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Vibrio parahaemolyticus, a Gram-negative halophilic bacterium is often associated with
fish and fishery products, thus causing gastroenteritis in humans upon ingestion of
contaminated food. V. parahaemolyticus has become a globally well-known pathogen
with yearly reported cases in many countries. This study aimed to discover the antibiotic
resistance patterns of V. parahaemolyticus as well as detect Carbapenem resistant
isolates from marine and freshwater fish in Selangor. A total of 240 freshwater and
marine fish samples collected from wet market and supermarket in Selangor were tested
for the presence of V. parahaemolyticus. All the fish samples were determined positive
for V. parahaemolyticus using conventional microbiological culture-based method. The
toxR gene were detected via polymerase chain reaction (PCR) in 165/240 (69%) isolates.
The two-virulence factor of V. parahaemolyticus, thermostable direct hemolysin (tdh) and
TDH-related hemolysin (trh) was screened via PCR. As such, four isolates were trh+and
none were tdh+. Majority of the isolates presented high resistance to ampicillin (88%),
amikacin (64%), and kanamycin (50%). In addition, this study identified 19-imipenem
resistant isolates isolated from freshwater and marine fish samples. Further analysis
of these 19-imipenem resistant isolates revealed that the resistance toward imipenem
was plasmid mediated after plasmid curing assay. The multiple antibiotics resistance
index was >0.2 for 70% of the isolates. In summary, the results confirm the presence
of V. parahaemolyticus in freshwater and marine fish samples in Selangor, Malaysia. To
our best knowledge, this is the first report discovering the antibiotic resistant patterns
and Carbapenem-resistant isolates of V. parahaemolyticus isolated from marine and
freshwater fish samples in Selangor.
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INTRODUCTION

Vibrionaceae family within the class of Gammaproteobacteria
comprises of Gram-negative halophilic bacteria, straight or
curved rods, ubiquitous and indigenous in aquatic environments
(Tison and Kelly, 1984; Tantillo et al., 2004; Sawabe et al.,
2013). The Vibrio genus consists of 142 species that are marine
originated and its taxonomy is continuously been revised due
to the discovery of new species (Sawabe et al., 2013). Vibrio
parahaemolyticus is among the member of this genus that
been regarded as important human pathogenic bacteria (Su and
Liu, 2007; Iwamoto et al., 2010; Bier et al., 2015; Law et al.,
2015). The species is widely distributed in marine and estuarine
environments thus leading to gastrointestinal infections upon
consumption of raw or undercooked seafood (Kubota et al.,
2008; Letchumanan et al., 2014; Lee and Raghunath, 2018).
Based on the published data by Centers for Disease Control
and Prevention (CDC) in the United States during the year
2016, V. parahaemolyticus is considered as a major foodborne
bacterium compared to other Vibrio species and accounted for
nearly 34,664 foodborne cases annually in the United States
(Scallan et al., 2011; Huang et al., 2016).

In terms of its pathogenicity, thermostable direct hemolysin
(tdh) gene, TDH-related hemolysin (trh) gene, T3SS systems
(T3SS1 and T3SS2) are among the virulence factors own by
pathogenic V. parahaemolyticus in order to initiate an infection
(Letchumanan et al., 2014, 2017). Usually, 99% of clinical
V. parahaemolyticus isolates are known to be pathogenic because
they carry tdh genes and/or trh genes, whereas majority of
the environmental isolates are non-pathogenic (Sudha et al.,
2012; Tsai et al., 2013). Nevertheless, around 0–6% of the
environmental isolates are identified as pathogenic carrying tdh
gene and/or trh gene (Letchumanan et al., 2014, 2015a).

The aquaculture industry in Malaysia is mainly associated
with its economic gains from supplying domestic and foreign
demands, and as well as generating a steady income for farmers
(Witus and Vun, 2016). Fish is among the popular fishery
products that been consumed in daily basis by consumers from
Southeast Asian countries (Hajeb et al., 2009). Around 75% of
the global fishery production is mainly for human consumptions
(Teh, 2012). In Malaysia, the fish consumption has increased
since 1970 and now its above 40 kg/capita/year (Teh, 2012).
Professed has a healthy food, fish contains a high level of proteins,
omega-3 fatty acids (n-3), essential vitamins and minerals that
are required by an individual (Aremu and Ekunode, 2008; Hajeb
et al., 2009). There are variety of fishes that been consumed
by Malaysian in their daily life including the Indian mackerel,
Spanish mackerel, black pomfret, silver pomfret, yellowstripe
scad, catfish, fringe scale sardine, and tilapia (Osman et al., 2001;
Hajeb et al., 2009; Taweel et al., 2013). The expanding and intense
aquaculture industry has led to the suppression of immune
systems and increases the susceptibility of fish to bacterial
infections (Davies et al., 2001; Basti et al., 2006; Harikrishnan
et al., 2011).

Intensified fish farming in order to meet consumers demand
has prompted the use of antibiotics as treatment regime,
prophylaxis and as growth promotion (Vaseeharan et al., 2005).

Antibiotics are often been in-cooperated as feed additives or
immersion bath in order to treat bacterial infections, promote fast
growth of fish, and also prevent the growth of water plants (Abu
Bakar et al., 2010). Oxytetracycline, tetracycline, quinolones,
sulphonamides, trimethoprim, nalidixic acid, gentamicin,
nitrofurazone, and trimethoprim-sulfamethoxazole are among
the permitted antibiotics used in the Asian aquaculture industry
(Harikrishnan et al., 2011; Manjusha and Sarita, 2011; Rico
et al., 2012; Yano et al., 2014). Extensive use of antibiotics in
aquaculture has resulted in the increase antibiotic resistance
among bacteria including Vibrio species (Tendencia and de
la Peña, 2001; Jerbi et al., 2011; Heng et al., 2017; Lee and
Raghunath, 2018). Direct transmission of resistant bacteria
through food to human, and transfer of resistance genes to
other bacteria happens, thus causing a possible hazard to human
wellbeing (Duran and Marshall, 2005; Guglielmetti et al., 2009;
Kim et al., 2013).

Antimicrobial resistance (MDR) has been recognized as an
important global threat issue to global public health and food
safety (Food and Agriculture Organization [FAO], 2016). In
hospitals, many clinical antibiotics are no longer effective to
control bacterial infections (Tan et al., 2016). As a result of
misuse of antibiotic to control infections during aquaculture
production, V. parahaemolyticus has been reported to exhibit
multidrug resistance, which raised the concern about public
health and economic threat of this bacterium (Vaseeharan et al.,
2005; Han et al., 2007; Lesley et al., 2011; Manjusha and
Sarita, 2011; Noorlis et al., 2011). Carbapenems are always been
regarded as the last treatment selection for Gram-positive and
Gram-negative infections, and as well as infections caused by
multidrug resistant bacteria (Nordmann et al., 2011; Martin et al.,
2018). Nevertheless, their use has been compromised causing
an increased incidence of carbapenem-resistant bacteria, and
widely been discussed among medical practitioners, researchers,
and public (Martin et al., 2018). A study by Nordmann and
colleagues identified the novel New Delhi metallo-β-lactamase
(NDM) encoded by the gene blaNDM−1 in members of the
family Enterobacteriaceae. This gene was reported to be not only
present largely in Enterobacteriaceae, but also in Vibrionaceae
(Nordmann et al., 2011). Over the years, Carbapenem-resistant
Vibrio sp. has been detected and isolated from environmental
and seafood samples (Walsh et al., 2011; Mandal et al., 2012;
Gu et al., 2014; Bier et al., 2015). Recently, in Kolkata, NDM-1
producing Vibrio fluvialis strains has been isolated from diarrheal
fecal samples from patients (Chowdhury et al., 2016).

The increase in bacterial resistance toward many clinical
antibiotics affects many countries healthcare sector and food
production sectors (World Health Organization [WHO], 2014).
In view of previous reports and the possible severity of
infections, continuous investigation on antimicrobial resistance
of V. parahaemolyticus is needed for epidemiological purpose
and guidance in healthcare treatment. For this reason, our
study aimed to assess antimicrobial susceptibility profiles of
V. parahaemolyticus from marine and freshwater fish in Selangor,
Malaysia. In addition, we also report the identification and
antibiotic resistant characterization of Carbapenem-resistant
isolates isolated from marine and freshwater fish samples.
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To our knowledge, this is the first study examining the
antibiotic resistant profiles and Carbapenem-resistant isolates
of V. parahaemolyticus from both marine and freshwater fish
samples in Selangor, Malaysia.

MATERIALS AND METHODS

Sampling
The study focused on two category fish – marine and freshwater
fish. A total of 240 fish samples comprising of yellowstripe scad
(Selaroides leptolepis) (n = 48), Indian mackerel (Rastrelliger
kanagurta) (n = 48), black pomfret (Parastromateus niger)
(n = 48), catfish (Clarias batrachus) (n = 48), and red tilapia
(Oreochromis spp.) (n = 48) were collected from three wet
markets and three supermarkets in Selangor (Table 1). From each
sampling site, we collected eight fish samples and sampling was
done weekly from January 2016 to May 2016. All the samples were
kept in sterile sealed bags and transported to the laboratory in an
ice box. Samples were analyzed immediately thereafter.

Isolation of Vibrio sp. in Fish Samples
Isolation of Vibrio sp. was following Standard US Food and Drug
Administration (FDA) protocol (Kaysner and DePaola, 2004) and
FAO/WHO Risk Assessment of V. parahaemolyticus in Seafood
(Food and Agriculture Organization/World Health Organization
[FAO/WHO], 2011); this method was previously reported by
Zarei et al. (2012) and Letchumanan et al. (2015a). 25 g of sample
(gut and fish meat) was homogenized with 225 mL of alkaline
peptone water (APW) with 2% w/v sodium chloride (NaCl), pH
8.5 for 60 s using a stomacher (BagMixer 400W, Interscience,
Saint-Nom-la-Bretèche, France). The homogenate was enriched
at 37◦C for 18 h. After 18 h of incubation, a loopful of enriched
mixture was streaked onto selective media, Thiosulfate Citrate
Bile Salts Sucrose (TCBS) agar (HiMedia, India) and incubated at
37◦C for 18 h. In each plate, one sucrose non-fermenting colony
that has a green or bluish green color measuring about 3–5 mm
suggestive of V. parahaemolyticus was selected from the TCBS
plates. The isolate was purified by re-streaking onto Tryptic Soy
Agar (TSA) (HiMedia, India) plates supplemented with 2% w/v
sodium chloride (NaCl) (Vivantis, United States). The purified
colony were inoculated into TSB semi-solid nutrient agar and
stored until further identification.

DNA Extraction
Bacterial lysate was prepared following established protocol
(Suzita et al., 2010; Vengadesh et al., 2012; Letchumanan et al.,
2015a,c). The isolates were revived in tryptic soy broth (TSB)
(HiMedia) supplemented with 2% w/v sodium chloride NaCl
(Vivantis, United States). Overnight suspension was transferred
into 1.5 mL of microcentrifuge tube and centrifuged. The
supernatant was discarded and 1 mL of sterile ultrapure water
was added and vortexed. The suspension was heated at 100◦C for
7 min and then cooled on ice immediately into ice for 5 min.
Cell debris from the cell lysate were pelleted by centrifugation
at 13,000 rpm for 1 min. The supernatant was used as DNA
templates for polymerase chain reaction (PCR) assays.

Identification of Vibrio parahaemolyticus
Using toxR-PCR Assay
Specific primers targeting toxR gene with the expected amplicon
size of 368 bp were used to identify V. parahaemolyticus (Kim
et al., 1999; Letchumanan et al., 2015a). The PCR assay was
performed in 20 µL reaction mixture containing 2 µL of DNA
template, 10 µL of 2× Taq PLUS PCR Smart mix 1 (SolGentTM,
South Korea), 6 µL of ultrapure water and 1 µL of each
primer. toxR-based PCR amplification was performed using PCR
thermocycler (Kyratec, Super Cycler Thermal Cycler, Australia)
with the following cycling conditions: initial denaturation at 95◦C
for 4 min, 35 cycles of 94◦C for 1 min, 68◦C for 1 min and
72◦C for 30 s, and a final elongation at 72◦C for 5 min. PCR
products was visualized by using 1.5% agarose gel and viewed
under UV transilluminator using a Gel Documentation System
(ChemiDocTM XRS, Bio-Rad, United States). The toxR-PCR
results of a few presumptive V. parahaemolyticus isolates and type
strain Vibrio parahaemolyticus NBRC 12711 were sequenced to
confirm the identity of toxR gene (Supplementary Table S1). The
Vibrio parahaemolyticus NBRC 12711 was used as the positive
control and Vibrio vulnificus NBRC 15645 was used as the
negative control.

Detection of Virulence Gene
Molecular identification of thermostable direct haemolysin (tdh)
and thermostable-related direct haemolysin (trh) was performed
using a duplex PCR assay (Bej et al., 1999; Letchumanan
et al., 2015c). The PCR assay was done in 20 µL of reaction
mixture containing 2 µL of DNA template, 10 µL of 2×
Taq PLUS PCR Smart mix 1 (SolGentTM, South Korea), 4 µL
of sterile distilled water and 1 µL of each primer. The PCR
amplifications was performed using a Thermocycler (Kyratec,
Super Cycler Thermal Cycler, Australia) with the following
cycling conditions: initial denaturation at 94◦C for 3 min, 30
cycles of 94◦C for 1 min, 58◦C for 1 min and 72◦C for
1 min, and a final elongation at 72◦C for 5 min. The PCR
products was visualized by using 1.5% agarose gel and viewed
under UV transilluminator using a Gel Documentation System
(ChemiDocTM XRS, Bio-Rad, United States). The PCR results of
a few presumptive V. parahaemolyticus isolates and type strain
Vibrio parahaemolyticus NBRC 12711 were sequenced to confirm
the identity of virulence gene (Supplementary Table S1). Vibrio
parahaemolyticus NBRC 12711 was used as the positive control
and Vibrio vulnificus NBRC 15645 was used as the negative
control.

Antibiotic Susceptibility Test
The antibiotic susceptibility of V. parahaemolyticus isolates
was determined using Kirby-Bauer disk diffusion method
(Yano et al., 2014). Fourteen type of antibiotics disks
(Oxoid, United Kingdom) was used: amplicon (10 µg),
ampicillin/sulbactam (30 µg), amikacin (30 µg), cefotaxime
(30 µg), ceftazidime (30 µg), chloramphenicol (30 µg),
gentamicin (30 µg), imipenem (10 µg), kanamycin (30 µg),
levofloxacin (5 µg), nalidixic acid (30 µg), oxytetracycline
(30 µg), sulfamethoxazole/trimethoprim (25 µg), and
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tetracycline (30 µg). E. coli ATCC 25922 with known sensitivity
pattern was included as a positive control in each test.

V. parahaemolyticus isolates was grown in tryptic soy
broth (TSB) (HiMedia, India) 2% w/v sodium chloride (NaCl)
(Vivantis, United States) at 37◦C for 18 h under constant
agitation. The antibiotic disks were dispensed on Mueller Hilton
agar (HiMedia, India) supplemented with 2% w/v NaCl (Vivantis,
United States) plates with bacterial lawn. After incubation at
37◦C for 18 h, the inhibition zone was measured and interpreted
based on guidelines of the Clinical and Laboratory Standards
Institute (CLSI) M45-A2 (Clinical and Laboratory Standards
Institute [CLSI], 2010). The multiple antibiotic resistance (MAR)
index was determined based on the ratio of antibiotic resistance
exhibited by the isolate to the number of antibiotics to which the
isolates were exposed (Krumperman, 1983).

Plasmid Curing
The 19-imipenem resistant V. parahaemolyticus isolate was
subjected to plasmid curing assay to determine the antibiotic
resistance mediation. The plasmid curing assay was performed
using an intercalating agent, ethidium bromide (EB) (Lou et al.,
2002; Molina-Aja et al., 2002; Letchumanan et al., 2015b). The
isolates were revived in freshly prepared tryptic tryptic soy broth
(TSB) supplemented with 0.2 mg/mL EB (Bio Basic, Canada),
then incubated at 37◦C for 18 h under constant agitation. After
treatment with the curing agent, the antibiotic resistance profiles
were re-examined and compared with the antibiotic resistance
phenotype on non-treated group.

Genomic and Phylogenetic Analyses
Polymerase chain reaction amplification of the 16s rRNA gene
for the 19-imipenem resistant V. parahaemolyticus was done
according to the protocol described by Thomas et al. (2018)
with slight modifications. The 16S rRNA gene sequence of each
isolate was aligned with representative sequences of related type
strains in the genus V. parahaemolyticus retrieved from the
GenBank/EMBL/DDBJ databases using CLUSTAL-X software
(Thompson et al., 1997). The alignment was first verified
manually and adjusted, followed by construction of phylogenetic
trees with neighbor-joining (Saitou and Nei, 1987; Figure 1) and
maximum-likelihood algorithms (Felsenstein, 1981), utilizing

the MEGA version 6.0 (Tamura et al., 2013). For neighbor-
joining algorithm, the evolutionary distances were computed
using the Kimura’s two-parameter model (Kimura, 1980). The
calculations of level of sequence similarity were performed by
GenBank server1. Bootstrap based on 1,000 resampling method
of Felsenstein (1985) was used to analyze the stability of the
resultant tree topologies.

Statistical Analysis
Data analysis was performed with SPSS statistical analysis
software version 20. Statistical analysis was performed in order
to determine whether there was any significant difference in
between two types of fish (marine and freshwater fish) and
the MAR index of resistant isolates using the independent
t-test. The significance level was set at p ≤ 0.05. One-
way analysis of variance (ANOVA) followed by appropriate
post hoc text (Tukey) was performed to determine the significant
differences between the type of fishes and MAR index of resistant
isolates. A difference was considered statistically significant when
p ≤ 0.05.

RESULTS

Prevalence of Vibrio parahaemolyticus in
Fish Samples
The present study isolated V. parahaemolyticus from freshwater
and marine fish. A total of 240 fish samples comprising
of yellowstripe scad (Selaroides leptolepis) (n = 48), Indian
mackerel (Rastrelliger kanagurta) (n = 48), black pomfret
(Parastromateus niger) (n = 48), catfish (Clarias batrachus)
(n = 48), and red tilapia (Oreochromis spp.) (n = 48) were
collected from three wet market and three supermarkets. Based
on the colony morphology on TCBS agar, a total of 240
isolates was picked and purified on TSA agar. The toxR-
PCR assay exhibited positive amplification of toxR gene with
368 bp amplicon band in 69% (165/240) of the presumptive
V. parahaemolyticus isolates. Based on the sampling location site,
47% (78/165) of the isolates originated from the wet market

1https://blast.ncbi.nlm.nih.gov

TABLE 1 | The frequency of Vibrio parahaemolyticus detected in different fish samples from different sampling locations by using PCR assay.

GPS coordinate Wet market A Wet market B Wet market C Supermarket A Supermarket B Supermarket C Total

3◦4′ 11.054′′N
101◦27′ 8.584′′E

3◦4′ 55.732′′N
101◦30′ 32.081′′E

3◦4′ 28.227′′N
101◦35′ 15.423′′E

3◦3′ 39.254′′N
101◦28′ 19.839′′E

3◦4′ 24.421′′N
101◦36′ 24.695′′E

3◦9′ 2.019′′N 101◦36′

53.927′′E

Fish sample n toxR+ trh+ n toxR+ trh+ n toxR+ trh+ n toxR+ trh+ n toxR+ trh+ n toxR+ trh+ n toxR+ trh+

Yellowstripe scad 8 8 0 8 6 0 8 6 0 8 4 0 8 5 0 8 6 0 48 35 0

Indian mackerel 8 2 0 8 6 0 8 6 0 8 5 0 8 4 0 8 7 2 48 30 2

Black pomfret 8 4 0 8 5 1 8 7 0 8 3 0 8 6 0 8 6 0 48 31 1

Catfish 8 5 0 8 6 0 8 7 0 8 2 0 8 5 0 8 6 0 48 31 0

Red tilapia 8 7 0 8 5 1 8 7 0 8 5 0 8 7 0 8 7 0 48 38 1

Total 40 26 0 40 28 2 40 33 0 40 19 0 40 27 0 40 32 2 240 165 4

n = number of fish samples purchased from respective location. toxR+ = number of positive Vibrio parahaemolyticus isolates harboring toxR gene. trh+ = number of
positive Vibrio parahaemolyticus isolates harboring trh gene.
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FIGURE 1 | Neighbor-joining phylogenetic tree based on almost complete 16S rRNA sequences showing the relationship between 19-imipenem resistant isolate
and representatives of some other related taxa. Numbers at nodes indicate percentages of 1,000 bootstrap re-samplings. Bar: 0.0010 substitutions per site.

and 53% (87/165) was from supermarket. A total of 96 (58%)
of the isolates were isolated from marine fish samples and
69 (42%) of the isolates were isolated from freshwater fish
samples.

Detection of Thermostable Direct
Hemolysin (tdh) and tdh-Related
Hemolysin (trh)
A duplex PCR assay was performed to detect the presences
of tdh and trh gene in all isolates (Table 1). None of
the 165 V. parahaemolyticus isolates yielded tdh-positive
PCR amplification. Only 4 (2.4%) out of the total 165
V. parahaemolyticus showed positive PCR amplification of the
trh gene. The trh-positive V. parahaemolyticus isolates was
isolated from black pomfret (wet market B) (FVP81), red
tilapia (wet market B) (FVP92), and two from Indian mackerel
(supermarket C) (FVP47 and FVP49). The presence of trh-
positive V. parahaemolyticus isolates in both types of fish
samples indicates possible high risk of foodborne gastroenteritis
transmission to humans upon ingestion of the fish.

Antimicrobial Susceptibilities of Vibrio
parahaemolyticus Isolates
Most of the tested antibiotics in this study such as
tetracycline, folate pathway inhibitors (trimethoprim-
sulfamethoxazole), third-generation cephalosporins (cefotaxime
and ceftazidime), aminoglycosides (gentamicin and amikacin)
and fluoroquinolones (ciprofloxacin and levofloxacin), are
among the recommended antibiotics by CDC for the treatment
of Vibrio sp. infections (Daniels and Shafaie, 2000; Shaw
et al., 2014). Table 2 summarizes the percentage of antibiotic
resistant profiles of V. parahaemolyticus isolated from fish
sample. Based on the results, the resistance rate of the
165 V. parahaemolyticus isolates in our study was 88% to
ampicillin, 64% to amikacin, and 50% to kanamycin. A notable
resistance pattern can be observed to the third generation
cephalosporins (cefotaxime 52% and ceftazidime 28%). In
contrast, high susceptibility rate was seen to chloramphenicol
(93%), tetracycline (90%), imipenem (85%), levofloxacin
(85%), gentamicin (84%), sulfamethoxazole/trimethoprim
(80%), nalidixic acid (78%), oxytetracycline (72%), and
ampicillin/sulbactam (70%).
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TABLE 2 | Percentage of antibiotic susceptible, intermediate, and resistant of V. parahaemolyticus isolated from various fish samples.

Antibiotics Susceptible (S) Intermediate (I) Resistant (R) Total no. of isolates

No. of isolates %a No. of isolates % No. of isolates %

Penicillins & β-Lactam/β-Lactamase inhibitor combinations

Ampicillin (AMP10) 12 7 8 5 145 88 165

Ampicillin/Sulbactam (SAM30) 115 70 14 8 36 22 165

Phenicols

Chloramphenicol (C30) 154 93 7 4 4 2 165

Tetracyclines

Oxytetracycline (OT30) 118 72 18 11 29 18 165

Tetracycline (TE30) 149 90 3 2 13 8 165

Folate Pathway Inhibitor

Sulphamethox/Trimethoprim (SXT25) 132 80 25 15 8 5 165

Cephems

Cefotaxime (CTX30) 46 28 33 20 86 52 165

Ceftazidime (CAZ30) 80 48 39 24 46 28 165

Carbapenems

Imipenem (IPM10) 140 85 6 4 19 12 165

Aminoglycosides

Amikacin (AK30) 23 14 36 22 106 64 165

Kanamycin (K30) 21 13 62 38 82 50 165

Gentamicin (CN30) 138 84 25 15 2 1 165

Quinolones

Nalidixic acid (NA30) 128 78 23 14 14 8 165

Levofloxacin (LEV5) 140 85 24 15 1 1 165

a% = percentage (number of isolates/total number of isolates tested).

Interestingly, 19 isolates (12%) from this study exhibited
resistance to imipenem, an antibiotic in Carbapenem class.
The detection of imipenem resistant isolates is of concern as
Carbapenems are among the beta-lactams that is the last line
antibiotic used for bacterial infection treatment (Meletis, 2016).
These 19 isolates had an MAR index of 0.14 to 0.50, resistant
to more than two different type of antibiotics tested. Majority of
the imipenem resistant isolates were isolate from freshwater fish
sample (15/19) and the remaining 4 isolates were isolated from
marine fish samples.

In this study, the values of MAR index ranged from 0.00
to 0.57 (Table 3). Forty-two different resistance patterns had
a significant MAR index more than 0.2. Two of the isolates
(FVP24 – yellowstripe scad, marine fish and FVP67 – red tilapia,
freshwater fish) has the highest MAR index of 0.57, resistant
to 8/14 antibiotics tested. Further analysis was performed by
comparing the MAR index between source of sample (marine and
freshwater) and MAR index. The mean MAR index of marine
fish sample was 0.26 where else, freshwater fish sample was
0.25. The results showed that there was no significant difference
between source of fish sample and MAR index. According to
the one-way ANOVA analysis, there was no significant difference
between the fish types on the MAR index of V. parahaemolyticus
isolates. The results suggest that isolates from the fish samples
may have similar level of antibiotic exposure, regardless there are
marine or freshwater originated. As shown in Figure 2, 8% of
V. parahaemolyticus isolates (13 isolates) did not exhibited MAR
as they were susceptible to all of the antibiotics tested.

The antibiotic resistance patterns between freshwater and
marine fish samples did not exhibit any significant profiles. Based
on the analysis, both freshwater and marine fish samples were
exposed to antibiotics and phenotypic assay showed a similar
resistant profile to 0 to 8 types of antibiotics tested. For each fish
sample, the mean MAR indices for V. parahaemolyticus isolates
was 0.26 for yellowstripe scad, Indian mackerel was 0.24, black
pomfret was 0.29, catfish was 0.25, and red tilapia was 0.24.

Plasmid Curing
Plasmid curing may server as an effective assay to determine
the antibiotic resistance mediation of bacteria. This assay enables
to eliminate desired bacterial plasmid and subsequently reassess
the antibiotic resistance phenotype by antibiotic disk diffusion
method. Table 4 summarizes the antibiotic resistance profile
of the 19-imipenem resistant isolates before and after plasmid
curing assay. All the phenotypically seen imipenem resistant
isolates became susceptible to imipenem after curing assay,
suggesting the resistance was plasmid mediated. All the isolates
were still resistant to ampicillin and oxytetracycline, suggesting a
possible chromosomal mediated resistance. Hence, the antibiotic
resistance seen in 19-imipenem isolates are both plasmid and
chromosomally mediated.

Genomic and Phylogenetic Analyses
The nearly complete 16S rRNA gene sequence was determined
for all the 19-imipenem resistant V. parahaemolyticus isolates
and manual alignment of these sequences was performed
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TABLE 3 | Antibiogram and multiple antimicrobial resistance (MAR) indices of
V. parahaemolyticus isolates.

No. Antibiotic resistant pattern MAR index Number of
V. parahaemolyticus

isolates

1 AMP 0.07 15

2 AMP/AK 0.14 8

3 AMP/CTX 0.14 5

4 AMP/IPM 0.14 1

5 AMP/K 0.14 1

6 AMP/OT 0.14 2

7 AMP/SAM 0.14 2

8 AK/CTX 0.14 1

9 OT/TE 0.14 1

10 AK/SXT 0.14 1

11 AMP/AK/K 0.21 6

12 AMP/AK/CTX 0.21 5

13 AMP/CTX/IPM 0.21 2

14 AMP/IPM/OT 0.21 1

15 AMP/OT/TE 0.21 1

16 AMP/AK/SAM 0.21 1

17 AMP/IPM/SAM 0.21 5

18 AMP/NA/SAM 0.21 1

19 AMP/C/OT/TE 0.29 1

20 AMP/AK/CN/K 0.29 1

21 AMP/AK/CTX/K 0.29 16

22 AMP/CTX/IPM/OT 0.29 1

23 AMP/AK/OT/TE 0.29 2

24 AMP/AK/K/SAM 0.29 2

25 AMP/AK/IPM/SAM 0.29 1

26 AMP/IPM/OT/SAM 0.29 1

27 AMP/OT/NA/SAM 0.29 1

28 AK/CTX/K/OT 0.29 1

29 AK/K/OT/TE 0.29 1

30 AK/CTX/K/TE 0.29 1

31 AMP/C/CTX/OT/TE 0.36 1

32 AMP/AK/CAZ/CTX/K 0.36 33

33 AMP/AK/CTX/OT/SXT 0.36 1

34 AMP/AK/K/OT/TE 0.36 1

35 AMP/NA/OT/TE/SXT 0.36 1

36 AMP/AK/K/NA/SAM 0.36 1

37 AMP/AK/K/IPM/SAM 0.36 1

38 AMP/IPM/OT/NA/SAM 0.36 1

39 AMP/CTX/OT/NA/SAM 0.36 1

40 AMP/AK/NA/SAM/SXT 0.36 1

41 AMP/AK/CTX/K/IPM/OT 0.43 2

42 AMP/AK/CAZ/CTX/K/SAM 0.43 10

43 AMP/AK/K/IPM/NA/SAM 0.43 1

44 AMP/AK/CTX/OT/NA/SAM 0.43 1

45 AMP/AK/IMP/NA/OT/SAM 0.43 1

46 AMP/C/NA/OT/SXT/TE 0.43 1

47 AMP/AK/C/CTX/NA/OT/SXT 0.5 1

48 AMP/AK/CAZ/CTZ/K/LEV/SAM 0.5 1

(Continued)

TABLE 3 | Continued

No. Antibiotic resistant pattern MAR index Number of
V. parahaemolyticus

isolates

49 AMP/AK/CTX/IPM/K/OT/SAM 0.5 1

50 AK/CAZ/CN/CTX/OT/SXT/TE 0.5 1

51 AMP/AK/CAZ/CTX/K/NA/OT/SAM 0.57 1

52 AMP/AK/K/NA/OT/SAM/SXT/TE 0.57 1

AMP, amplicon; OT, oxytetracycline; NA, nalidixic acid; C, chloramphenicol; CTX,
cefotaxime; SXT, sulfamethoxazole/trimethoprim; IMP, imipenem; AK, amikacin;
SAM, ampicillin/sulbactam; LEV, levofloxacin; CAZ, ceftazidime; K, kanamycin; CN,
gentamicin; TE, tetracycline.

FIGURE 2 | Percentage occurrence of MAR index of Vibrio parahaemolyticus
isolates from all fish samples of different sampling locations. The isolates
exhibited MAR index from 0.00 to 0.57, representing that the
V. parahaemolyticus isolates are resistant to 0–8 types of antibiotics tested.

with the corresponding partial 16S rRNA gene sequences
of the type strains of V. parahaemolyticus retrieved from
GenBank/EMBL/DDBJ databases. Phylogenetic tree was
constructed based on the 16S rRNA gene sequences to determine
the phylogenetic position of the 19-imipenem resistant isolates
(Figure 1). Phylogenetic analysis exhibited that closely related
strains include Vibrio parahaemolyticus ATCC 17802 (NR
119058.1), Vibrio parahaemolyticus NBRC 12711 (NR 113604.1)
and Vibrio parahaemolyticus ATCC 17802 (NR 114630.1), as
the 19-imipenem resistant isolates form distinct five clades. The
isolates within the same clade are closely related.

DISCUSSION

The occurrence of pathogenic strains of V. parahaemolyticus in
fish samples we studied does raise concern as this organism
is known to cause foodborne gastroenteritis resulted from
ingesting of uncooked or undercooked seafood (Ma et al.,
2014; Romalde et al., 2014). However, while the microbiological
culture-based method found all fish samples to be contaminated
Vibrio sp., only 69% (165/240) of there were confirmed to be
V. parahaemolyticus based on toxR PCR assay; and only 2.4%
(4/165) of these were pathogenic strains (trh-positive) (Table 1).
Our results came to an agreement with other researchers on
the fact that the identity of V. parahaemolyticus could not
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TABLE 4 | List of 19-imipenem resistant Vibrio parahaemolyticus isolates.

Before plasmid curing After plasmid curing

No Isolate Fish sample Source Antibiotic resistance pattern Antibiotic resistance pattern

1 FVP26 Red tilapia Freshwater AMP/IMP/SAM AMP

2 FVP27 Red tilapia Freshwater AMP/IMP/SAM AMP

3 FVP28 Red tilapia Freshwater AMP/IMP/SAM AMP

4 FVP29 Red tilapia Freshwater AMP/IMP/SAM AMP

5 FVP30 Red tilapia Freshwater AMP/IMP/SAM AMP

6 FVP34 Catfish Freshwater AMP/AK/IMP/SAM AMP

7 FVP35 Catfish Freshwater AMP/IMP/SAM AMP

8 FVP89 Yellowstripe scad Marine AMP/AK/IMP/K/SAM AMP

9 FVP90 Yellowstripe scad Marine AMP/IMP AMP

10 FVP92 Red tilapia Freshwater AMP/AK/CTX/IMP/K/OT AMP/OT

11 FVP96 Red tilapia Freshwater AMP/IMP/OT/NA/SAM AMP/OT

12 FVP97 Red tilapia Freshwater AMP/AK/IMP/K/NA/SAM AMP

13 FVP98 Catfish Freshwater AMP/IMP/OT AMP/OT

14 FVP100 Catfish Freshwater AMP/IMP/OT/SAM AMP/OT

15 FVP107 Catfish Freshwater AMP/AK/CTX/IMP/K/OT AMP/OT

16 FVP112 Red tilapia Freshwater AMP/AK/CTX/IMP/K/OT/SAM AMP/OT

17 FVP131 Yellowstripe scad Marine AMP/CTX/IMP/OT AMP/OT

18 FVP154 Indian mackerel Marine AMP/CTX/IMP AMP

19 FVP159 Red tilapia Freshwater AMP/CTX/IMP AMP

AMP, amplicon; OT, oxytetracycline; NA, nalidixic acid; C, chloramphenicol; CTX, cefotaxime; SXT, sulfamethoxazole/trimethoprim; IMP, imipenem; AK, amikacin; SAM,
ampicillin/sulbactam; LEV, levofloxacin; CAZ, ceftazidime; K, kanamycin; CN, gentamicin; TE, tetracycline.

be fully confirmed by conventional microbiological culture-
based method (Kim et al., 1999; Zulkifli et al., 2009; Fabbro
et al., 2010; Ottaviani et al., 2013). Affirming with previous
research, we found that toxR PCR assay was specific and reliable
technique for the identification of both pathogenic and non-
pathogenic V. parahaemolyticus (Kim et al., 1999; Dileep et al.,
2003; Zulkifli et al., 2009). This reliable and specific toxR-PCR
assay has resulted in many promising V. parahaemolyticus
identifications studies (Deepanjali et al., 2005; Das et al., 2009;
Vimila et al., 2010; Elamparithi and Ramanathan, 2011; Noorlis
et al., 2011; Paydar et al., 2013). The remaining 75 isolates
had the morphology of V. parahaemolyticus in TCBS agar,
however, the toxR gene was not present in these isolates.
This result demonstrates the detection of V. parahaemolyticus
thru toxR PCR assay is highly sensitive, specific and accurate
compared to microbiological culture-based technique (Mandal
et al., 2011).

The tdh and trh genes are considered major virulence factors
in V. parahaemolyticus, so in many clinically isolated strains of
V. parahaemolyticus have hemolytic activity that is produced
by these two genes (Ceccarelli et al., 2013; Raghunath, 2015).
Our study reported the isolation of trh-positive isolates of
V. parahaemolyticus at a very low prevalence rate, and none
of the isolates have tdh-position genes. Our results follow
the trends of worldwide dispersed studies that have reported
low number of virulent V. parahaemolyticus strains from
environmental sources (Fuenzalida et al., 2006; Nordstrom et al.,
2007; Thongjun et al., 2013). Many studies have reported low
prevalence rate (less than 5%) of environmental and food
source have pathogenic V. parahaemolyticus isolates carrying

tdh and/or trh genes (Parveen et al., 2008; Zulkifli et al., 2009;
Tsai et al., 2013). In addition, it is strongly suggested that
putative pathogenic environmental V. parahaemolyticus isolates
may be less virulent than the clinical V. parahaemolyticus
isolates (Vongxay et al., 2008; Tsai et al., 2013). The presences
of tdh+ and/or trh+ V. parahaemolyticus in the marine
and freshwater fish samples in Selangor is of concern due
to several factors. Firstly, the fact that these pathogenic
isolates could potentially cause gastroenteritis (Jun et al., 2012).
Secondly, pathogenic V. parahaemolyticus not only contaminate
seafood and transmit pathogenesis, but it also causes huge
economic loss in the aquaculture sector (Fuenzalida et al.,
2006; Thongjun et al., 2013). Hence, the study results need the
importance for continuous monitoring of seafood for pathogen
contamination.

Our antibiotic susceptibility test placed ampicillin at the top
of the V. parahaemolyticus resistance scope (88%). This finding
signifying that ampicillin may longer be an effective antibiotic to
treat Vibrio sp. infections. In fact, V. parahaemolyticus resistance
to ampicillin is well reported in many literatures (Joseph et al.,
1978; Lesmana et al., 2001; Zulkifli et al., 2009; Melo et al.,
2011; Oh et al., 2011; Al-Othrubi et al., 2014). Interestingly,
ampicillin resistance was reported 100% in study by Devi
et al. (2009) and Ottaviani et al. (2013). The chromosomally
encoded β-lactamase is the cause for V. parahaemolyticus
resistance to ampicillin and other penicillin (Devi et al.,
2009). In addition, more that 70% of the V. parahaemolyticus
isolates in this study remained susceptible to tetracycline,
levofloxacin, gentamicin, sulfamethoxazole/trimethoprim,
chloramphenicol, imipenem, nalidixic acid, oxytetracycline, and
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ampicillin/sulbactam. Our findings are in line with previous
studies that reported susceptibility of V. parahaemolyticus against
chloramphenicol, tetracyclines, trimethoprim-sulfamethoxazole,
nalidixic acid, and imipenem (Ottaviani et al., 2001; Devi
et al., 2009; Melo et al., 2011; Al-Othrubi et al., 2014;
Shaw et al., 2014). The MAR index values ranged from 0 to
0.57.

Forty-two different resistance patterns had a significant
MAR value >0.2. Collectively, there were expressed by 70%
of the V. parahaemolyticus isolates and resistant to 3 to 8
types of antibiotics tested. MAR index >0.2 are exposed to
several antibiotics or isolated from contaminated sources as
such dairy cattle, aquaculture, and agriculture farms. Where
else, isolates with lesser than 0.2 MAR indices are lessen prone
to antibiotic exposure (Noorlis et al., 2011; Subramani and
Vignesh, 2012). In this study there was no significant difference
been observed among the source of sample and MAR index.
This result demonstrates that the isolates isolated from marine
and freshwater samples are exposure of antibiotics. Our results
came to an agreement with many studies that reported high
percentage of V. parahaemolyticus isolated from seafood are
resistant to more than one antibiotic tested (Zulkifli et al., 2009;
Lesley et al., 2011; Manjusha and Sarita, 2011; Noorlis et al.,
2011).

Imipenem, a member of Carbapenem class is an effective
antibiotic used in the treatment of Gram-positive and
Gram-negative infections (Papp-Wallace et al., 2011).
Interestingly, in this study we detected 19-imipenem resistant
V. parahaemolyticus strains isolated from marine and freshwater
fish samples. Ever since the first detection case of carbapenemase
producing Carbapenem-Resistant Enterobacteriaceae (Cp-
Cre) in the United States, Cp-Cre have rapidly spread with
more reported cases in another 50 states (Centers for Disease
Control and Prevention [CDC], 2018). In fact, now carbapenem
resistance is no longer associated with Enterobacteriaceae but
also associated with other bacteria. As such, the resistance of
Vibrio sp. to carbapenem has been reported by Bier et al. (2015)
in Germany coastal line, Gu et al. (2014) in Southwest China,
and Walsh et al. (2011) in India. Thus, our results agree with
other findings and demonstrates the misuse of carbapenem that
may cause a negative impact on the clinical treatment of Vibrio
infections in future. Hence, a non-antibiotic approach is required
in order to manage the occurrence of antibiotic resistance among
Vibrio sp. in the environments (Tan et al., 2014; Letchumanan
et al., 2016; Tan et al., 2016).

Further analysis on the 19-imipenem resistant isolates
by plasmid curing assay exhibited interesting findings. The
antibiotic resistance phenotype of these 19 isolates have been
altered after plasmid curing. All the 19 isolate’s phenotypically
seen resistance to imipenem has changed to susceptible,
suggesting the resistance was plasmid mediated. All the isolates
were still resistant to ampicillin, suggesting the resistance was
chromosomal mediated. In addition, the isolate FVP92, FVP96,
FVP98, FVP100, FVP107, FVP112, FVP131, FVP154, FVP159
(Table 3) remained resistant to oxytetracycline even after plasmid
curing and its chromosomally mediated. It is usual to find
oxytetracycline resistant isolates from aquaculture products

because this antibiotic is among the permitted antimicrobial
used in the seafood production. In summary, plasmids are
transferable between different bacteria and the presence of
antibiotic resistant genes in the bacterial plasmid have facilitated
the fast spreading of antibiotic resistance among bacteria (Wilson
and Salyers, 2003; Stepanauskas et al., 2006; Manjusha and Sarita,
2011). Hence, the acquisition of imipenem resistance by the 19
isolates are possibly due to horizontal gene transfer from other
environmental bacteria.

The results from phylogenetic and genomic analyses indicated
that the 19-imipenem resistant isolates are closely related
forming five clades (Figure 1). The isolates are closely related
to each another within the same clade. Isolate FVP28 was
closely related to Vibrio parahaemolyticus NBRC 12711 and
Vibrio parahaemolyticus ATCC 17802 at 99% bootstrap value,
indicating the high confident level of the association. The
isolate FVP28 and both type strains are isolated from food
source. The FVP28 was isolated from freshwater red tilapia
where else, Vibrio parahaemolyticus Nbrd 12711 and Vibrio
parahaemolyticus ATCC 17802 was originally isolated from
shirasu food poisoning case in Japan. This result exhibits a
close relationship between these strains isolated from different
types of seafood. In addition, there was another clade with nine
isolates (FVP30, FVP112, FVP98, FVP100, FVP131, FVP159,
FVP96, FVP107, and FVP154) that were closely related to Vibrio
parahaemolyticus ATCC 17802 at 51% bootstrap value. 7/9 of the
isolates (FVP30, FVP112, FVP98, FVP100, FVP159, FVP96, and
FVP107) was isolated from freshwater fish sample. Majority of
the isolates within this clade were resistant to oxytetracycline, an
antibiotic that is permitted in Asian aquaculture industry (Yano
et al., 2014). In summary, phylogenetic tree analysis revealed
that there was no distinctive grouping based on the antibiogram
of each isolate, however, the16S rRNA sequencing had a high
discriminating power to group the isolates into different clades
(Hoffmann et al., 2010).

The global increase of antibiotic resistant bacteria is of great
public health concern and warrants a continuous monitoring
(Xie et al., 2017). In the case of V. parahaemolyticus, the situation
is aggravated due to excessive use of antimicrobial agents in
aquaculture to protect infectious diseases and huge production
loses (Xu et al., 2016). In addition, antimicrobial resistance is
likely caused by exposure to antibiotics via agriculture runoff or
wastewater treatment plants, and thru mobile genetic elements
or horizontal gene transfers among bacteria (Stepanauskas et al.,
2006; Kümmerer, 2009; Al-Othrubi et al., 2014; Xu et al., 2016).
Recently, the Food and Agriculture Organization (FAO) have
drawn action plans to increase awareness and promote prudent
use of antimicrobials (Food and Agriculture Organization [FAO],
2015).

CONCLUSION

Our study confirms the presences of V. parahaemolyticus in
freshwater and marine fish samples in Selangor by having
use highly accurate detection and identification method (the
combination of microbiological culture-based method and PCR).
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To our best knowledge, this study represents the first evidence of
Carbapenem resistant isolate and as well as antibiotic resistance
patterns of V. parahaemolyticus isolated from freshwater and
marine fish samples. The detection of tdh and trh genes provides
better understanding regarding the distribution of pathogenic
V. parahaemolyticus strains in fish samples. Despite the fact
that majority most of the environmental V. parahaemolyticus
isolates are non-pathogenic, consumer should still be aware
and ensure that fish is cooked properly before consumption.
Adequate cooking of fish before consumption is the main
safety measure to prevent foodborne disease caused by
V. parahaemolyticus associated with fish (Zulkifli et al.,
2009). Furthermore, several important measures including
good hygiene practices while handling the fish and the
cleanliness of the handlers and display area are very crucial
in order to prevent cross-contamination in wet market and
supermarket. In conclusion, the information presented serves
as a baseline on future microbiological risk assessment of
V. parahaemolyticus associated with fish consumption in
Selangor, Malaysia.
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