
Cerri et al. BMC Bioinformatics (2016) 17:373
DOI 10.1186/s12859-016-1232-1

METHODOLOGY ARTICLE Open Access

Reduction strategies for hierarchical
multi-label classification in protein function
prediction
Ricardo Cerri1*, Rodrigo C. Barros2, André C. P. L. F. de Carvalho3 and Yaochu Jin4

Abstract

Background: Hierarchical Multi-Label Classification is a classification task where the classes to be predicted are
hierarchically organized. Each instance can be assigned to classes belonging to more than one path in the hierarchy.
This scenario is typically found in protein function prediction, considering that each protein may perform many
functions, which can be further specialized into sub-functions. We present a new hierarchical multi-label classification
method based on multiple neural networks for the task of protein function prediction. A set of neural networks are
incrementally training, each being responsible for the prediction of the classes belonging to a given level.

Results: The method proposed here is an extension of our previous work. Here we use the neural network output of
a level to complement the feature vectors used as input to train the neural network in the next level. We
experimentally compare this novel method with several other reduction strategies, showing that it obtains the best
predictive performance. Empirical results also show that the proposed method achieves better or comparable
predictive performance when compared with state-of-the-art methods for hierarchical multi-label classification in the
context of protein function prediction.

Conclusions: The experiments showed that using the output in one level as input to the next level contributed to
better classification results. We believe the method was able to learn the relationships between the protein functions
during training, and this information was useful for classification. We also identified in which functional classes our
method performed better.

Keywords: Hierarchical multi-label classification, Protein function prediction, Machine learning, Neural networks

Background
In the majority of the classification tasks found in the
literature, a single class (concept) is assigned to a given
instance (object), and the problem classes assume a flat
(non-hierarchical) structure. However, in a variety of real-
world applications, classes are organized in a hierarchical
structure, where they are specialized into subclasses or
grouped into superclasses. These classification problems
are known in the machine learning (ML) literature as hier-
archical classification (HC), since instances are assigned
to classes associated with nodes of a hierarchy. Depend-
ing on the domain problem, a hierarchical class structure

*Correspondence: cerri@dc.ufscar.br
1Department of Computer Science, UFSCar Federal University of São Carlos,
Rodovia Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil
Full list of author information is available at the end of the article

can be represented as a tree or as a directed acyclic graph
(DAG).
In hierarchical problems with classes structured as a

tree, each class node has only one parent node. In DAG
structures, however, a class node can have multiple par-
ent nodes. Therefore, in tree-structured problems, each
class has a single depth value (number of edges between
the root node and a given node), because there is just one
possible path between the root and any other node in the
hierarchy. Hierarchies structured as DAGs, on the other
hand, allow for multiple depth values, since there may be
more than one path between the root node and any other
given hierarchical node. These characteristics should be
considered in the development and evaluation of hierar-
chical classifiers. Figure 1 depicts hierarchies structured
as either trees or DAGs.

© 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-016-1232-1-x&domain=pdf
mailto: cerri@dc.ufscar.br
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 2 of 24

In this paper, we investigate a particular case of
HC problems in which instances can be simultaneously
assigned to many classes that belong to the same hierar-
chical level. These problems are known as Hierarchical
Multi-Label Classification (HMC), and can be formally
defined as:

Definition Considering X the space of instances, the
classification problem consists of finding a function (classi-
fier) f to map each instance xi ∈ X to a set of classes Ci ∈ C,
with C the set of classes in the problem. The function f
must respect the constraints of the hierarchy, and optimize
a quality criterion.

To respect the constraints of the hierarchical struc-
ture means that when a class is predicted, all its super-
classes should also be predicted. As quality criterion,
one could chose to optimize que predictive performance
of the classifier. This could consider, e.g., the distances
between the predicted and true classes in the hierarchy,
measured as the number of edges between the classes.
Considering that closer classes tend to represent more
similar categories, one could weight incorrect classifi-
cation proportionally to the number of edges between
the true and predicted classes. The classification error
then tends to increase with the number of edges between
classes.
The are some problems related to assigning weights

to the edges of the hierarchy, specially when its depth
varies significantly for different leaf nodes. When this
occurs, errors involving classes near the root are less
penalized than errors involving classes located deeper in
the hierarchy.
In this direction, Lord et al. [1] showed that when

the path connecting two classes has to go through the
root node, and one of the classes is located in a deeper
level than the other, this does not necessarily mean that
the deeper class provides more significant information
than the class located in a higher level. Thus, consider
depth without considering class information may be a
problem. Because of this, in this manuscript we consider

only the predictive performance of the classifiers as qual-
ity criterion, without assigning weights to edges in the
hierarchy.
HMC problems can be solved by either local or global

approaches. Regarding local approaches, classification
algorithms such as decision-tree induction or support
vector machines are used to obtain a hierarchy of classi-
fiers, which are later used to classify unlabeled instances
following a top-down strategy [2]. According to Silla et al.
2010 [3], different strategies can be used in the local
approach: one local classifier per node (LCN), one local
classifier per parent node (LCPN), and one local clas-
sifier per level (LCL). While LCN induces one binary
classifier for each class [4], LCPN induces a multi-
class classifier for each parent node, in order to dis-
tinguish between its subclasses [5]. The LCL strategy
induces one multi-label classifier for each hierarchical
level, where each one predicts the classes of its associated
level [6].
Local-based strategies can be seen as particular cases

ofML reductions. We call reductions the techniques used
to transform more complex problems into well-studied
ML problems. These simpler problems are solved using
any existing learning algorithm. These solutions to the
simpler problems are then used to solve the original
problem [7].
The global approach, differently from the local one,

trains only one classifier to cope with all hierarchical
classes. The classification of new instances is performed
in just one step [8]. Because only one classifier is used,
the specificities of the classification problem must be
considered. Thus, it is not possible to use traditional clas-
sification algorithms, unless they are adapted to cope with
class hierarchies.
Protein function prediction is a typical case of HMC,

since protein functions are hierarchically organized. This
is a very relevant classification task, since almost all func-
tions related to cell activity are performed by proteins.
They can have a great variety of forms and perform
functions such as biochemical reactions, cell signaling,
structural, and mechanical functions [9].

a b

Fig. 1 Hierarchies structured as: (a) trees; (b) DAGs. The “·” symbol separates classes from superclasses/subclasses (2.1 means that 2 is a superclass of
1). Adapted from [43]

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 3 of 24

In this paper, we approach the protein function pre-
diction HMC problem with a new reductionist method
termedHierarchicalMulti-LabelClassification with Local
Multi-Layer Perceptrons (HMC-LMLP). A very prelim-
inary version of HMC-LMLP has been reported in [6],
where we associated one Multi-Layer Perceptron (MLP)
to each hierarchical level, and used the instances as input
to the MLP associated with the first hierarchical level.
From the second level onwards, each MLP was fed only
with the output provided by the previous MLP. Differently
from the version in [6], the method proposed in this paper
uses the output from the MLP trained for level l as part of
the input of theMLP for level l+1. Thus, the outputs from
the MLP associated with level l are now used to augment
the feature vectors that are employed to train the MLP for
level l + 1. The idea is to guarantee that label dependen-
cies between classes are taken into account, and also to
allow the MLP classifiers to discover these dependencies
by themselves.
Two other variants of HMC-LMLP, reported in [10],

are considered as baseline approaches to verify whether
HMC-LMLP is capable of significantly improving classi-
fication accuracy. In the first variant, the true labels of
the training instances are used as part of the input to
train eachMLP. Therefore, when training anMLP for level
l + 1, the feature vector is augmented with its true classes
for level l. This modification forces the label dependen-
cies between classes to be taken into account, with these
dependencies being provided by the training instances
(true classes). The second variant ignores the labels asso-
ciated with the classes to augment the feature vectors.
This can be considered as a baseline version that allows
us to examine whether the use of the labels to augment
the feature vectors results in an improved classification
performance.
To the best of our knowledge, our study is the first

one that employs neural networks for HMC function pre-
diction problems within the LCL strategy. A competitive
neural network was proposed in [11] and applied to DAG
structured hierarchies, while in [12] neural networks were
used in a LCPN strategy specific for hierarchies structured
as trees. In [13], stacked Extreme Learning Machines [14]
neural networks were used for classification. Structured
classification problems, which include hierarchical classi-
fication of protein functions, were addressed by [15] using
a decision tree-based method.
Our contribution is centered in the Funcat hierarchy

[16], a famous taxonomy for the functional organization
of proteins of prokaryotic and eukaryotic origin. The tax-
onomy is a tree with up to six levels in depth, consisting
of 28 main functional categories that cover functions
like cellular transport, metabolism, and communica-
tion. Figure 2 illustrates a small portion of the Funcat
taxonomy.

Related work
Typically, the protein function prediction problem is
solved by using homology, comparing proteins through
some alignment tool, and also comparing protein folds
and biding sites [17, 18]. This section discusses some
recent HMCmethods reported in the literature that make
use of ML for protein and gene function prediction.
Vens et al. [8] investigated methods based on Predictive

Clustering Trees (PCT): the global Clus-HMC method,
which trains only one decision tree considering all the
classes in the hierarchy, the local Clus-SC, which trains a
separated decision tree for each class, and ignores the rela-
tionships between classes, and the local Clus-HSC, which
also trains a decision tree for each class, but explores the
relationships between them. In another study, Schietgat et
al. [19] combines the Clus-HMC method using bagging.
Alves et al. [20] proposed a global method using Arti-

ficial Immune Systems (AIS) for the generation of HMC
rules. The method is divided into two basic procedures:
Sequential Covering (SC) and Rule Evolution (RE). The SC
procedure iteratively calls the RE procedure until all (or
almost all) training instances (antigens) are covered by the
discovered rules. The RE procedure evolves classification
rules (antibodies) that are used to classify the instances.
The best antibody is added to the set of discovered rules.
An ensemble of LCN-based classifiers was proposed

by Valentini [4], where each classifier gives the proba-
bility that an instance belongs to a class. A combination
phase then estimates the consensual probability. In [21]
and [22], this method was modified to modulate rela-
tionships between the predictions of the classes and their
descendants.
A global-based method using Ant Colony Optimization

(ACO) was proposed byOtero et al. [23] to discover classi-
fication rules in the format IF . . . THEN The method
uses a sequential instance-covering procedure to create
rules that cover the majority of the instances. An empty
set of rules is initialized, and rules are added to the list
while the number of instances not covered by any rule is
larger than a given threshold.
Cesa-Bianchi and Valentini [24] investigate the synergy

between different LCN-based strategies applied to protein
function prediction in the FunCat hierarchy. Kernel-based
data fusion tools and ensemble algorithms were inte-
grated with cost sensitive HMCmethods [22, 25]. Synergy
was defined as the improvement in the prediction accu-
racy, considering any evaluation measure, due to the use
of concurrent learning strategies. Synergy is detected if
the combination of two strategies achieves better cor-
rect classification rates than the average of the correct
classification of the two strategies used individually [24].
The work of Stojanova et al. [26] reports a method

which considers self-correlation in HMC, i.e., the statis-
tical relationships between the same variable on different

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 4 of 24

Fig. 2 Part of the funcat hierarchical taxonomy. Adapted from www.helmholtz-muenchen.de/en/ibis

but related instances. The method is called Network Hier-
archical Multi-label Classification (NHMC), and builds a
generalized form of decision trees using the PCT frame-
work, like Clus-HMC. During training, NHMC uses both
the features of the instances, and the self-correlations
between instances. The self-correlations are modeled as
a network, which is exploited by the method during the
learning phase.
Yu et al. [27] propose a method to predict protein func-

tion using incomplete hierarchical labels. The idea is to
take the hierarchical and flat (non-hierarchical) similar-
ities between functions and define a combined similar-
ity between the labels. This similarity, together with the
known labels, is used to estimate the missing functions
of the proteins in the hierarchy. Afterwards, the method
uses information about the interactions between proteins
to predict their functions. In their study, the authors sim-
ulated the situation in which labels are missing in the
hierarchy by randomly masking the leaf functions of a
protein.
In this work, four methods reviewed in this section

were used as baselines during the experimental analysis:
the global decision tree based method Clus-HMC, and its
local reductionist variants Clus-HSC and Clus-SC [8]; the

Ant Colony Optimization based method hmAnt-Miner
[23], which is a global method that achieved competi-
tive results with Clus-HMC; and the method proposed by
Stojanova et al. [26], which provides further information
about the interaction among proteins.
These methods were chosen because they were evalu-

ated using the same datasets we use. Also, they provide the
same output format as HMC-LMLP, and the executables
are freely available. Therefore, we were able to compare
the prediction performance of these methods in detail.
The remainder sections of this paper are organized as

follows. “Methods” Section presents the details of the new
proposed HMC-LMLP variation, together with a brief
description of its previous variants, and the methodology
employed for the empirical analysis. The results are pre-
sented in “Results” Section, where the proposed method
and its variants are compared with state-of-the-art meth-
ods for HMC on 10 protein function prediction datasets
structured as trees. In “Discussion” Section we present the
analysis and discussion on the results, and also perform
an analysis to identify which functional combinations are
predicted well and which ones are not. Finally, we sum-
marize the conclusions and suggest topics for future work
in “Conclusions” Section.

http://www.helmholtz-muenchen.de/en/ibis

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 5 of 24

Methods
The idea behindHMC-LMLP is to divide the learning pro-
cess into a number of steps, aiming at learning a complex
model through the combination of fewer simpler models,
which are learned sequentially. This strategy is known in
the ML literature as reduction, which converts a problem
of minimizing a loss function into a problem of mini-
mizing another, simpler loss function [7]. In our case, by
reducing the problem, each model in sequence is forced
to learn something different from the previously trained
models, breaking down the complex learning process into
simpler processes.
In HMC-LMLP, the reductionist approach works by

learning MLP networks sequentially, one for each level of
the class hierarchy. Each MLP is responsible for extract-
ing local information from the instances at each level,
which we believe to be useful in the classification of unla-
beled instances. Since HMC problems are usually very
complex, our hypothesis is that different patterns can be
extracted from the instances in the different hierarchi-
cal levels. Whereas many different classification strategies
could be employed in a similar architecture, we decided
to use neural networks because of the simplicity in asso-
ciating a class per output neuron. Therefore, obtaining a
multi-label prediction for an instance is carried out in a
straightforward fashion.
Figure 3 illustrates the architecture of the HMC-LMLP

method proposed in this work and its training process: Xl

represents the instances assigned to classes from level l; hl
and ol are, respectively, the hidden layer and output layer
of the MLP network associated with level l; the matrices
W1l andW2l represent, respectively, the weights connect-
ing the input with the neurons in the hidden layer, and the

neurons in the hidden layer with the output neurons of the
MLP associated with level l.
Initially, an MLP is associated with the first hierarchi-

cal level. In order to allow the neural network to predict
a set of labels, each output neuron is associated with one
class. After the MLP has been trained for the first hier-
archical level (Fig. 3a), a second MLP is associated with
the next level of the hierarchy (Fig. 3b). The input for this
network is now the instances feature vectors, augmented
with the output provided by the previously trained MLP.
Thus, each MLP from the second level onward uses the
augmented feature vectors of those instances belonging
to its respective associated level as inputs. The feature
vectors that are used to train an MLP network at level l
are augmented with the output from the MLP trained at
level l − 1.
The neural network associated with the first level is

trained with all training instances (X1), since all instances
are assigned to the classes from the first hierarchical level.
At the second level, the MLP input is now the train-
ing instances that are assigned to the classes belonging
to level 2 (X2), combined with the output provided by
the previously trained MLP. The advantage of using the
augmented feature vector for training each MLP is the
incorporation of label dependency in the learning process.
A similar approach was proposed in [28–30], where labels
were used to augment the feature space of the instances in
order to enable binary classifiers to discover existing label
dependency by themselves.
The training of the neural network at the third level

follows the same procedure adopted for the second level
(Fig. 3c). This supervised incremental greedy procedure
continues until the last level of the hierarchy is reached.

a b c
Fig. 3 HMC-LMLP-Predicted architecture. a Training an MLP at the first level; b Using the output of the first MLP to augment the feature vector of
the instances that are part of the training set of the MLP at the second level; c Using the output of the second MLP to augment the feature vector of
the instances that are part of the training set of the MLP at the third level

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 6 of 24

Recall that when training an MLP network for level l, the
neural network associated with level l − 1 is used only to
provide the inputs that will augment the feature vectors
of the training instances for the MLP network associated
with level l. MLPs associated with previous levels are not
re-trained, because their training has already occurred in
the previous steps.
For convenience, from now on the new version pro-

posed here will be referred as HMC-LMLP-Predicted,
considering that it employs the classes predicted by an
MLP in one level to complement the feature vector of the
instances that are part of the training set of theMLP in the
subsequent level.
Also for convenience, from now on when we want to

refer to all HMC-LMLP variants at the same time, we are
going to use only the term HMC-LMLP.
Algorithms 1 and 2 show the pseudocodes for the

HMC-LMLP-Predicted training and testing procedures.
In Algorithm 1, ϕ and ϕ′ represent, respectively, the
sigmoidal logistic activation function and its derivative
regarding the argument. The gradients are represented by
δ, and � is used to denote the update to be applied to the
synaptic weights.

HMC-LMLP variants
Here we briefly present the other three previously pro-
posed variants of HMC-LMLP, which will be considered
baseline methods in the experiments. The very prelimi-
nary version [6] will be henceforth named HMC-LMLP-
Labels, since it makes use of the classes predicted in one
level as the single input to the MLP responsible for the
predictions in the subsequent level. Thus, the instances
feature vectors are used only to train the MLP associated
to the first level.
The difference between HMC-LMLP-Predicted and

HMC-LMLP-Labels, although subtle, is very important.
From the second level onward, HMC-LMLP-Labels does
not consider the instances attributes anymore. Only the
predictions made at the previous level are used as input
to the current MLP. Thus, there is no complementation of
the feature vectors.
The other variants [10] will be called HMC-LMLP-

True and HMC-LMLP-NoLabels. The first one employs,
at each level, instead of predictions, the true labels of the
instances from the previous level to complement the fea-
ture vectors. To treat HMC-LMLP-True as a baseline may
sound counterintuitive, since using true labels seems to be
better than using predictions. However, the idea here is to
verify whether the neural networks are capable of detect-
ing the class relationships by themselves, and verifying if
the knowledge learned by an MLP can be useful in the
training of the subsequent MLP. This idea was previously
applied in the context of non-hierarchical multi-label clas-
sification [28]. In HMC-LMLP-True, on the other hand,

the neural networks do not learn the class relationships
by themselves, since they are fed a priori with the training
class labels.
The HMC-LMLP-NoLabels variant uses only the orig-

inal feature vectors to train the MLP at each level. Thus,
an individual MLP is trained for each hierarchical level
without using neither true nor predicted class labels to
augment the feature vectors.

Computing final predictions
In the test phase of HMC-LMLP-Predicted and HMC-
LMLP-True (i.e., when predicting a test instance), a top-
down strategy is employed. The test instance is given as
input to the MLP associated to the first level, and the
output from this MLP is used to augment the feature vec-
tor1. This augmented feature vector is then used as input
to the MLP at the second level, whose prediction values
will, once again, augment the input for the MLP at the
third level. This procedure continues until the last MLP
is reached. As previously mentioned, in both the training
and test phases of HMC-LMLP-Predicted, the augmenta-
tion of feature vectors is non-incremental, i.e., the feature
vector being fed into an MLP associated with level l is
only augmented by the output from the MLP associated
with level l − 1. The same is true for HMC-LMLP-True,
with the difference that the true class labels are used in
the training phase and the predicted classes are used in
the test phase. In HMC-LMLP-NoLabels, eachMLP asso-
ciated to each level is fed with the instances classified
in classes belonging to the level. Each MLP then gives
independent predictions for the instances at each level.
In HMC-LMLP-Labels, only the MLP associated with the
first level is fed with instances. From the second level
onwards, each MLP is fed only with the output provided
by the previous MLP.
To compute the final prediction for a test instance –

considering all HMC-LMLP variants – we apply thresh-
olds to the output prediction values from each MLP to
define the predictions for each level. If the output of a neu-
ron j is equal to or larger than a threshold, the instance
is classified in class cj. As final classification, HMC-LMLP
outputs a binary vector v of size |C|, where C is the set
of all classes. If the output value of neuron j is equal to
or larger than a given threshold, the value 1 is assigned
to position vj. Otherwise, the position is set to 0. Differ-
ent threshold values result in different predicted classes.
Because we use the logistic sigmoid function as activa-
tion function in the neurons, the output values range from
0 to 1. We can then use threshold values in the inter-
val [0, 1]. Larger threshold values lead to small number
of classes predicted, and smaller threshold values lead to
higher number of classes predicted. During the classifi-
cation process, the output values that are passed from
network to network are not the values obtained after the

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 7 of 24

Algorithm 1: HMC-LMLP-Predicted training procedure
1 procedure HMC-LMLP-Predicted-Training(X,L,p,E,d,η,α)
2 Input:matrix of instances X
3 number of levels L
4 vector with percentage of hidden nodes per level p
5 number of epochs E
6 vector of desired responses d
7 vector of learning rates of first and second layers η

8 vector of momentum constants of first and second layers α

// Construct structure to store all W matrices
9 AdjustedWeights ← createWeightsStructure(size(X),p)

10 for l ← 1 to L do
// Go through all levels

11 for e ← 1 to E do
// Go through all epochs

12 foreach vector x of the matrix X do
// Go through all instances

13 h1 = ϕ(W11x1)
14 o1 = ϕ(W21h1)
15 if l = 1 then

// Compute error at first level
16 e1 = d1 − o1

// Compute gradients
17 δ21 = e1 � ϕ′(W21h1)// Element-wise multiplication

18 δ11 = ϕ′(W11x1) � WT
21δ21

// Update weights W21 and W11
19 �W21 = α2�We−1

21 + η2(δ21 ⊗ h1)// Tensor product

20 �W11 = α1�We−1
11 + η1(δ11 ⊗ x1)

21 W21 = W21 + �W21
22 W11 = W11 + �W11

23 else
24 for cl ← 2 to l do

// Go through next MLPs

25 xcl = xcl ⊕ ocl−1// Vector concatenation

26 hcl = ϕ(W1clxcl)
27 ocl = ϕ(W2clhcl)

// Compute error at level l
28 el = dl − ol

// Compute gradients

29 δ2l = el � ϕ′(W2lhl)// Element-wise multiplication

30 δ1l = ϕ′(W1lXl) � WT
2lδ2l

// Update weights W2l and W1l
31 �W2l = α2�We−1

2l + η2(δ2l ⊗ hl)// Tensor product

32 �W1l = α1�We−1
1l + η1(δ1l ⊗ xl)

33 W2l = W2l + �W2l
34 W1l = W1l + �W1l

35 Output: set of adjusted weights AdjustedWeights
36 return AdjustedWeights

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 8 of 24

Algorithm 2: HMC-LMLP-Predicted testing
procedure
1 procedure HMC-LMLP-Predicted-
Testing(X,AdjustedWeights,L)

2 Input:matrix of test instances X
3 set of adjusted weights AdjustedWeights
4 number of levels L
// Go through all levels

5 foreach vector x of the matrix X do
// Go through all instances

6 h1 = ϕ(W11x1)
7 o1 = ϕ(W21h1)
8 for cl ← 2 to L do

// Go through next MLPs

9 xcl = xcl ⊕ ocl−1// Vector
concatenation

10 hcl = ϕ(W1clxcl)
11 ocl = ϕ(W2clhcl)

12 Output: predictions in all levels o
13 return o

application of a threshold (0 or 1). The regular output
values from the previous-layer neurons, which are within
[0,1], are not modified. The application of the threshold is
only performed to compute the final predictions.
Considering all variations, after HMC-LMLP has pro-

vided the final predictions, a post-processing phase is
employed to correct eventual classification inconsisten-
cies, i.e., when a subclass is predicted without its super-
class. This may occur because each neural network makes
its own predictions, and even though these individual
MLPs make use of data from the previous levels, this does
not guarantee that the superclasses of all predicted sub-
classes have also been predicted. This problem is intrinsic
to the LCL strategy [3]. The post-processing guarantees
that the final predictions are consistent with the hierarchy.
We use a very simple procedure to correct inconsisten-

cies in the predictions. The post-processing phase simply
removes those predictions that do not have predicted
superclasses.

Computational complexity
In HMC-LMLP-Predicted and HMC-LMLP-True, each
MLP has a time complexity ofO(Wl), withWl the number
of weights and biases of the MLP at level l. Assume that A
is the number of attributes in the dataset,Hl is the number
of hidden neurons of theMLP at level l, andOl is the num-
ber of output neurons of the MLP at level l. We can then
defineW1 as (A+1)×H1+(H1+1)×O1. From the second
level onwards,Wl is defined as (Ol−1+A+1)×Hl+(Hl+
1) × Ol. Thus, the training cost of each neural network at

each level l in HMC-LMLP is thenO(Wl×ml×n), withml
being the number of training instances assigned to classes
belonging to level l, and n the number of training epochs.
In HMC-LMLP-NoLabels, the computational cost is

naturally lower, since the class labels are not used to aug-
ment the feature vectors. For HMC-LMLP-Labels, the
computational cost in the first level considers only the
number of features of the data. From the second level
onwards, only the number of classes is considered, since
the classes are the unique input of the MLP networks.

HMC literature methods
Besides the previous proposed variants, we compare
HMC-LMLP-Predicted with the following HMCmethods
used for protein function prediction: PCT-based methods
Clus-HMC, Clus-HSC, Clus-SC [8], and hmAnt-Miner
[23]. These methods are briefly described next:

• Clus-HMC: global-based method that builds a single
decision tree to cope with all classes simultaneously;

• Clus-HSC: LCN-based method that applies a
top-down strategy to induce a decision tree for each
hierarchical class considering the hierarchical
relationships;

• Clus-SC: LCN-based method that induces one
decision tree for each hierarchical class without
considering hierarchical relationships;

• hmAnt-Miner: global-based method that uses
concepts from ACO to generate hierarchical
multi-label classification rules.

Besides the aforementionedmethods, we also compared
our results with those provided by the method of Sto-
janova et al. [26], namely NHMC (Network Clus-HMC).
Differently from the other methods, NHMC considers the
interaction among proteins. This interaction is calculated
based on the class label vectors associated to each protein.
NHMC is built within the Clus-HMC framework, and
also trains only one decision tree to cope with all classes
simultaneously.

Datasets
In the experiments, we used ten freely available2 pro-
tein function prediction datasets. The attributes of the
datasets are related to issues like phenotype data and gene
expression levels. The function are organized in a tree,
according to the Funcat taxonomy.
The datasets are divided in subsets: training, validation

and testing. Table 1 [6] presents their main characteris-
tics, regarding to number of classes and instances. We
present a brief description below, but more detailed bio-
logical description of each dataset can be found in [8] and
in the corresponding references.

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 9 of 24

Table 1 Summary of datasets: number of attributes (|A|), number of classes (|C|), number of classes per level (Classes per level), total
number of instances (Total) and number of multi-label instances (Multi)

Dataset |A| |C| Classes per level
Training Valid Test

Total Multi Total Multi Total Multi

1 - Seq [44] 478 499 18/80/178/142/77/4 1701 1344 879 679 1339 1079

2 - Pheno [44] 69 455 18/74/165/129/65/4 656 537 353 283 582 480

3 - Cellcycle [45] 77 499 18/80/178/142/77/4 1628 1323 848 673 1281 1059

4 - Church [46] 27 499 18/80/178/142/77/4 1630 1322 844 670 1281 1057

5 - Derisi [47] 63 499 18/80/178/142/77/4 1608 1309 842 671 1275 1055

6 - Eisen [48] 79 461 18/76/165/131/67/4 1058 900 529 441 837 719

7 - Expr [44] 551 499 18/80/178/142/77/4 1639 1328 849 674 1291 1064

8 - Gasch1 [49] 173 499 18/80/178/142/77/4 1634 1325 846 672 1284 1059

9 - Gasch2 [50] 52 499 18/80/178/142/77/4 1639 1328 849 674 1291 1064

10 - Spo [51] 80 499 18/80/178/142/77/4 1600 1301 837 666 1266 1047

• 1 - Seq: has attributes related to statistics obtained
directly from the amino acid sequences, such as
amino acid rates, sequence length and molecular
weight. The atributes are mostly real value numbers,
and were obtained using ProtParam [31] or taken
from MIPS [32];

• 2 - Pheno: has attributes related to phenotypical
data. They represent knock-out mutants missing in
the sequence, regarding their growth or lack of
growth. The data was obtained from databases such
as MIPS [32] and TRIPLES [33]. The attribute values
are all discrete, and the dataset is sparse;

• 3 to 10: has real value attributes obtained using
microarray chips to test the expression levels of genes
across genomes [8];

We performed a pre-processing step before run-
ning HMC-LMLP over these datasets. We used the
one-attribute-per-value strategy to convert all nominal
attribute values into numeric values. In this strategy, an
attribute with k categories is transformed into k binary
attributes. In this study, we used−1 (absence) and 1 (pres-
ence) for each binary attribute. These are more suited for
training neural networks [34]. The attributes were then
standardized (mean 0 and variance 1). Additionally, all
missing values for nominal and numeric attributes were
replaced, respectively, by their mode and mean values.

Evaluation method
As discussed in “Methods” Section, the outputs of HMC-
LMLP for each class are real values in the interval [0,1],
which is also true for the literature methods. Thus, a
threshold value was employed to compute the final pre-
dictions from all methods. For the classification of an
instance, if the output value for a given class is equal to or

larger than the threshold, the instance is assigned to the
class. Otherwise, it is not.
To choose an “optimal” threshold value is difficult,

because low values lead to many predictions to each
instance, resulting in high recall and low precision. On
contrary, large values result in very few predictions, lead-
ing to high precision and low recall. Some studies try to
find the “optimal” threshold value bymodeling a threshold
function as a linear function [35]. Others try to tune the
threshold value by optimizing a given evaluation measure,
or searching for the global maximum of the evaluation
measure by using an optimization strategy [36].
In this work, we dealt with the problem of choosing

a threshold by using precision-recall curves (PR-curves)
[37]. To produce a PR-curve for a classification method,
thresholds in the interval [0, 1] are applied to their out-
puts, resulting in different values of precision and recall
(point within the PR space), one for each threshold
used. The union of these points form a PR-curve, and
the area under the curve is calculated. Different meth-
ods can be compared based on their areas under the
PR-curves.
The calculation of the area under the PR-curve is per-

formed by the interpolation of the precision-recall points
(PR-points) [37], and posterior connection. If we just con-
nect the points without interpolation, the area below the
curve would be artificially increased. Here, we used three
variations of PR-curve: the area under the average PR-
curve (AU(PRC)) and the weighted average of the areas
under the individual (per class) PR-curves (AUPRCw).
The definitions of AU(PRC) and AUPRCw are given

below [8]. The values of measures are in the interval [0, 1].
The index i, in these equations, ranges from 1 to |C|.
The number of true positives, false positives, and false
negatives, are represented, respectively, by TP, FP, and FN.

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 10 of 24

Area under the average PR-curve
After applying a threshold, a PR-point (Prec,Rec) is
obtained through Eqs. (1) and (2). These equations are the
micro-average of precision and recall.

Prec =
∑

i TPi∑
i TPi +

∑
i FPi

(1)

Rec =
∑

i TPi∑
i TPi +

∑
i FNi

(2)

Weighted average of the areas under the individual PR curves
We can obtain the weighted average of the areas under
each PR-curve for each class separately. After calculat-
ing the AUPRCi for each class, we compute the AUPRCw
through Eq. (3).

AUPRCw =
∑

i
wi × AUPRCi (3)

In Eq. (3), we use wi to weight the contribution of each
class given its frequency, i.e., wi = vi/

∑
j vj, with vi the

ci’s frequency in the dataset [8]. We also set all weights to
be equal to 1/|C|. In this case, we refer to the measure as
AUPRC.
In hierarchical classification, it is important to give dif-

ferent weights to classes according to their level in the
hierarchy. In protein function prediction, nodes located at
deeper levels represent more specific protein functions,
and thus are more frequent in the dataset. Nodes located
at higher levels represent more general functions, thus
being less frequent. It is then reasonable to consider that
more frequent classes are more important depending on
the application.
The significance of the results was verified using the

non-parametric Friedman and Nemenyi statistical tests,
more suitable when comparing many classifiers using
several datasets [38]. The confidence level of 95 % was
adopted. As in [8, 23], 2/3 of each dataset were used to
train the classifiers (1/3 for training and 1/3 for valida-
tion), and 1/3 for test. We used exactly the same partition
provided by Vens et al. 2008 [8].

Parameters
We investigate the performance of HMC-LMLP using
the conventional Back-propagation algorithm [39]. The
HMC-LMLP parameters were optimized using the Eisen
validation dataset. This dataset was selected because it
was one of the datasets where Clus-HMC and Clus-HMC-
ENS achieved their best performances, and also because
it has a relatively small number of attributes, which makes
it possible to run several experiments in a reasonable
amount of time without feature selection. The following
parameters were optimized:

• (i) number of neurons in each hidden layer. We
considered all MLPs, from the one associated to the
first level, to the one associated to the last level;

• (ii) parameters of the Backpropagation algorithm:
learning rate and momentum constant;

• (iii) initial values of the neural network’s weights.

The number of hidden neurons of the MLPs associated
to each level was gradually decreased as the correspond-
ing level becomes deeper. This was performed to avoid
overfitting, because as we go deep in the hierarchy, the
number of training instances becomes smaller. Also, we
try to reduce parameter selection influence by setting the
number of hidden neurons as a fraction of the number of
attributes used as input. We used the validation dataset to
execute HMC-LMLP with different values for each of the
parameters. We could not use all sets of values because of
the large number of possibilities.
For the initial weights of the neural networks, param-

eter optimization showed higher initial values increased
the chance of overfitting, resulting in a better performance
on frequent classes but a worse overall prediction per-
formance. The initial weights were varied by randomly
selecting them initially from [−0.1,+0.1], but gradually
increasing the range to [−1, 1]. Regarding the number of
neurons, a limited number of neurons for each hidden
layer was tested. We gradually decreased these number
from 1.0/0.9/0.8/0.7/0.6/0.5 neurons in each layer until
0.1/0.08/0.06/0.04/0.03/0.02. These numbers represent
the fraction of the number of network attribute inputs.
Thus, if a MLP has 100 inputs, 0.6 means that it has 60
hidden neurons.
We started our experiments with the same values used

in theWekamachine learning toolkit [40] for learning rate
and momentum. The learning rate is set to 0.3 and the
momentum to 0.2. Gradually decreasing these values, we
noticed that the neural networks became less prone to
overfitting as these values decreased. The final parameters
obtained for HMC-LMLP after the preliminary experi-
ments are listed next.

• Number of hidden neurons in each level (fraction of
the number of attribute inputs):
0.6/0.5/0.4/0.3/0.2/0.1;

• Backpropagation learning rate and momentum
constant for the hidden and output layers:
{0.05, 0.03} and {0.03, 0.01}, respectively;

• MLPs initial weights: within [−0.1,+0.1];

Results
This section presents the experiments that were car-
ried out to compare the prediction performance of the
HMC-LMLP-Predicted with its previous variants [6, 10]
and the literature HMC algorithms, namely, Clus-HMC,

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 11 of 24

Clus-HSC, Clus-SC, and hmAnt-Miner. We compared
those methods based on their overall prediction perfor-
mance in all datasets, and also compared their perfor-
mance in specific classes and levels of selected datasets.
In the tables showing results, we refer to the HMC-LMLP
variants as Labels, True and NoLabels (our previous ver-
sions), and Predicted (our new proposed version). Besides
the evaluation measures, we also performed an analysis
to verify which protein functions are well predicted by

HMC-LMLP-Predicted, and also identify which ones are
not.
In the experiments using HMC-LMLP, the results are

the mean and standard deviation over 10 executions, each
with randomly initialized weights. Given that hmAnt-
Miner is a stochastic method, we also executed it 10 times
and show the mean and standard deviation over all execu-
tions. Clus-HMC, Clus-HSC, and Clus-SC are determin-
istic algorithms and thus need to be executed only once.

Table 2 AU(PRC), AUPRCw and AUPRC values

HMC-LMLP

Dataset Labels Predicted True NoLabels Clus-HMC Clus-HSC Clus-SC hmAnt-Miner

AU(PRC) values

Cellcycle 0.185 0.207 0.203 0.205 0.172 0.111 0.106 0.155

Church 0.164 0.173 0.167 0.169 0.170 0.131 0.128 0.165

Derisi 0.171 0.183 0.176 0.182 0.175 0.094 0.089 0.149

Eisen 0.208 0.245 0.236 0.240 0.204 0.127 0.132 0.181

Gasch1 0.196 0.236 0.229 0.234 0.205 0.106 0.104 0.173

Gasch2 0.184 0.211 0.201 0.208 0.195 0.121 0.119 0.152

Pheno 0.159 0.159 0.158 0.159 0.160 0.152 0.149 0.161

Spo 0.172 0.186 0.180 0.184 0.186 0.103 0.098 0.177

Expr 0.196 0.243 0.238 0.240 0.210 0.127 0.123 0.180

Seq 0.195 0.236 0.233 0.232 0.211 0.091 0.095 0.186

AUPRCw values

Cellcycle 0.145 0.184 0.178 0.181 0.142 0.146 0.146 0.133

Church 0.118 0.131 0.129 0.127 0.129 0.127 0.128 0.123

Derisi 0.127 0.146 0.141 0.144 0.137 0.125 0.122 0.132

Eisen 0.163 0.221 0.210 0.213 0.183 0.169 0.173 0.151

Gasch1 0.157 0.213 0.207 0.211 0.176 0.154 0.153 0.154

Gasch2 0.142 0.185 0.174 0.179 0.156 0.148 0.147 0.142

Pheno 0.114 0.125 0.118 0.123 0.124 0.125 0.127 0.121

Spo 0.129 0.152 0.148 0.150 0.153 0.139 0.139 0.139

Expr 0.167 0.236 0.232 0.233 0.179 0.167 0.167 0.159

Seq 0.166 0.220 0.218 0.219 0.183 0.151 0.154 0.155

AUPRC values

Cellcycle 0.022 0.035 0.031 0.033 0.034 0.036 0.038 0.030

Church 0.019 0.023 0.022 0.022 0.029 0.029 0.031 0.026

Derisi 0.020 0.027 0.024 0.025 0.033 0.029 0.028 0.031

Eisen 0.027 0.048 0.041 0.043 0.052 0.052 0.055 0.039

Gasch1 0.024 0.046 0.041 0.045 0.049 0.047 0.047 0.036

Gasch2 0.022 0.038 0.031 0.033 0.039 0.042 0.037 0.032

Pheno 0.019 0.023 0.021 0.022 0.030 0.031 0.031 0.028

Spo 0.021 0.027 0.026 0.026 0.035 0.038 0.034 0.032

Expr 0.021 0.053 0.051 0.051 0.052 0.054 0.050 0.038

Seq 0.019 0.041 0.041 0.041 0.053 0.043 0.042 0.036

Best results are highlighted in bold face

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 12 of 24

When training HMC-LMLP, at each epoch we calcu-
lated its AU(PRC) for the validation dataset. When this
value stops increasing for 10 epochs, we stopped the train-
ing process and tested the best neural networks in the
test dataset.
In addition, we also compared our results with the

results provided by Network Clus-HMC (NHMC), a Clus-
HMC variation proposed by Stojanova et al. [26]. This
variation considers the protein features and additionally
uses protein-protein interaction networks.

Overall comparisons
Table 2 presents the AU(PRC), AUPRCw and AUPRC val-
ues for all methods that were compared. We highlight in
bold the best results that were obtained.
Table 3 shows the average rankings according to the

Friedman test. The p-values obtained considering the
AU(PRC), AUPRCw, and AUPRC measures were, respec-
tively, 1.47 × 10−22, 1.57 × 10−12, and 8.40 × 10−18,
which clearly indicate that there are statistically sig-
nificant differences among the methods. To identify
which pairwise comparisons present statistically signif-
icant differences, we performed the Nemenyi post-hoc
test.
According to Nemenyi test, HMC-LMLP-Predicted

outperformed Clus-HSC, Clus-SC, hmAnt-Miner, and
HMC-LMLP-Labels with statistical significance consid-
ering both the AU(PRC) and AUPRCw measures. No
statistically significant differences were detected between
the HMC-LMLP variants and Clus-HMC. Considering
the AUPRC measure, no statistically significant differ-
ences were detected among HMC-LMLP-Predicted and
the other methods.
The critic diagrams presented in Fig. 4 show the

Nemenyi test results for the pairwise comparisons of
all classifiers. In this kind of diagram, we connect the
methods where no statistically significant results were
detected. The AUPRC measure seemed to favor the
PCT local-based methods, since Clus-HSC was statisti-
cally superior to HMC-LMLP-Labels, HMC-LMLP-True,

HMC-LMLP-NoLabels and hmAnt-Miner. Recall that this
measure considers all classes equally important.
Figure 5 shows the PR-curves generated by HMC-

LMLP-Predicted and the literature methods for the Eisen
and Seq datasets, considering the AU(PRC) measure.
Regarding HMC-LMLP-Predicted and hmAnt-Miner,
these curves were obtained for the best results in the
validation dataset. Note that HMC-LMLP-Predicted pro-
vided the largest area under the curve in both datasets,
when compared to the curves obtained by all methods.
In many points of the curves, for a same recall value,
HMC-LMLP-Predicted provided the highest precision
values.

Comparisons considering specific classes and levels
In this Section, we compared the HMC methods consid-
ering specific classes of the hierarchy, and also evaluate
the methods level by level. We do so in order to examine
their behavior when predicting classes in different hierar-
chical levels. We perform two sets of comparisons. First,
we compared the methods to verify whether the use of
the predictions to augment the feature vectors improved
the results in specific classes and levels. For this pur-
pose, we selected the Eisen dataset, which is the dataset
where HMC-LMLP-NoLabels achieved its best classifica-
tion results (Table 2) considering the AU(PRC) measure.
We selected, for each level, the three classes where HMC-
LMLP-NoLabels achieved its best results, going down
until the fourth level because in deeper levels the classes
have a very low frequency in the training dataset (less
than 5 %). The results for the Eisen dataset are shown in
Table 4. The best absolute values are highlighted in bold.
We did not consider the classes from the first level because
the HMC-LMLP variants are different from each other
only from the second level onwards.
In a second set of comparisons, we analyzed the

results provided by HMC-LMLP-Predicted and the lit-
erature methods, i.e., Clus-HMC, Clus-HSC, Clus-SC,
and hmAnt-Miner. As Clus-HMC is the state-of-the-art
method so far, we performed the comparisons in the Seq

Table 3 Average rankings according to the Friedman statistical test

Method AU(PRC) Method AUPRCw Method AUPRC

Predicted 1.35 Predicted 1.25 Clus-HSC 1.90

NoLabels 2.50 NoLabels 2.75 Clus-HMC 2.20

True 3.40 True 3.45 Clus-SC 2.70

Clus-HMC 3.55 Clus-HMC 3.85 Predicted 4.10

Labels 4.90 Clus-SC 5.55 NoLabels 5.45

hmAnt-Miner 5.30 Clus-HSC 5.70 hmAnt-Miner 5.50

Clus-HSC 7.20 Labels 6.65 True 6.15

Clus-SC 7.80 hmAnt-Miner 6.80 Labels 8.00

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 13 of 24

a

b

c

Fig. 4 Results of the Nemenyi statistical test

dataset, in which Clus-HMC showed the best results con-
sidering the AU(PRC) measure (Table 2). We selected, in
each level, the three classes where Clus-HMC obtained
its best results. We adopted the same procedure applied
in the Eisen dataset, analyzing until the fourth level of
the hierarchies when comparing performances in spe-
cific classes, but this time adding the results provided
for the first hierarchical level. These results are presented
in Table 5, with the best absolute values highlighted in
bold.

Comparison with NHMC considering protein-protein
interactions
Table 6 shows the results comparing all HMC-LMLP
variations with NHMC, highlighting the best results. In

a b

Fig. 5 PR-curves of HMC-LMLP-Predicted, Clus-HMC, CLus-HSC,
Clus-SC, and hmAnt-Miner

Stojanova et al. [26], NHMC was evaluated using only
the AUPRC measure. With NHMC, two protein-protein
interaction networks were used together with the orig-
inal dataset’s features: BioGRID [41] and DIP [42]. The
BioGRID network contains physical and genetic interac-
tions among proteins, while DIP (Database of Interacting
Proteins) has information on binary protein-protein inter-
actions, which are retrieved from research articles [26].
Table 6 also shows two different results (α = 0.5 and

α = 0.0) for both BioGRID andDIP.With α = 0.0, NHMC
considers only the protein-protein interactions to induce
the decision tree. If α = 0.5, NHMC equally weights
variance reduction (Clus-HMC) and protein-protein

interactions. For detailed information about Clus-HMC
and NHMC implementations, the reader is referred to
Vens et al. [8] and Stojanova et al. [26].
Stojanova et al. [26] also reported AU(PRC) values

obtained by NHMC in seven of the datasets used here.
The reported values are the ones obtained using the DIP
network with α = 0.5. Table 7 shows the comparison
of the HMC-LMLP results with their reported NHMC
results.

Analysis regarding the predicted functions
Tables 8 and 9 present, respectively, the results for the best
and worst predicted functions by HMC-LMLP-Predicted,
together with the results obtained by Clus-HMC. By best
predicted functions, we mean the functions where HMC-
LMLP-Predicted obtained an AUPRC value higher than
Clus-HMC in nine or more datasets. By worst predicted

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 14 of 24

Table 4 Specific-classes AUPRC values and per-level AU(PRC) for the Eisen dataset
HMC-LMLP

Level Classes Labels Predicted True NoLabels Clus-HMC Clus-HSC Clus-SC hmAnt-Miner

AUPRC values in specific classes

2 12.01 0.198 0.760 0.744 0.761 0.582 0.655 0.651 0.565

2 10.01 0.164 0.359 0.348 0.357 0.217 0.174 0.220 0.232

2 11.02 0.265 0.347 0.325 0.337 0.248 0.247 0.266 0.221

3 12.01.01 0.173 0.786 0.771 0.779 0.609 0.724 0.706 0.570

3 11.02.03 0.239 0.345 0.314 0.330 0.236 0.244 0.215 0.212

3 14.13.01 0.054 0.327 0.255 0.247 0.177 0.123 0.159 0.153

4 11.02.03.04 0.201 0.319 0.294 0.294 0.208 0.203 0.230 0.172

4 10.01.09.05 0.063 0.211 0.190 0.192 0.123 0.103 0.150 0.101

4 11.02.03.01 0.089 0.128 0.136 0.121 0.091 0.085 0.130 0.092

Per-level AU(PRC) values

2 - 0.049 0.113 0.091 0.107 0.084 0.082 0.092 0.069

3 - 0.018 0.043 0.034 0.035 0.038 0.042 0.049 0.032

4 - 0.011 0.025 0.020 0.018 0.023 0.035 0.029 0.019

5 - 0.004 0.006 0.005 0.005 0.006 0.012 0.013 0.008

6 - 0.001 0.001 0.006 0.001 0.001 0.001 0.004 0.006

Best results are highlighted in bold face

Table 5 Specific-classes AUPRC values and per-level AU(PRC) for the Seq dataset

Level Classes HMC-LMLP-Predicted Clus-HMC Clus-HSC Clus-SC hmAnt-Miner

AUPRC values in specific classes

1 01 0.589 0.502 0.463 0.463 0.445

1 20 0.546 0.496 0.345 0.345 0.364

1 12 0.573 0.425 0.279 0.279 0.383

2 12/01 0.697 0.458 0.357 0.558 0.465

2 20/01 0.495 0.451 0.339 0.339 0.299

2 11/02 0.401 0.269 0.243 0.229 0.285

3 12/01/01 0.769 0.504 0.426 0.480 0.502

3 11/02/03 0.400 0.262 0.229 0.236 0.269

3 10/03/01 0.196 0.162 0.132 0.158 0.167

4 11/02/03/04 0.385 0.222 0.194 0.186 0.238

4 43/01/03/05 0.168 0.108 0.095 0.124 0.108

4 11/02/03/01 0.132 0.095 0.075 0.076 0.092

Per-level AU(PRC) values

1 - 0.312 0.246 0.224 0.224 0.234

2 - 0.097 0.070 0.062 0.071 0.063

3 - 0.033 0.033 0.034 0.032 0.027

4 - 0.015 0.017 0.027 0.026 0.016

5 - 0.005 0.008 0.021 0.014 0.008

6 - 0.012 0.002 0.010 0.025 0.006

Best results are highlighted in bold face

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 15 of 24

Table 6 AUPRC values for HMC-LMLP variations and NHMC

HMC-LMLP NHMC (DIP) NHMC (Bio-GRID)

Dataset Labels Predicted True NoLabels α = 0.5 α = 0.0 α = 0.5 α = 0.0

AUPRC values

Cellcycle 0.022 0.035 0.031 0.033 0.030 0.037 0.020 0.029

Church 0.019 0.023 0.022 0.022 0.020 0.020 0.020 0.020

Derisi 0.020 0.027 0.024 0.025 0.028 0.025 0.020 0.026

Eisen 0.027 0.048 0.041 0.043 0.042 0.025 0.024 0.037

Gasch1 0.024 0.046 0.041 0.045 0.040 0.032 0.033 0.036

Gasch2 0.022 0.038 0.031 0.033 0.034 0.027 0.025 0.028

Pheno 0.019 0.023 0.021 0.022 0.035 0.028 0.028 0.028

Spo 0.021 0.027 0.026 0.026 0.029 0.025 0.020 0.027

Expr 0.021 0.053 0.051 0.051 0.030 0.025 0.020 0.028

Seq 0.019 0.041 0.041 0.041 0.054 0.053 0.056 0.062

Best results are highlighted in bold face

functions, we reported the functions where Clus-HMC
performed better than HMC-LMLP-Predicted in nine
or more datasets. In Tables 10 and 11, we give the
descriptions of the these best and worst predicted func-
tions. These descriptions were obtained from http://mips.
helmholtz-muenchen.de/funcatDB/.

Discussion
The results presented in Table 2 show that all HMC-LMLP
variants outperformed the two local versions of the PCT-
based methods Clus-HSC and Clus-SC by a large margin,
considering the absolute values of the evaluation mea-
sures. The variants HMC-LMLP-Predicted, HMC-LMLP-
True, and HMC-LMLP-NoLabels achieved better results
than the global methods Clus-HMC and hmAnt-Miner
for the vast majority of the datasets. Moreover, HMC-
LMLP-Predicted improved the results achieved by
versions HMC-LMLP-True and HMC-LMLP-NoLabels,
which confirms that the predictions at one level were
indeed useful in the learning process of the subsequent
level.

It is interesting to see how the use of the predic-
tions (HMC-LMLP-Predicted) instead of the true classes
(HMC-LMLP-True) improved the algorithm’s classifica-
tion performance. This is an indication that the neural
networks were capable of better exploring the relation-
ships between classes at each level when making use of
the predictions, and that these relationships were learned
during the training process.
The results shown in Table 2 also suggest that the

variants HMC-LMLP-Predicted, HMC-LMLP-True, and
HMC-LMLP-NoLabels achieved their best results in
the most frequent classes in the hierarchy. As we can
see, although the PCT-based methods performed bet-
ter in the AUPRC measure, the performances of all
methods were more similar in this measure, which
gives equal importance to all classes. Given that the
other two measures consider the frequencies of the
classes in the datasets, the results suggest that HMC-
LMLP performed better in the most frequent classes.
For the AUPRCw measure, the evaluation decreases the
importance of theAUPRC values obtained in less frequent

Table 7 AU(PRC) values of HMC-LMLP variations and NHMC

HMC-LMLP NHMC (DIP)

Dataset Labels Predicted True NoLabels α = 0.5

AU(PRC) values

Cellcycle 0.185 0.207 0.203 0.205 0.173

Church 0.164 0.173 0.167 0.169 0.152

Derisi 0.171 0.183 0.176 0.182 0.172

Eisen 0.208 0.245 0.236 0.240 0.196

Gasch2 0.184 0.211 0.201 0.208 0.186

Pheno 0.159 0.159 0.158 0.159 0.241

Spo 0.172 0.186 0.180 0.184 0.181

http://mips.helmholtz-muenchen.de/funcatDB/
http://mips.helmholtz-muenchen.de/funcatDB/

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 16 of 24

Table 8 Best predicted functions by HMC-LMLP-Predicted (means of AUPRC over the ten datasets)

Function HMC-LMLP-Predicted Clus-HMC Function HMC-LMLP-Predicted Clus-HMC

01 0.493 0.421 14 0.373 0.319
01.01 0.219 0.087 14.13.01.01 0.146 0.092
01.03 0.094 0.061 16 0.292 0.260
01.05 0.269 0.199 16.01 0.148 0.109
02 0.305 0.214 16.19 0.082 0.056
10 0.389 0.316 20.01 0.239 0.216
10.01 0.214 0.165 20.01.01.01.01.01 0.146 0.004
10.01.05 0.126 0.085 30 0.075 0.061
10.01.05.01 0.104 0.058 32 0.234 0.181
10.03 0.272 0.219 32.01 0.226 0.162
10.03.02 0.107 0.063 34 0.150 0.131
10.03.01.01.03 0.012 0.010 34.11 0.107 0.083
11 0.418 0.344 34.11.03 0.095 0.068
11.02 0.274 0.216 41 0.021 0.013
11.02.03.01 0.108 0.075 42 0.280 0.250
11.04 0.204 0.143 43.01.03 0.169 0.129
11.04.01 0.222 0.126 43.01.03.05 0.122 0.093
12 0.528 0.410 –
12.01 0.592 0.448 –
12.01.01 0.612 0.463 –

Table 9 Worst predicted functions by HMC-LMLP-Predicted (means of AUPRC over the ten datasets)

Function HMC-LMLP-Predicted Clus-HMC Function HMC-LMLP-Predicted Clus-HMC

01.01.03.01.01 0.0005 0.0008 01.05.05 0.0010 0.0137

01.01.03.03 0.0005 0.0032 01.05.05.04 0.0003 0.0006

01.01.03.05 0.0066 0.0096 01.05.05.07 0.0004 0.0069

01.01.03.05.02 0.0005 0.0009 01.20.05 0.0011 0.0015

01.01.05.01.01 0.0005 0.0009 01.20.05.09 0.0004 0.0009

01.01.06.01 0.0026 0.0042 01.20.17.03 0.0005 0.0009

01.01.06.01.01 0.0004 0.0008 01.20.19.05 0.0004 0.0008

01.01.06.01.02 0.0004 0.0008 01.20.31 0.0004 0.0007

01.01.06.04 0.0017 0.0039 02.01.01 0.0004 0.0009

01.01.06.04.01 0.0004 0.0007 02.16.03 0.0004 0.0007

01.01.06.04.02 0.0003 0.0006 02.16.11 0.0003 0.0006

01.01.09.01 0.0011 0.0073 16.06 0.0004 0.0007

01.01.09.01.02 0.0003 0.0067 20.03.02.02 0.0003 0.0031

01.01.09.04.01 0.0005 0.0009 20.09.07.29 0.0004 0.0009

01.01.09.05.01 0.0005 0.0009 30.05.01.10 0.0004 0.0009

01.01.11.01 0.0004 0.0009 32.07.05 0.0004 0.0009

01.01.11.02.02 0.0005 0.0009 34.07.02 0.0004 0.0008

01.01.11.03.02 0.0005 0.0009 38 0.0857 0.0710

01.01.11.04 0.0041 0.0073 38.07 0.0004 0.0008

01.01.11.04.02 0.0005 0.0009 40.01.03.01 0.0004 0.0007

01.02.02 0.0036 0.0041 40.10.02 0.0012 0.0015

01.02.02.09 0.0036 0.0041 40.10.02.02 0.0004 0.0009

01.02.02.09.01 0.0005 0.0009 40.10.02.02.01 0.0004 0.0009

01.02.02.09.05 0.0004 0.0009 – – –

01.02.07 0.0079 0.0158 – – –

01.02.07.03 0.0004 0.0008 – – –

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 17 of 24

Table 10 Best predicted functions by HMC-LMLP-Predicted

Function Description

01 Metabolism

01.01 Amino acid metabolism

01.03 Nucleotide/nucleoside/nucleobase
metabolism

01.05 C-compound and carbohydrate metabolism

02 Energy

10 Cell Cycle and DNA processing

10.01 DNA processing

10.01.05 DNA recombination and DNA repair

10.01.05.01 DNA repair

10.03 Cell cycle

10.03.02 Meiosis

10.03.01.01.03 G1/S transition of mitotic cell cycle

11 Transcription

11.02 RNA synthesis

11.02.03.01 General transcription activities

11.04 RNA processing

11.04.01 rRNA processing

12 Protein Synthesis

12.01 Ribosome biogenesis

12.01.01 Ribosomal proteins

14 Protein fate (folding, modification,
destination)

14.13.01.01 Proteasomal degradation
(ubiquitin/proteasomal pathway)

16 Protein with binding function or cofactor
requirement (structural or catalytic)

16.01 Protein binding

16.19 Nucleotide/nucleoside/nucleobase binding

20.01 Transported compounds (substrates)

20.01.01.01.01.01 Siderophore-iron transport

30 Cellular communication/Signal transduction
mechanism

32 Cell rescue, defense and virulence

32.01 Stress response

34 Interaction with the cellular environment

34.11 Cellular sensing and response to external
stimulus

34.11.03 Chemoperception and response

41 Development (Systemic)

42 Biogenesis of cellular components

43.01.03 Fungal and other eukaryotic cell type
differentiation

43.01.03.05 Budding, cell polarity and filament formation

Table 11 Worst predicted functions by HMC-LMLP-Predicted

Function Description

01.01.03.01.01 Biosynthesis of glutamine

01.01.03.03 Metabolism of proline

01.01.03.05 Metabolism of arginine

01.01.03.05.02 Degradation of arginine

01.01.05.01.01 Biosynthesis of polyamines

01.01.06.01 Metabolism of aspartate

01.01.06.01.01 Biosynthesis of aspartate

01.01.06.01.02 Degradation of aspartate

01.01.06.04 Metabolism of threonine

01.01.06.04.01 Biosynthesis of threonine

01.01.06.04.02 Degradation of threonine

01.01.09.01 Metabolism of glycine

01.01.09.01.02 Degradation of glycine

01.01.09.04.01 Biosynthesis of phenylalanine

01.01.09.05.01 Biosynthesis of tyrosine

01.01.11.01 Metabolism of alanine

01.01.11.02.02 Degradation of isoleucine

01.01.11.03.02 Degradation of valine

01.01.11.04 Metabolism of leucine

01.01.11.04.02 Degradation of leucine

01.02.02 Nitrogen metabolism

01.02.02.09 Catabolism of nitrogenous compounds

01.02.02.09.01 Urea catabolism (not urea cycle)

01.02.02.09.05 Cyanate catabolism

01.02.07 Regulation of nitrogen, sulfur and selenium
metabolism

01.02.07.03 Regulation of sulphur metabolism

01.05.05 C-1 compound metabolism

01.05.05.04 C-1 compound anabolism

01.05.05.07 C-1 compound catabolism

01.20.05 Biosynthesismetabolism of acetic acid derivatives

01.20.05.09 Biosynthesismetabolism of eicosanoids

01.20.17.03 Biosynthesismetabolism of amines

01.20.19.05 Biosynthesismetabolism of cobalamins

01.20.31 Biosynthesismetabolism of secondary products
derived from L-lysine, L-arginine and L-histidine

02.01.01 Glycolysis methylglyoxal bypass

02.16.03 Lactate fermentation

02.16.11 Propionate fermentation

16.06 Motor proteinmotor protein binding

20.03.02.02 Symporter

20.09.07.29 Vesicle recycling

30.05.01.10 Two-component signal transduction system (sensor
kinase component)

32.07.05 Detoxification by export

34.07.02 Cell-matrix adhesion

38 Transposable Elements, viral and plasmid proteins

38.07 Proteins necessary for the integration or inhibition of
transposon movement

40.01.03.01 Regulation of directional cell growth

40.10.02 Apoptosis (type I programmed cell death)

40.10.02.02 Apoptotic program

40.10.02.02.01 Apoptotic mitochondrial changes

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 18 of 24

classes and increases the importance of more frequent
classes.
According to the results from Table 4, the use of the

predictions improved the classification performance in
the majority of the classes. HMC-LMLP-Predicted also
achieved the best correct classification rates when com-
pared to the state-of-the-art methods. By analyzing the
per-level AU(PRC) values, all methods had a poor perfor-
mance, specially from the third level onwards. Neverthe-
less, note that HMC-LMLP-Predicted outperformed the
other HMC-LMLP variants.
Another feature that can be seen in Table 4 is that, from

the third level onwards, the HMC-LMLP variants were
outperformed (although by a very small margin) by the
literature methods. This confirms the results observed in
Table 2, where HMC-LMLP obtained the best AUPRCw
values, indicating that the best results were achieved in
the most frequent classes. The very low frequency of
the classes located at the deepest levels may explain the
HMC-LMLP performance in these levels.
It is also possible to observe how much HMC-LMLP-

Labels underperforms compared to the remaining meth-
ods, considering the deepest classes in the Eisen dataset.
This behavior was expected, since HMC-LMLP-Labels
does not employ the original attributes of the instances
in the training process of the neural networks from the
second level onwards, but only the predictions.
According to Table 5, HMC-LMLP-Predicted provided

the best results in all analyzed classes. In the per-
level evaluation, we can see that HMC-LMLP-Predicted
obtained the best results in the top levels of the hier-
archy, while the best performances in the deepest lev-
els were obtained by the PCT-based methods. This is
another evidence that HMC-LMLP performed better
in the most frequent classes, as confirmed by its bet-
ter overall results considering the AUPRCw evaluation
measure.
Considering the comparisons with Network Clus-HMC

(Tables 6 and 7), HMC-LMLP-Predicted provided the best
results in the majority of the cases. These results are par-
ticularly interesting given that our method makes use of
features information only. We believe we could extend
HMC-LMLP so it also considers protein-protein interac-
tions, paving the way for a further increase in predictive
performance.
Regarding the functions predicted, we can see by

Table 8 that, for the best functions predicted by HMC-
LMLP-Predicted, the differences between theAUPRC val-
ues obtained by HMC-LMLP-Predicted and Clus-HMC
are much higher than the ones observed for the func-
tions where Clus-HMC performed better than HMC-
LMLP-Predicted (Table 9). This explains the best overall
AU(PRC) values obtained by HMC-LMLP-Predicted.
Although Clus-HMC performed better in more classes,

the individual AUPRC values for the classes where HMC-
LMLP-Predicted performed better are much higher in
favor of HMC-LMLP-Predited.
In Figs. 6 and 7, we show the hierarchical positions

of the best and worst predicted classes by HMC-LMLP-
Predicted. These figures show the complete subtrees
where the classes are located. We highlighted the classes
shown in Tables 8 and 9, since the subtrees represent the
transitive closure (all ancestor) of the classes presented in
Tables 8 and 9.
By analyzing Fig. 6, we can have some insights about the

prediction behavior of HMC-LMLP-Predicted. We can
see that, in 90 % of the datasets investigated, it obtained
best results than Clus-HMC mainly in the classes closer
to the root. If we look at Fig. 7, we see that the functions
where Clus-HMC performed better than HMC-LMLP-
Predicted in 90 % of the datasets are mainly located
at deeper levels. This confirms the results we’ve been
observing so far.
We also performed an analysis considering the func-

tions better predicted in six of the ten datasets. In
Fig. 8, we show the subtrees with the functions where
HMC-LMLP-Predicted obtained better AUPRC values
than Clus-HMC. In Fig. 9, we present the functions
where Clus-HMC performed better than HMC-LMLP-
Predicted. We can see from these figures that the neural
networks behavior remains the same, with the best pre-
dicted functions spread across the levels closer to the root,
while the worst predicted functions more concentrated at
the deepest levels, down until the fifth. Again, recall that
Figs. 8 and 9 show the transitive closure of the best and
worst HMC-LMLP-Predicted predicted functions. Thus,
to improve visualization, we deleted the nodes which are
not in the set of the best and worst predicted functions.
Another characteristic that can be observed in the

figures showing the subtrees is that HMC-LMLP-
Predicted obtained its best results in complete paths start-
ing at the root node. For example the paths 10.01.05.01
and 12.01.01. The path 12.01.01, particularly, contains
the classes where HMC-LMLP-Predicted obtained its
best AUPRC values 0.528 (12), 0.592 (12.01) and 0.612
(12.01.01).
As we use the logistic function in the output neu-

rons of each MLP, the outputs of the neurons associ-
ated to each class can be interpreted as probabilities of
instances to belong to the corresponding class. As HMC-
LMLP-Predicted obtained better results than Clus-HMC
in classes closer to the root (more frequent classes), we
can say that the neural networks provided stronger evi-
dence about the pertinence of the proteins to the func-
tions considered more important in the problem domain.
Recall that both HMC-LMLP and Clus-HMC weights the
classes during evaluation, consideringmore important the
frequent classes.

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 19 of 24

Fig. 6 Subtree with best predicted functions by HMC-LMLP-Predicted in 90 % of the datasets

Still, higher AUPRC values associated to a given class
means that, for high thresholds applied to the output of
the neurons, the precision and recall values remain high.
This can be interpreted as a high reliability associated to
the prediction given by the neuron.
Even though we validate the neural networks and evalu-

ate their final classification predictive performance using
AU(PRC), this is not the loss function minimized during
the network training. Each MLP is trained by minimizing
the mean square error (MSE) of its corresponding layer.
As previously mentioned, when an MLP is being trained
and validated for level l, it minimizes the MSE only for
the level l, even though the AU(PRC) for the hierarchical
classification considering the predictions made in every
level of the hierarchy up to that point is being calculated.
Despite reducing the HMC problem to several flat (non-
hierarchical) multi-label problems, we are interested in
reaching satisfactory precision and recall values within the
original HMC problem. When training and validating an
MLP at level l, a model is being induced for a hierarchy
with l levels. In several neural networks applications, it
is very common to minimize the MSE during training,
whereas the classifier predictive performance is evaluated
using another evaluation measure [35].

According to [7], when reducing a problem y to another
problem x, a method to solve the problem x can solve
the problem y using a transformation. In HMC-LMLP,
we transform a hierarchical multi-label problem into k
non-hierarchical multi-label problems, and minimize the
MSE for each problem separately. Thus, we transform the
original hierarchical multi-label distribution D into non-
hierarchical multi-label distributions D′. If we consider
HMCh the hierarchical multi-label method proposed, and
h the individual neural networks applied to each flat
multi-label problem, the error obtained by HMCh on
D is bounded by the error obtained by h on D′, i.e.,
e(HMCh,D) ≤ (k − 1)e(h,D′). In HMC problems, errors
committed for a given level are propagated to deeper lev-
els. Thus, the worst case error inD occurs when anHMCh
error committed in the first level is propagated to the
the last level, which is a leaf. This is equivalent to sum-
ming up the individual h errors obtained in D′ for each
level.
The HMC-LMLP variants estimate different quantities

depending on the input used in the neural networks. The
distributions are modified in each variant, modifying the
input of the MLP at each level. For example, in HMC-
LMLP-NoLabels, only the features are taken into account,

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 20 of 24

Fig. 7 Subtree with worst predicted functions by HMC-LMLP-Predicted in 90 % of the datasets

resulting in the estimation of probabilities P(y|x), where
y is a class of the hierarchy. The variants HMC-MLP-
Predicted and HMC-LMLP-Labels also estimates P(y|x)
because the predicted labels are functions of x. The HMC-
MLP-Predicted variant uses both the original features and
the specific functions of these features (predictions in
previous level). On the other hand, HMC-LMLP-Labels
strongly constrains the hypothesis space, because from
the second level onwards it uses only functions of original
labels. This is the reason this method performs poorly.
The variant HMC-MLP-True, in turn, estimates

P(y|x, y′) probabilities, where y′ are the true class labels
in the previous level. As we have previously observed
in the empirical analysis, this difference between the
variants lead to different results. Indeed, estimating

P(y|x) resulted in an increased classification performance
in the case of HMC-LMLP-Predicted. In both HMC-
LMLP-Predicted and HMC-LMLP-True, the output
from the previous level (predictions) are treated as new
features. The difference between HMC-LMLP-Predicted
and HMC-LMLP-True is that, in the former, these new
features are real values [0, 1], which are functions of x,
while in the latter the new features are either 0 or 1, and
not functions of x (predictions).

Conclusions
In this study, we have proposed a new reduction strat-
egy for hierarchical multi-label classification. We have
presented a substantial extension of a previous method
we proposed for hierarchical multi-label classification,

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 21 of 24

Fig. 8 Subtree with best predicted functions by HMC-LMLP-Predicted in 60 % of the datasets

namely Hierarchical Multi-Label Classification with Local
Multi-Layer Perceptrons (HMC-LMLP), which trains a
Multi-Layer Perceptron (MLP) per hierarchical level, with
each MLP being responsible for the predictions in its
associated level. The novel method, namely HMC-LMLP-
Predicted, uses the predictions made in a given level
to augment the feature vectors of all instances that are
used in the training of the MLP for the subsequent level.
Additionally, in order to verify whether the use of the
predictions improved classification performance, we used
two additional variants. The first variant makes use of the
true classes to augment the feature vectors in each level
(HMC-LMLP-True), and the second variant employs the
input features alone, without any further augmentation
(HMC-LMLP-NoLabels).

We performed several experiments using datasets.
According to the experimental results, the newly
proposed HMC-LMLP variant achieved the best
classification results overall, when compared to different
state-of-the-art methods from the literature. Besides, the
new variant – HMC-LMLP-Predicted – improved the
classification performance when compared with HMC-
LMLP-True and HMC-LMLP-NoLabels. We identified
which functions were better and worst predicted by
our method, and demonstrated, by using two different
variants of the area under the Precision-Recall Curves,
that HMC-LMLP performs better for the most frequent
classes of the hierarchies.
As future work, we intend to implement an ensem-

ble of HMC-LMLP, and compare it with the Clus-HMC

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 22 of 24

Fig. 9 Subtree with worst predicted functions by HMC-LMLP-Predicted in 60 % of the datasets

ensemble. Although neural networks have a higher com-
putational cost, we believe that the use of GPU-based
parallel computation techniques will speed up the HMC-
LMLP training process, allowing for a fair comparison
with ensembles of PCT. We also plan to use hierarchies
structured as DAGs and to incorporate protein-protein
interaction information during learning. Finally, we want
to further investigate the impact of different strategies
for solving the error-inconsistency problem within HMC-
LMLP.

Endnotes
1Recall that, in the test phase, the true labels are not

available to the MLPs.
2https://dtai.cs.kuleuven.be/clus/hmcdatasets/.

Acknowledgements
The authors would like to thank the Brazilian research agencies FAPESP,
CAPES, FAPERGS and CNPq, and Santander Universities. They would also like
to thank Dr. Leander Schietgat and Dr. Celine Vens for providing support with
the PCT-based methods, and Dr. Fernando Otero for providing support with
the hmAnt-Miner method.

Funding
This study was funded by grants from Santander Universities and the São
Paulo Research Foundation (FAPESP - Brazil) [processes 2009/17401-2 and
2015/14300-1 to R.C.].

Availability of data andmaterials
The datasets and software employed in this work are available at http://sites.
google.com/site/cerrirc/downloads.

Authors’ contributions
RC and RB performed the experimental analysis, while AC and YJ supervised
the work. All authors were involved in drafting the manuscript. All authors
read and approved the final manuscript.

https://dtai.cs.kuleuven.be/clus/hmcdatasets/
http://sites.google.com/site/cerrirc/downloads
http://sites.google.com/site/cerrirc/downloads

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 23 of 24

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Author details
1Department of Computer Science, UFSCar Federal University of São Carlos,
Rodovia Washington Luís, Km 235, 13565-905 São Carlos, SP, Brazil. 2Faculdade
de Informática, Pontifícia Universidade Católica do Rio Grande do Sul, Av.
Ipiranga, 6681, 90619-900 Porto Alegre, RS, Brazil. 3Instituto de Ciências
Matemáticas e de Computação, Universidade de São Paulo, Campus de São
Carlos 135, 13566-590 São Carlos, SP, Brazil. 4Department of Computer
Science, University of Surrey, GU2 7XH Guildford, Surrey, United Kingdom.

Received: 16 January 2016 Accepted: 30 August 2016

References
1. Lord PW, Stevens RD, Brass A, Goble CA. Investigating semantic

similarity measures across the gene ontology: The relationship between
sequence and annotation. Bioinformatics. 2003;19(10):1275–83.

2. Costa EP, Lorena AC, Carvalho ACPLF, Freitas AA. Comparing several
approaches for hierarchical classification of proteins with decision trees.
In: Brazilian Symposium on Bioinformatics. LNBI; 2007. p. 126–37.

3. Silla C, Freitas A. A survey of hierarchical classification across different
application domains. Data Min Knowl Disc. 2010;22:31–72.

4. Valentini G. True path rule hierarchical ensembles. In: International
Workshop on Multiple Classifier Systems. Berlin, Heidelberg: Springer;
2009. p. 232–41.

5. Kiritchenko S, Matwin S, Famili AF. Hierarchical text categorization as a
tool of associating genes with gene ontology codes. In: European
Workshop on Data Mining and Text Mining in Bioinformatics; 2004.
p. 30–4.

6. Cerri R, Barros RC, Carvalho ACPLF. Hierarchical multi-label classification
using local neural networks. J Comput Syst Sci. 2013;80(1):39–56.
doi:10.1016/j.jcss.2013.03.007.

7. Beygelzimer A, Langford J, Zadrozny B. Machine learning techniques -
reductions between prediction quality metrics In: Liu Z, Xia C, editors.
Performance Modeling and Engineering. Boston: Springer US; 2008. p.
3–28.

8. Vens C, Struyf J, Schietgat L, Džeroski S, Blockeel H. Decision trees for
hierarchical multi-label classification. Mach Learn. 2008;73:185–214.

9. Costa EP, Lorena AC, Carvalho ACPLF, Freitas AA. Top-down hierarchical
ensembles of classifiers for predicting g-protein-coupled-receptor
functions. In: Brazilian Symposium on Bioinformatics. LNBI. Berlin,
Heidelberg: Springer; 2008. p. 35–46.

10. Cerri R, Barros RC, Carvalho ACPLF. Hierarchical classification of gene
ontology-based protein functions with neural networks. In: International
Joint Conference on Neural Networks. IEEE; 2015. p. 1–8.
doi:10.1109/IJCNN.2015.7280474.

11. Borges HB, Nievola JC. Multi-label hierarchical classification using a
competitive neural network for protein function prediction. In:
International Joint Conference on Neural Networks. IEEE; 2012. p. 1–8.
doi:10.1109/IJCNN.2012.6252736.

12. Cerri R, Carvalho ACPLF. Hierarchical multilabel classification using
top-down label combination and artificial neural networks. In: Brazilian
Symposium on Artificial Neural Networks. Berlin, Heidelberg: Springer;
2010. p. 253–8.

13. Zhou H, Huang GB, Lin Z, Wang H, Soh YC. Stacked extreme learning
machines. IEEE Trans Cybern. 2014;PP(99):1–1.

14. Huang GB, Zhu QY, Siew CK. Extreme learning machine: a new learning
scheme of feedforward neural networks. In: IEEE International Joint
Conference on Neural Networks. IEEE; 2004. p. 985–902.

15. Hu HW, Chen YL, Tang K. A novel decision-tree method for structured
continuous-label classification. IEEE Trans Cybern. 2013;43(6):1734–1746.

16. Ruepp A, Zollner A, Maier D, Albermann K, Hani J, Mokrejs M, Tetko I,
Güldener U, Mannhaupt G, Münsterkötter M, Mewes HW. The funcat, a

functional annotation scheme for systematic classification of proteins
from whole genomes. Nucleic Acids Res. 2004;32(18):5539–45.

17. Nadzirin N, Firdaus-Raih M. Proteins of unknown function in the
protein data bank (pdb): An inventory of true uncharacterized proteins
and computational tools for their analysis. Int J Mol Sci. 2012;13(10):
12761–72.

18. Konc J, Janežič D. Binding site comparison for function prediction and
pharmaceutical discovery. Curr Opin Struct Biol. 2014;25(0):34–9.

19. Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Dzeroski S. Predicting
gene function using hierarchical multi-label decision tree ensembles.
BMC Bioinforma. 2010;11:2.

20. Alves RT, Delgado MR, Freitas AA. Knowledge discovery with artificial
immune systems for hierarchical multi-label classification of protein
functions. In: International Conference on Fuzzy Systems. IEEE; 2010.
p. 2097–104. doi:10.1109/FUZZY.2010.5584298.

21. Valentini G, Re M. Weighted true path rule: a multilabel hierarchical
algorithm for gene function prediction. In: Workshop on Learning from
Multi-Label Data, Held in ECML/PKDD. Berlin, Heidelberg: Springer Verlag;
2009. p. 132–45.

22. Valentini G. True path rule hierarchical ensembles for genome-wide gene
function prediction. IEEE/ACM Trans Comput Biol Bioinforma. 2011;8(3):
832–47.

23. Otero F, Freitas A, Johnson C. A hierarchical multi-label classification ant
colony algorithm for protein function prediction. Memet Comput. 2010;2:
165–81.

24. Cesa-Bianchi N, Re M, Valentini G. Synergy of multi-label hierarchical
ensembles, data fusion, and cost-sensitive methods for gene functional
inference. Mach Learn. 2011;88:1–33.

25. Cesa-Bianchi N, Valentini G. Hierarchical cost-sensitive algorithms for
genome-wide gene function prediction. J Mach Learn Res. 2010;8:14–29.

26. Stojanova D, Ceci M, Malerba D, Dzeroski S. Using ppi network
autocorrelation in hierarchical multi-label classification trees for gene
function prediction. BMC Bioinforma. 2013;14(1):285.

27. Yu G, Zhu H, Domeniconi C. Predicting protein functions using
incomplete hierarchical labels. BMC Bioinforma. 2015;16(1):1–12.

28. Read J, Pfahringer B, Holmes G, Frank E. Classifier chains for multi-label
classification. In: European Conference on Machine Learning and
Knowledge Discovery in Databases: Part II. ECML PKDD ’09. Berlin: Springer;
2009. p. 254–69.

29. Dembczynski K, Cheng W, Hüllermeier E. Bayes optimal multilabel
classification via probabilistic classifier chains. In: International Conference
on Machine Learning. Omnipress; 2010. p. 279–86.

30. Cherman EA, Metz J, Monard MC. Incorporating label dependency into
the binary relevance framework for multi-label classification. Expert Syst
Appl. 2012;39(2):1647–1655.

31. Wilkins MR, Gasteiger E, Bairoch A, Sanchez JC, Williams KL, Appel RD,
Hochstrasser DF. Protein identification and analysis tools in the expasy
server. Methods Mol Biol (Clifton). 1999;112:531–52. cited By (since 1996)
95.

32. Mewes HW, et al. Mips: a database for genomes and protein sequences.
Nucleic Acids Res. 2002;30:31–4.

33. Kumar A, Cheung KH, Ross-Macdonald P, Coelho PSR, Miller P, Snyder
M. TRIPLES: a database of gene function in Saccharomyces cerevisiae.
Nucl Acids Res. 2000;28(1):81–4. http://nar.oxfordjournals.org/cgi/reprint/
28/1/81.pdf.

34. Haykin S. Neural Networks: A Comprehensive Foundation, 2nd ed. Upper
Saddle River: Prentice Hall PTR; 1999.

35. Zhang ML, Zhou ZH. Multilabel neural networks with applications to
functional genomics and text categorization. IEEE Trans Knowl Data Eng.
2006;18:1338–51.

36. Pillai I, Fumera G, Roli F. Threshold optimisation for multi-label classifiers.
Pattern Recogn. 2013;46(7):2055–065.

37. Davis J, Goadrich M. The relationship between precision-recall and roc
curves. In: International Conference on Machine Learning. New York:
ACM; 2006. p. 233–40.

38. Demšar J. Statistical comparisons of classifiers over multiple data sets.
J Mach Learn Res. 2006;7:1–30.

39. Rumelhart DE, McClelland JL, Vol. 1. Parallel Distributed Processing:
Explorations in the Microstructure of Cognition. Cambridge: MIT Press;
1986.

http://dx.doi.org/10.1016/j.jcss.2013.03.007
http://dx.doi.org/10.1109/IJCNN.2015.7280474
http://dx.doi.org/10.1109/IJCNN.2012.6252736
http://dx.doi.org/10.1109/FUZZY.2010.5584298
http://nar.oxfordjournals.org/cgi/reprint/28/1/81.pdf
http://nar.oxfordjournals.org/cgi/reprint/28/1/81.pdf

Cerri et al. BMC Bioinformatics (2016) 17:373 Page 24 of 24

40. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The
WEKA data mining software: an update. SIGKDD Explor Newsl. 2009;11(1):
10–18.

41. Stark C, Breitkreutz BJ, Reguly T, Boucher L, Breitkreutz A, Tyers M.
Biogrid: a general repository for interaction datasets. Nucleic Acids Res.
2006;34(suppl 1):535–9.

42. Deane CM, Salwiński L, Xenarios I, Eisenberg D. Protein interactions: Two
methods for assessment of the reliability of high throughput
observations. Mol Cell Proteomics. 2002;1(5):349–56.

43. Barros RC, Cerri R, Freitas AA, de Carvalho ACPLF. Probabilistic clustering
for hierarchical multi-label classification of protein functions. In: Machine
Learning and Knowledge Discovery in Databases. Lecture Notes in
Computer Science. Berlin, Heidelberg: Springer; 2013. p. 385–400.

44. Clare A. Machine learning and data mining for yeast functional genomics.
2003. PhD thesis, University of Wales.

45. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB,
Brown PO, Botstein D, Futcher B. Comprehensive identification of cell
cycle-regulated genes of the yeast Saccharomyces cerevisiae by
microarray hybridization. Mol Biol Cell. 1998;9(12):3273–97.

46. Roth FP, Hughes JD, Estep PW, Church GM. Finding dna regulatory
motifs within unaligned noncoding sequences clustered by
whole-genome mrna quantitation. Nat Biotechnol. 1998;16(10):939–45.
doi:10.1038/nbt1098-939.

47. DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control
of gene expression on a genomic scale. Science. 1997;278(5338):680–6.
doi:10.1126/science.278.5338.680.

48. Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and
display of genome-wide expression patterns. Proc Natl Acad Sci U S A.
1998;95(25):14863–8. doi:10.1073/pnas.95.25.14863.

49. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G,
Botstein D, Brown PO. Genomic expression programs in the response of
yeast cells to environmental changes. Mol Biol Cell. 2000;11(12):4241–257.

50. Gasch AP, Huang M, Metzner S, Botstein D, Elledge SJ, Brown PO.
Genomic expression responses to DNA-damaging agents and the
regulatory role of the yeast ATR homolog Mec1p. Mol Biol Cell. 2001;12:
2987–3003.

51. Chu S, Derisi J, Eisen M, Mulholl J, Botstein D, Brown PO, Herskowitz I.
The transcriptional program of sporulation in budding yeast. Science.
1998;282:699–705.

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

http://dx.doi.org/10.1038/nbt1098-939
http://dx.doi.org/10.1126/science.278.5338.680
http://dx.doi.org/10.1073/pnas.95.25.14863

	Abstract
	Background
	Results
	Conclusions
	Keywords

	Background
	Related work

	Methods
	HMC-LMLP variants
	Computing final predictions
	Computational complexity
	HMC literature methods
	Datasets
	Evaluation method
	Area under the average PR-curve
	Weighted average of the areas under the individual PR curves

	Parameters

	Results
	Overall comparisons
	Comparisons considering specific classes and levels
	Comparison with NHMC considering protein-protein interactions
	Analysis regarding the predicted functions

	Discussion
	Conclusions
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

