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The formation of the Amazon Dark Earths was a model of sustainable soil management
that involved intensive composting and charcoal (biochar) application. Biochar has been
the focus of increasing research attention for carbon sequestration, although the role of
compost or humic substances (HS) as they interact with biochar has not been much stud-
ied. We provide a perspective that biochar and HS may facilitate extracellular electron
transfer (EET) reactions in soil, which occurs under similar conditions that generate the
greenhouse gases methane and nitrous oxide. Facilitating EET may constitute a viable
strategy to mitigate greenhouse gas emission. In general, we lack knowledge in the
mechanisms that link the surface chemical characteristics of biochar to the physiology of
microorganisms that are involved in various soil processes including those that influence
soil organic matter dynamics and methane and nitrous oxide emissions. Most studies view
biochar as a mostly inert microbial substrate that offers little other than a high sorptive
surface area. Synergism between biochar and HS resulting in enhanced EET provides a
mechanism to link electrochemical properties of these materials to microbial processes in
sustainable soils.
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INTRODUCTION
THE SEARCH FOR EL DORADO
Microbes have played prominent roles in the history of ancient
American civilizations. To the Spanish conquistadors, they became
unwitting allies – smallpox, typhus, diphtheria, measles – these
and other diseases contributed to the deaths of perhaps 95% of
the indigenous people in the Americas within 130 years after first
contact with Europeans (Dobyns and Swagerty, 1983). Within a
few decades after first contact, the desire for riches lured some
conquistadors deep into the Amazon jungle in pursuit of one of
the most persistent myths of wealth in the Americas: “El Dorado,”
the legendary Lost City of Gold. It was in search of El Dorado
that brought Francisco Orellana through the jungles of the Ama-
zon – he would later become known as the first European to
successfully navigate the Amazon River. It was after this arduous
journey that Orellana (or more accurately, his chronicler Gaspar
de Carvajal) reported densely populated settlements within the
Amazon. Until recently, such tales were considered fanciful since
permanent settlements in this tropical rainforest were regarded
as an impossibility. The lush green of the jungle is deceiving;
the soils of the Amazon are too poor to support any kind of
intensive agriculture and without this as foundation, no sophisti-
cated civilization could thrive (Meggers, 1971). However, recent
archeological evidence suggest otherwise (Mann, 2005; Glaser,
2007; Heckenberger, 2009). It is now becoming clear that set-
tled communities existed throughout the Amazon basin during
pre-Columbian times, and wherever there are traces of ancient
habitation, not far will be found dark colored soils known locally as
terra preta de Indio (Indian dark earth; also referred to as Amazon
Dark Earth, ADE). Sadly, the original populace that created terra

preta also became victim to the onslaught of disease after first con-
tact. However, their legacy in the form of the land they managed
lives on.

TERRA PRETA
Terra preta was first described by modern soil science in the mid-
1960s (Sombroek, 1966). One of the distinguishing features of
ADE is the high charcoal or black carbon content, about 70%
higher compared to the adjacent non-ADE soils. These soils are
highly fertile in comparison to the poor and highly weathered sur-
rounding (parent) soil. Aside from elevated levels of black carbon,
ADE is characterized by higher organic C, N, Ca, and P, higher
cation exchange capacity, higher pH, and higher base saturation
than the surrounding soils (Glaser et al., 2001; Lehmann et al.,
2003). While nutrient poor, the parent soils that host ADEs are
rich in iron and aluminum oxides (Glaser et al., 2002). The most
intriguing property of ADE soils is its capacity to sustain its fertil-
ity even without applying mineral fertilizers (Madari et al., 2004),
a feat that modern agriculture has not been able to accomplish.
Charcoal in soil (now referred to as biochar, to differentiate it
from charcoal for heating) is persistent: its polycyclic aromatic
structure resists microbial degradation and lasts in soil for mil-
lenia (Kuzyakov et al., 2009). Thus when charcoal is applied to
soil, C is sequestered for a long period of time, making this prac-
tice essentially carbon negative (Glaser et al., 2009) and therefore
attractive as a means to mitigate climate change while improving
soil health.

Evidence suggests that aside from incorporating charcoal into
the soil, the Amazonians practiced intensive soil composting,
essentially creating composting fields that today bear evidence
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of widespread incorporation of organic wastes including mam-
malian and fish bones and feces (Lima et al., 2002; Schaefer
et al., 2004; Birk et al., 2011). Therefore, the ADE soils are the
product of intensive soil management that involved both char-
coal amendment and composting, representing inputs of both
highly recalcitrant and relatively labile forms of organic matter.
Co-application of char and compost during the creation of
ADE soils is a model of sustainable soil management. Since
the labile fractions of soil amendments are rapidly mineralized,
the components that elicit long-term effects are the recalcitrant
fractions, mainly charcoal and humic substances (HS) from com-
post. HS (Figure 1A) are extremely complex and heterogeneous
high molecular weight organic materials that often contain pol-
yaromatic structures that include oxygen-containing functional
groups, including quinone moieties. Humus is commonly viewed
as an essential component of rich soil, although stable humus
no longer contributes nutrients and is commonly viewed as
important mainly to improve the physical structure of soil. How-
ever, recent findings suggest that dissolved HS are redox-active
and contribute to anaerobic microbial metabolism by mediating
extracellular electron transfer (EET), in effect shuttling electrons
between metal-respiring bacteria and metal oxides (Lovley et al.,
1996). Quinone moieties within functional groups of HS have
been implicated as responsible for this type of electron transfer
reaction (Lovley et al., 1996; Scott et al., 1998; Stack et al., 2004;
Roden et al., 2010).

INFLUENCE OF CHAR AND COMPOST ON EET IN SOIL
The paradigm of microbial respiration involves soluble com-
pounds such as oxygen that acts as a terminal electron acceptor.
Microbial EET occurs when solid substances such as metal oxides
or electrode materials are used as electron acceptors during res-
piration (Hernandez and Newman, 2001). Because microbes that
use electrode materials as electron acceptors form biofilms on the
electrode surface, these systems, called microbial fuel cells (MFCs),
are well-suited to study the physiology of microbial EET. When a
microbe uses an anode as an electron acceptor, it conserves energy
by oxidizing a substrate (which may be organic or inorganic, such
as acetate or hydrogen) and transferring the resulting electrons to

the exogenously provided anode. This requires the absence of oxy-
gen which is more energetically favorable as an electron acceptor.
The transfer of electrons to a solid acceptor such as an anode may
occur via intrinsic microbial mechanisms such as those involving
direct cell contact to the solid electron acceptor (through the use of
cell surface proteins or structures such as specialized pili); through
microbially synthesized electron shuttles (Lovley and Nevin, 2008;
Marsili et al., 2008; von Canstein et al., 2008); and through var-
ious natural substances such as HS and plant exudates (Lovley
et al., 1996; Nevin and Lovley, 2000; Hernandez et al., 2004) that
shuttle electrons to solid electron acceptors such as Fe(III) oxides.
Lovley and colleagues in 1996 first showed that Geobacter metal-
lireducens is able to utilize humic acids as electron acceptors using
acetate as a substrate (Lovley et al., 1996). The microorganism
is required to reduce the humics although in the absence of the
microorganism, Fe(III) reduction by reduced HS proceeds, prov-
ing that HS act as an electron shuttle. This implies that no contact
between the microorganism and a solid electron acceptor is needed
in the presence of electron shuttles such as HS. Under conditions
of high humus loads, such as in composted wet soil, both soluble
and solid phase HS may mediate electron transfer to metal oxides
(Roden et al., 2010). Since mature compost is essentially humified
organic matter, we would expect this material to have a higher
capacity for mediating EET compared to the uncomposted, raw
organic material – this has been confirmed in experiments com-
paring EET capacity between sewage sludge and composted sludge
(Huang et al., 2010).

The electrical properties of charcoal have long been recog-
nized (Ford and Greenhalgh, 1970; Coutinho and Luengo, 1993;
Mochidzuki et al., 2003). Carbon-based materials, including acti-
vated carbon, are frequently used as electrode material in MFCs
(Logan, 2008; Jiang and Li, 2009; Zhang et al., 2009; Zhu et al.,
2011). Pyrolyzed carbon shares similar characteristics with HS
including the presence of surface active groups including quinone
moieties within polyaromatic structures (Matsumura and Taka-
hashi, 1979; Figure 1B). Charcoal itself is a source of humic
acids that are formed during pyrolysis (Trompowsky et al., 2005)
or after sufficient aging (Nishimura et al., 2006), which is proba-
bly a consequence of a slow oxidative process. Viewing charcoal

FIGURE 1 | Structures of (A) a model humic acid (adapted from Stevenson,
1994) and (B) surface functional groups on activated carbon, which are

expected to be similar to those on biochar. These groups are bonded to
aromatic rings (adapted from Yang, 2003).
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as a material that mediates extracellular electron transport is
mostly unexplored in the field of biochar (soil amendment)
research. To enhance the power generation of MFCs, activated
carbon may be treated with ammonia (Cheng and Logan, 2007),
nitric acid, and ethylenediamine (Zhu et al., 2011) to signifi-
cantly increase the power output of MFCs. These treatments
most likely change the surface functional groups on activated
carbon, increasing groups such as lactam, imide, amide, and
ammonium nitrate, which are hypothesized to facilitate the adhe-
sion of microbes that perform EET (Zhu et al., 2011). Since
biochar can be manufactured from a variety of biomass sources
(including solid organic wastes), the chemical composition of
feedstocks should influence their electrochemical characteristics
and should be taken into consideration when designing soil
amendments.

Enhanced EET in soil may facilitate electron flow to electron
acceptors other than oxygen. For example, a phylogenetically
diverse range of bacteria including members of the alpha-, beta-,
gamma-, and delta-Proteobacteria utilize HS as electron donor
and nitrate as electron acceptor in forest soil, freshwater and
marine sediments (Coates et al., 2002). Similar findings have
recently been described in agricultural soils (Van Trump et al.,
2011), raising the possibility that anaerobic (nitrate) respira-
tion facilitated by HS is an important process in agricultural
soils. In most cases, including those in which a reduced metal
is used directly as an electron donor, bacteria that oxidize reduced
HS for energy require an organic co-substrate for carbon, fre-
quently reduced fermentation products such as acetate and other
volatile fatty acids (Straub et al., 1996; Benz et al., 1998). Therefore,
electron flows through fermentation and anaerobic respiration
processes are favored in the presence of HS under anaerobic con-
ditions. Compared to heterotrophic processes that utilize the same
substrate for electrons and carbon, respiration facilitated by HS
will require less organic substrate, resulting in more efficient uti-
lization of soil organic matter. How this contributes to long-term
stability of soil organic matter, as has been observed in ADE soils
would be an interesting area of research. Such research should
take into account the possible synergism between biochar and
HS that may be the basis of the long-term success of terra preta.
One might hypothesize that the stability and high surface area
of charcoal provides sites that attract bacteria including those
involved in EET, thus serving as a stable platform for biofilm for-
mation that supports electron shuttling between microbes and
insoluble electron acceptors such as soil metals (Figure 2). In the
presence of dissolved HS, these metal oxides in effect become
more available for electron transfer reactions due to electron
shuttling by HS.

APPLICATIONS
C and N cycling
At least part of biochar effects in soils may be attributed to
processes occurring under wet, anaerobic, or anoxic condi-
tions. Such conditions are associated with methane and nitrous
oxide emissions even in non-waterlogged agricultural soils (John-
son et al., 2007). Anaerobic respiration mediated by char and
humics is expected to preempt methanogenesis, since respiratory
metabolism through the sequential reduction of electron acceptors

FIGURE 2 | Diagram illustrating the possible interactions between

microbes, biochar, humic substances, and metals in water-saturated

soil or sediments. Because of its abundance, only iron is considered here,
although numerous metals may undergo similar processes. OM, organic
matter; BC, biochar; HSrd, reduced humic substances; HSox, oxidized
humic substances; c (red), inorganic or organic contaminants such as heavy
metals or pesticides; b (green), humics-reducing bacteria that may also
be Fe-reducing; b (light red), nitrate-dependent humics-oxidizing bacteria;
b (purple), chemolithoautotrophic nitrate-respiring iron-oxidizing bacteria;
b (light blue), nitrogen-fixing bacteria.

(e.g., nitrate before ferric iron before sulfate) yields more energy
compared to methanogenesis. When the conditions for anaerobic
respiration are met (adequate redox conditions, electron donor,
electron acceptor), respiration will be an energetically competitive
process compared to methanogenesis. A number of reports sug-
gest that biochar application reduces methane emissions (Haefele
et al., 2011; Karhu et al., 2011; Liu et al., 2011). On the other hand,
substances that facilitate anaerobic respiration may enhance the
production of nitrous oxide, since this gas is an intermediate or
terminal product of denitrification, a process that is enhanced
by the presence of HS in various environments (Coates et al.,
2002; Van Trump et al., 2011). In this case, the co-application
of biochar may provide a means of mitigating nitrous oxide emis-
sions (Bruun et al., 2011; Karhu et al., 2011; Taghizadeh-Toosi,
2011). These reports provide no convincing mechanism to link
the surface chemical characteristics of biochar to the physiol-
ogy of microorganisms that are involved in methane and nitrous
oxide emissions. Most studies have examined these questions
with the viewpoint of biochar being a mostly inert microbial
substrate, with the exception of residual volatile organics that
remain after pyrolysis. In cases where biochar has been observed
to mitigate methane and nitrous oxide emissions, possible expla-
nations include inhibition of methanogenesis or promotion of
methanotrophy (in the case of methane mitigation); or immobi-
lization of N (Rondon et al., 2005) as well as soil hydrology (Yanai
et al., 2007; in the case of nitrous oxide mitigation). However,
enhancing anaerobic respiratory processes that compete with or
provides alternatives to methanogenesis or heterotrophic denitri-
fication would, in theory, mitigate emissions of the greenhouse
gases associated with these processes. In support of this concept,
HS-mediated denitrification is associated with total reduction of
nitrate to dinitrogen gas (in most cases, no nitrous oxides emit-
ted; Coates et al., 2002). It is also shown that respiration through
Fe(III) reduction competes effectively with methanogenesis
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in natural systems like tropical forest soils (Dubinsky et al., 2010).
Under controlled experimental conditions, enhanced Fe(III)
reduction led to as much as 69% reduction in methane emis-
sions compared to controls in rice (Oryza sativa) soils (Huang
et al., 2009). Enhancing EET in a MFC setup using rice paddy
soil as inoculum led to almost complete suppression of methano-
genesis when the circuit between anode and cathode is closed
(Ishii et al., 2008a).

Plant growth and bioremediation
With the societal and environmental benefits associated with
biochar, there is now increasing interest in widespread applica-
tion. However, since the long-term effects of creating terra preta
have been studied almost entirely in the tropical setting, there
is a need to research long-term effects in other settings. Grad-
ual application will most likely be based on cost-benefit analyses.
Similar to the original terra preta, the most promising applica-
tion of this ancient technology will be on marginal or degraded
soils, such as those contaminated by organic or inorganic pollu-
tants (e.g., mining-impacted land). These lands are often poorly
developed with little or no vegetation. There are numerous studies
documenting both beneficial and negative effects of charcoal on
plant growth (Atkinson et al., 2010 and references within). How-
ever, the significance of microbial EET to plant growth is mostly
unexplored. In this regard, it is noteworthy that studies in an
MFC inoculated with rice paddy soil enriched for a nitrogen-
fixing Rhizobiales bacterium that was shown to be involved in
electricity generation on the anode (Ishii et al., 2008b) and utiliza-
tion of Fe(III) as an electron acceptor during anaerobic respiration
(Kodama and Watanabe, 2011). The possible components of the
nitrogen fixation machinery that is linked to EET is not yet clear,
although it may involve the membrane-bound uptake hydroge-
nases, which are required by nitrogen-fixing bacteria to recycle
wasteful hydrogen produced during this energetically demanding
process. Hydrogenases are membrane bound enzymes that are
directly coupled to the electron transport system via cytochromes

and are hypothesized to play a critical role in electron transfer reac-
tions of bioelectrochemical systems (Rosenbaum et al., 2011). In
connection with this, it is interesting to note that biochar has been
linked to higher rates of nitrogen fixation (Rondon et al., 2007),
increased nodulation (Hely et al., 1957), and enhanced carrying
capacity for Rhizobia (Kremer and Peterson, 1983; Sparrow and
Ham, 1983). Aside from beneficial effects for plant growth, biochar
application to contaminated lands has a potentially important role
in the remediation, revegetation, and restoration of contaminated
soils (Beesley et al., 2011). Much of the research conducted in this
area link the high sorptive capacity of biochar to sequestration
of organic and inorganic pollutants. Sorption of xenobiotics to
biochar has two sides: while this may decrease the bioavailabil-
ity of toxic chemicals, sorption to surfaces that are unavailable
to microorganisms may reduce their biodegradation rates. In
the case of pesticides, sorption on biochar would also reduce
efficacy, thus potentially resulting in higher application rates to
compensate for sorption. These problems may be addressed by
using biochars that have been precolonized (e.g., used as compost
amendments) with microbes, or using feedstock that are domi-
nated by micropores that are accessible to microbes after pyrolysis.
The biodegradation of xenobiotics including how the processes
are affected by electrochemical properties and interactions with
HS (e.g., HS was recently described to influence the speciation
and transformations of mercury in a concentration-dependent
manner by Gu et al., 2011) is a promising area of research. Elec-
tron flow in wet soils through the network of microbes and
their appendages, electron donors, electron acceptors, and elec-
tron shuttles is a mechanism that more closely links char and its
surface properties to microbial metabolism. As research in this
field progresses using the modern tools of science, one might be
reminded of that age-old quest for El Dorado – this time how-
ever, the quest continues on the path that led to the rediscovery
of an ancient technology, a legacy that deserves to be studied well
and applied wisely to conserve the true wealth of civilizations:
our soil.
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