of-the-art results 
with a mDSC of 0.878 and mIoU score of 0.809 when evaluated on the 
combination of five public datasets, a 14% and 15% improvement over 
the previous state-of-the-art results from HarDNet-MSEG with a mDSC of 
0.768 and mIoU of 0.702, respectively. 

While these results are promising, it is important to determine 
whether such a model may be applied in clinical practice. Given that 
colonoscopy involves recordings of live video, a model with a fast 
inference time is required to process images in real-time. Accordingly, 
the Focus U-Net architecture is efficiently designed, with both efficient 
channel and spatial attention mechanisms, as well as a lightweight U- 
Net backbone, with comparable FPS performance to the standard U-Net 
[79]. With polyp miss rates as high as 26% reported for small adenomas 
[9], the primary advantage of AI-assisted colonoscopy is to aid clinicians 
in reducing polyp miss-rate detection. However, a secondary advantage 
with segmentation-based computer-aided detection is providing an ac-
curate and operator-independent estimate of the polyp size; an impor-
tant factor in guiding biopsy decisions that may be required during 
colonoscopy. 

There are several limitations associated with our current study. 
Firstly, the datasets used to train our model consist of images all con-
taining polyps, in contrast to in practice, where the majority of live video 
data would not contain a polyp. However, in terms of model training, it 
has been observed that training with images in the absence of polyps 
results in poorer generalisation [80]. In terms of model performance, we 
would expect a higher false positive rate. This is not as undesirable as the 
converse of a high false negative rate, because the purpose of the 
computer-aided system is to focus the operator to attend to highlighted 
regions that may contain missed polyps [81]. 

While colonoscopy remains the gold-standard for investigating sus-
pected CRC, CT virtual colonography is a relatively newer method for 
bowel cancer screening that offers non-invasive visualisation of the 
colon [82]. The flexibility of our model does not restrict usage to polyps 
in visible light and is equally applicable for polyp detection using CT 
colonography. However, these newer modalities present additional 
challenges, such as fluid submersion obscuring polyps [83]. In fact, the 
scope for using the Focus U-Net architecture is not limited for colorectal 
polyps, and is applicable for any image segmentation problem where 
there is the issue of class imbalance and requirement for efficiency. 
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