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AbstrAct

Today, significant differences in the use of biomaterials (membranes and grafts) of animal or synthetic 
origin have yet to be reported. Nevertheless, some evidences suggest that synthetic materials have a lower 
risk of disease transmission. This review aims to assess the available informations on regenerative bone 
technique using reasorbable membranes and bone grafts. In particular, biocompatibility, immunological 
response, tissue reaction, reabsorption time and histological features of materials daily use in dentistry and 
in maxillofacial surgery were emphasized. (Int J Biomed Sci 2011; 7 (2): 81-88)
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GUIDED BONE REGENERATION

Guided bone regeneration (GBR) is a surgical method 
used to increase alveolar bone in patients with bone atro-
phy, before endosseous implant placement (1-3); this tech-
nique needs reasorbable membranes and bone grafts. The 
membranes prevent the invasion of surrounding soft tissue 
and permit to osteogenic cells to repopulate bone defects; 
bone grafts support the membranes and lead osteoblast 
growth (4-7).

Nowadays, there are several types of barrier mem-
branes and graft materials used in GBR and each has both 
advantages and disadvantages (8, 9).

Regenerative bone materials, can be classified into four 
types according to their mechanism: osteogenic materials, 
which can directly stimulate bone cells to synthesize bone 

tissue; osteoinductive materials, which induce differen-
tiation of mesenchymal cells into osteoblasts, improving 
bone formation in orthotopic and heterotopic sites; osteo-
conductive materials, which facilitate cell proliferation, 
migration and new bone apposition; osteopromotive mate-
rials, which act as a scaffold in which bone cells can grow 
(10-12).

Biomaterials, both membranes and grafts, can be also 
classified in relation to the following criteria: biocompat-
ibility (immunological response), histological features and 
ability to maintain biological space.

Since 1982, when GBR technique was first introduced, 
the expanded polytetrafluoroethylene (e-PTFE) membrane 
has been considered the gold standard for barrier function 
materials (13). Indeed, this non reabsorbable material has 
all the features for GBR technique, such as biocompatibil-
ity, covering the defect and coagulum stabilization (14); 
nevertheless, e-PTFE membranes have also certain limits, 
such as the need of a second surgical operation to remove 
them and the possibility of bacteria infection (15-18). 

Seibert and Nymann (1990) used e-PTFE non reab-
sorbable membranes to increase the alveolar crest; after 
55-90 days, the bone completely filled up the defect (19). 
Recently, Urban and colleagues (2009) used e-PTFE mem-
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branes associated with autogenous grafts for implant inser-
tions and shown that implant placed were osseointegrated 
and therefore the vertical GBR technique is both safe and 
predictable (13). Furthermore, a study by Ross-Jansaker 
(2007) has shown that perimplantar deficits should also be 
treated without membranes (20).

Recently, many types of membranes with a a lower risk 
of infections and/or contaminations that do not need a sec-
ond surgical treatment have been produced and tested.

This review aims to analyse both membranes and bone 
grafts available to evaluate their advantages and disant-
vantages and to compare these biomaterials using fun-
damental parameters, such as biocompatibility, immuno-
logical response, tissue reaction, time of reabsorption and 
histological features.

GBR FEATURES

Biocompatibility
Biocompatibility is a fundamental condition for the use 

of biomaterials (9). Hartwing (1972) defined that a bioma-
terial is compatible with the surrounding tissue if the in-
terface between vital tissue and material is similar to natu-
ral zones, without induce inflammation or immunological 
response (21).

Time of reabsorption
Reabsorbable materials remain in situ until new bone 

tissue regenerates, so they could increase implant osseoin-
tegration. Different animal models affect the time of bio-
material reabsorption.

Biological space
There are different types of membranes commercially 

available today: membranes that create a correct biologi-
cal space (semi-hard synthetic membranes), membranes 
with restricted ability to create it (synthetic membranes) 
or membranes that do not maintain the biological space 
(collagen membranes).

However, reabsorbable membrane increases bone re-
generation especially when associated with bone graft (13, 
22).

REABSORBABLE MEMBRANES 

Several studies on reasorbable membranes have been 
conducted to evaluate the conditions associate with differ-
ent experimental and human models. In particular, Got-
tlow (1984) shown that a biological space induced correct 

bone regeneration, while without this space the membrane 
collapsed and so compromised bone regeneration (23). The 
isolated space created could be invaded by osteogenetic 
cells from the surrounding bone and therefore induced 
bone regeneration. This principle has been confirmed by 
numerous authors. Dahlin (1989) studied the recovery of 
alveolar defects with or without the use of membranes and 
shown those 6 weeks after treatment with membrane the 
defects had completely covered by new tissue, while de-
fects without membranes were covered by fibrous tissue, 
even if it was reduced (24). Similar results were obtained 
by Kostopoulos and Karring (1994) using reabsorbable 
membranes to repair defects of the inferior side of the 
mandibular branch (25). 

Moreover, studies on bone deficit underlined the im-
portance of membrane porosity to increase osseointegra-
tion and tissue vascularization near the implant (26, 27). 

One of the first requirements for membrane biocompat-
ibility is permeability to body fluids. When membranes 
are applied to regenerate tissue, additional features, such 
as cell-occlusive properties and biocompatibility, become 
important. These properties contribuite to membrane sta-
bilization, integration into soft tissue and degradation in 
the case of reabsorbable membranes (5). The reabsorbable 
membranes are classified as homologous membranes (hu-
man dura mater), heterologous animal membranes or syn-
thetic membranes.

Human dura mater membranes
Dori et al. (2008) shown that dura mater membrane 

was completely reabsorbed. In spite of treatment with g 
rays, infective diseases, such as AIDS and Creutzfeld-Ja-
cob disease (CJD) can be transmitted with a risk between 
1:10000 and 1:100000 (28, 29).

Heterologous animal membranes
Collagen membranes are biomaterials derived mainly 

from bovine source and made of collagen types I and III 
(30). The reabsorption of these membranes is due to the 
action of collagenases that cleave the collagen in two mol-
ecules which are denaturized at 37°C and decomposed 
into oligopeptides and aminoacids by the gelatinase and 
proteinase (31). 

The time of reabsorption can be modified by cross-
linked treatment, the cross-linking with glutaraldehyde 
reduce the inflammatory response and prevent degrada-
tion of the membranes since 30 days, so these membranes 
are useful when the synthesis of new bone depends on the 
prolonged presence of a mechanical barrier (32). Miller 
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(1996) used membranes cross-linked with acid-azide and 
an amminc solution to quicken reabsorption; nevertheless 
this modification induced an inflammatory response (33). 

Hyder (1992) observed that collagen membranes started 
degradation after 21 days, while after 35 days there were 
only a few areas of collagen residual (34). Moreover, in hu-
man, Van Swol (1993) shown that bovine derma collagen 
membranes degraded after 3 months (33). Recent studies 
have shown that the new collagen membranes are com-
pletely reabsorbed in 6 months (30).

Synthetic membranes 
Synthetic membranes are formed by polylactic acid 

and recently also with polyglycolic acid and citric acid 
esters, in order to decrease the rapidity of reabsorption 
and increase their malleability (9, 34). The reabsorption 
of synthetic membranes is through the Krebs cycle: gly-
colic copolymers are split up into lactic acid and pyruvate, 
which are directly induced in the citric acid cycle and so 
eliminated through the formation of carbon dioxide and 
water (35).

Hyder (1992) and Kodama (1989) noted that the inflam-
matory infiltrate induced by synthetic membranes was 
lower than heterologous animal membranes (34, 36). Rob-
ert and Frank (1994) showed that, changing the polymer 
concentration, the membranes hold out for about 4 months 
(37). Laurel (1994) underlined a time of reabsorption be-
tween 6 and 12 months, but the hydrolyses of the mem-
brane caused little inflammation (38). 

Many studies have shown that time of reabsorption for 
this kind of membranes is about 6 months (39-45); while 
for Miller (1996) the synthetic membranes are reabsorbed 
slowly and should cause infiammatory response compared 
to collagen membranes (33). 

Different bioreabsorbable polymers and co-polymers 
are presently used in synthetic membranes and the poly-
DTE-carbonate has shown promising features, such as 
low immunological reaction and high ability to induce 
bone regeneration (46). Polylactic acid-polyglycolic acid 
(PLLA-PGA) co-polymer provides a rigid scaffolding to 
secure the graft materials. The clinical application of these 
co-polymer membranes may be useful for periodontal re-
constructive procedures, such as GBR (47).

GRAFT MATERIALS

Grafts are fundamental for regenerating and repairing 
of bone tissue. Several types of filling biomaterials have 
been evaluated for bone regeneration and the choice of the 

biomaterial mostly depends on its features and application 
site (48). The grafts could be classified as autologous, ho-
mologous, heterologous and synthetic materials (49, 50).

Autologous grafts
Since 1978, autologous material has been used for bone 

regeneration and presently it is considered the gold stan-
dard in bone grafts since it has osteogenetic, osteoconduc-
tive and osteoinductive features (51-53). Graft integration 
in bone defect needs correct vascularisation both through 
neo-synthetized vessels and anastomosis between the ves-
sels of the receive site and of the bone graft.

Histomorphometric analysis shown 42% of neo-syn-
thetized bone, 40% of medullary spaces and 18% of re-
sidual autologous bone (54). There is no immunological 
response to autologous grafts. Its main disadvantages are 
increased surgical time and patient morbidity (55, 56).

Homologous grafts (Allografts)
Vital bone tissue is obtained from donors and it is 

stocked in bone banks (10). The use of homologous grafts 
is limited, due to the risk of infection, in particular the 
risk of contracting HIV is estimated to be 1:1.6 million, 
compared with 1:450000 in blood transfusions. Rigorous 
background checks must be made on the donor and his/her 
family (11). Homologous grafts, before their use, are tested 
and treated to prevent any risk of antigenicity or diseases 
transmission (9, 49, 57). 

The bone should be lyophilized and demineralized 
(DFDB - Demineralized Freeze-Dried Bone) or only ly-
ophilized (FDB - Freeze-Dried Bone). In particular, Yuk-
na and Vastardis (2005) compared the histological results 
of bone defects filled with FBD or with DFDB and noted 
more regenerate bone tissue with FBD (58). Moreover, 
Dahlin (2010) shown that the reconstruction of atrophic 
maxillae with DFDB in combination with GBR technique 
can be performed with equal treatment outcomes and a 
significant reduced cost compared with autologous bone 
from iliac crest (59).

Contradictory opinion about the properties of al-
lografts are present in literature. Whittaker (1989) and 
Kubler (1993) asserted that allografts have both osteo-
inductive and osteoconductive properties (60, 61), while 
Wetzel (1995), Becker (1995), Frost (1982) disagreed 
with this hypothesis and asserted that have only osteoin-
ductive ability (62, 64). The histomorphometric analysis 
has shown 29% of neo-synthetized bone, 37% of medul-
lary spaces, while 34% of DFDB residual particles (54); 
moreover, the replacement of homologous bone is slow 



memBranes and grafts

June  2011    vol. 7  no. 2    Int  J  Biomed  Sci    www.ijbs.org 84

(12) and it causes the formation of connective areas and 
where graft integration is reduced there is a visible in-
flammatory infiltrate.

Heterologous grafts (Xenografts)
Heterologous materials are obtained from bones of dif-

ferent animal species; bovine bone being the most com-
mon source (65). Xenografts have different properties de-
pending on their origin, constitution and processing (10). 

Bovine grafts. Bovine bone xenografts have been used 
in several types of bone defects with satisfactory results 
(2, 10). These biomaterials are made of apatite crystals in 
a reticular form, with an inside surface of about 70 m2/g 
which induces coagulum synthesis and stability (67). 

Many authors have confirmed their osteoconductive 
properties (68-71). Nevertheless, there is always a risk of 
trasmission of CJD or Bovine Spongiform Encephalopa-
thy (72) according to the Food and Drug Administration 
(FDA).

Histomorphometic analysis has shown 39% of new 
bone, 34% of medullary spaces and 27% of residual bovine 
material (54). This biomaterial has low reabsorption: after 
many years the material is still between 20-40%. Histo-
logical analysis performed by Hallman and Lundgren 
(2001) shown that the percentage of grafts after 6 months 
is equal to that visible after 3 years of placement (73).

Bovine collagen grafts. Collagen contributes to min-
eral deposition, vascular ingrowth and growth factor bind-
ing, so provides a favorable environment for bone regen-
eration. Since 1990, the FDA has demonstrated that this 
biomaterial could induce allergic responses; in fact, 3% of 
the population is allergic to the collagen and so has a pre-
disposition to develop diseases such as polymyositis and 
dermatomyositis (71).

Alloplastic grafts
Alloplastic grafts are synthetic bone substitutes that 

are available in different sizes, forms and textures (10, 
11, 48). Bauer and Mischler (2000) noted that this type of 
bone graft can induce stable bonds with neo-synthetized 
bone (77). The structural characteristics of the alloplastic 
grafts are similar to bone tissue (75). In particular, Sasaoka 
(1989) reported that bioactive ceramics, a type of synthetic 
graft, bind bone naturally, due to their similarity with min-
eral bone tissue (76). Stavropoulos and colleagues (2004) 
compared the performance of synthetic reabsorbable ma-
terials (PGA-TMC, glycolide 67% plus trimethylene car-
bonate 33%) with animal origin reabsorbable membranes 
(collagen membranes) and demonstrated that the quality 

of new bone was significantly higher in the group treated 
with PGA-TMC compared with the group using only col-
lagen membranes (77).

Hydroxyapatite allografts. Hydroxyapatite is a natu-
ral component of hard tissue (65% in bone tissue, 98% in 
enamel). Synthetic hydroxyapatite is available in different 
forms: porous, non- porous, ceramic and non-ceramic.

This material has been used in GBR techniques to coat 
implants, due to its osseointegrative capabilities (11, 78, 
79).

Hydroxyapatite is bioinert and biocompatible, but it 
does not induce significant bone regeneration. Histomor-
phometric analysis resulted in a percentage of 41% of neo-
synthetized bone, 30% of medullary spaces and 31% of re-
sidual hydroxyapatite graft (54), so it is poorly reabsorbed. 

Tricalcic phosphate grafts. Tricalcic phosphate grafts 
(Ca3(PO4)2) is treated with naphthalene and then is com-
pacted at 1100-1300°C to obtain a diameter porosity of 
100-300 mm. The studies of Koyama (2007) had shown an 
increase of bone regeneration after 12 weeks from surgery 
placement (4).

Moreover, during reabsorption, it provides ion calcium 
and magnesium to bone tissue and so creates a correct 
ionic environment, which induces alkaline phosphatase 
activation, fundamental for bone synthesis (80, 81).

Bioglass grafts. Synthetic glass ceramics are made 
of silicon dioxide (45%), sodium oxide (24.5%) and phos-
phorus pentoxide (11, 82). The bioglass is used mainly in 
maxillary sinus lifts and is characterized by particles with 
a diameter of 300-335 mm. Bioglass has osteoconductive 
properties and their solubility is directly dependent on so-
dium oxide (11).

Histomorphometric analysis has given a percentage 
of 40% of new bone, 43% of medullary spaces and 17% 
of bioglass particles surrounded by neo-synthetized bone 
(54, 82).

Coralline hydroxyapatite grafts. Coralline hydroxy-
apatite is composed of calcium carbonate (87-98%), stron-
tium, fluoride, magnesium, sodium and potasium (2-13%) 
(11, 83). It has a porous structure (over 45%) and pores 
have a diameter of 150-500 mm.

Guilemin (1987) underlined that these grafts are higly 
biocompatible (84). The coralline hydroxyapatite also has 
osteoconductive properties (85) and the reabsorption of 
the coralline skeleton is due to the action of the carbonic 
anhydrase of osteoblasts (86).

Histomorphometric analysis shown 42% of neo-syn-
thesized bone, 40% of medullary spaces and 18% of resi-
due biocoral (54). 
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Polylactic acid and polyglycolic acid. The union of 
polymeric lactic acid and polyglycolic acid increases graft 
compatibility and degradability (9, 82). Cauwels and Mar-
tens (2004) found that this graft not induced inflammatory 
processes, confirming the biocompatibility of this material 
(88). The insertion of polylattic and polyglicolic acid bio-
polymers induces a correct bone regeneration (89-91). His-
tological analyses shown that the graft was almost com-
pletely reabsorbed; in particular, the histomorphometric 
analysis shown 43% of mineral bone, 56% of medullary 
spaces and only 1% of residual graft (54). The degrada-
tion and reabsorbition of this material is slow and progres-
sive, inducing a correct bone regeneration. Reabsorption 
is about 4-8 months due to the low density of the product.

New membranes made of polylactic acid (PLA), ami-
nopropyltriethoxysilane (APTES) and carbonate of calci-
um show greater ability to induce bone cells proliferation 
compared to non-hybrid membranes (92); nevertheless, 
other clinic studies are necessary to confirm these results.

The data about the graft material’s histomorphometric 
analysis are summarized in Table 1. 

CONCLUSION

In GBR technique, many graft materials can be chosen 
and many relative factors have to be considered, such as 
bone defect site, surgical objective, patient examination 
and knowledge of graft materials (2, 11). The graft materi-
als have not to induce inflammation responses and they 
have to be osteoconductive to maintain trophism under the 
membrane and rapid reabsorption (8, 9). 

From a professional point of view, the results and per-
formances obtained by different biomaterials (membranes 
and grafts) do not underline clearly differences within 
bone regeneration induced by heterologous materials from 
animal origin or synthetic materials (22, 42, 93, 94). 

There are no significant differences, reported in litera-
ture, in the use of animal heterologous grafts or synthetic 
alloplastic grafts. Nevertheless, it is our opinion, that a 
correct choice is fundamental to minimize the possibil-
ity of disease transmission and development; in particular, 
synthetic biomaterials are better compared to heterologous 
animal biomaterials, which have a higher risk of inflam-
matory reactions and disease trasmission. 
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