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Abstract: Influenza viruses with an impaired NS1 protein are unable to antagonize the innate im-
mune system and, therefore, are highly immunogenic because of the self-adjuvating effect. Hence,
NS1-mutated viruses are considered promising candidates for the development of live-attenuated
influenza vaccines and viral vectors for intranasal administration. We investigated whether the
immunogenic advantage of the virus expressing only the N-terminal half of the NS1 protein (124 a.a.)
can be translated into the induction of protective immunity against a heterologous influenza virus
in mice. We found that immunization with either the wild-type A/PR/8/34 (H1N1) influenza
strain (A/PR8/NSfull) or its NS1-shortened counterpart (A/PR8/NS124) did not prevent the viral
replication in the lungs after the challenge with the A/Aichi/2/68 (H3N2) virus. However, mice
immunized with the NS1-shortened virus were better protected from lethality after the challenge with
the heterologous virus. Besides showing the enhanced influenza-specific CD8+ T-cellular response in
the lungs, immunization with the A/PR8/NS124 virus resulted in reduced concentrations of proin-
flammatory cytokines and the lower extent of leukocyte infiltration in the lungs after the challenge
compared to A/PR8/NSfull or the control group. The data show that intranasal immunization with
the NS1-truncated virus may better induce not only effector T-cells but also certain immunoregulatory
mechanisms, reducing the severity of the innate immune response after the heterologous challenge.

Keywords: influenza virus; NS1 protein; immune response; immunogenicity; flow cytometry

1. Introduction

Modifications of the influenza virus NS1 protein are considered a promising approach
for the development of live-attenuated influenza vaccines and recombinant viral vectors.
The effectiveness of such vaccine candidates in conferring protection against homologous
and heterologous influenza strains was confirmed in different experimental models of in-
fluenza infection [1–8]. However, the immunological mechanisms providing heterologous
protection are poorly understood.

The truncation of the NS1 protein is shown to increase the ability of the influenza virus
to stimulate the innate immune cells and to enhance their antigen-presenting functions [9].
This leads to the formation of polyfunctional T-lymphocytes, which can elicit heterologous
protection through the recognition of the broad spectrum of influenza antigens, including
conserved epitopes [10,11].

An excessive immune response could be harmful to the host. Therefore, the regulatory
mechanisms of the immune system must contribute to the protection of the organism after
the secondary viral infection. The vaccination may not provide sterilizing immunity against
antigenically mismatching pathogens, but the attenuation of the inflammatory immune
response could protect the organism from tissue damage and ameliorate the course of the
disease [12].
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Here we investigated whether the immunogenic advantage of the virus expressing
only the N-terminal part of the NS1 protein (124 a.a.) can be translated into the induction
of the protective immunity against heterologous influenza virus in mice. To address this
question, we compared the cross-protective efficacy of the immune response induced by
intranasal immunization with the NS1-truncated influenza virus (A/PR8/NS124 (H1N1))
or by nonlethal infection with the wild-type (A/PR8/NSfull (H1N1)) influenza strain.
To estimate the influence of immunization on the acute inflammatory immune response
after the reinfection, we analyzed the concentrations of proinflammatory cytokines and
the percentage of T-regulatory cells in mouse lungs after heterologous infection with the
A/Aichi/2/68 (H3N2) strain.

2. Materials and Methods
2.1. Viruses

Two strains based on the influenza A/Puerto Rico/8/1934 (H1N1) virus were used
for mice immunization: (1) A/PR8/NSfull virus, encoding the full-length NS1 protein;
(2) A/PR8/NS124 strain, encoding the NS1 protein shortened to 124 a.a. The strains were
created by “reverse genetics” [13], accumulated in developing chicken embryos (RCE)
and purified by fractionation in a sucrose density gradient. The A/Aichi/2/68 (H3N2)
influenza strain was used for the heterologous challenge.

2.2. Laboratory Animals

The study was performed on C57/Black-6 female mice obtained from the Biomedical
Science Center (Stolbovaya, Russia). The experiments were conducted according to the
guidelines for care and work with laboratory animals [14]. All of the animal studies were
approved by the Russian Institutional Local Ethics Committee.

2.3. Immunization and Challenge Infection

Mice were immunized intranasally with 2.5 or 6 log10[TCID50] of A/PR8/NSfull and
A/PR8/NS124 strains, respectively (30 µL of a virus suspension in sodium phosphate
buffer (PBS, Biolot, St. Petersburg, Russia)) under light ether anesthesia. The control group
received an equivalent volume of PBS. For the challenge infection, mice were inoculated
with 2.5 LD50 of A/Aichi/2/68 (H3N2) at a volume of 30 µL. Bodyweight dynamics and
the mortality rate were measured for 14 days after the challenge.

2.4. Virus Infectious Activity Analysis

To estimate the viral loads in mouse lungs, animals were sacrificed 2 and 4 days after
the challenge with A/Aichi/2/68, and the lungs were homogenized using TissueLyser II
(Qiagen, Hilden, Germany) bead homogenizer. Virus reproductive activity was determined
by the titration of lung homogenates on MDCK cell culture. The assay was performed in
96-well culture plates (Nunc, Roskilde, Denmark) by the addition of 100 µL of prepared
dilutions of the virus-containing material into the wells and subsequent incubation for
5 days at 34 ◦C and 5% CO2. The results were evaluated visually by cytopathic effect
estimation and by a hemagglutination reaction (using 0.5% suspension of chicken red
blood cells). Then, a 50% tissue culture infectious dose (TCID50) was calculated using the
Reed and Munch method [15]. The viral titer was expressed as log10[TCID50]/mL.

2.5. Proinflammatory Cytokines Analysis

Concentrations of IFNα, IFNβ, IFNγ, IL-6, IL-1α, IL-1β, IL-27, IL-10, IL-23, TNFα,
MCP-1, and GM-CSF in pg/mL were measured in lung tissue homogenates using LEG-
ENDplex bead-based multiplex assay (Biolegend, San Diego, CA, USA) according to the
manufacturer’s instructions. Samples were analyzed on a CytoFlex flow cytometer (Beck-
man Coulter, Brea, CA, USA), and the cytokine concentrations were calculated using
LEGENDplex software, v. 8.0 (Biolegend).
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2.6. Lymphocyte Isolation and Stimulation

T-cellular immune response was evaluated in the splenocytes and lungs of immunized
mice 32 days postimmunization (d.p.im.) and in lungs 4 days postchallenge (36 d.p.im.).
Mice were sacrificed by cervical dislocation. The chest cavity was opened, and the right
ventricle was perfused with 10 mL of ice-cold DPBS (Biolot) before the removal of the lungs
and spleen. Following the mechanical dissociation of the spleen with pestle homogenizers
(Eppendorf, Hamburg, Germany) and collagenase/DNAse (Sigma, Saint Louis, Missouri,
USA) digestion of lung tissue, cells were filtered through a 70 µm cell strainer. Erythrocytes
were lysed with RBC lysis buffer (Biolegend) according to the manufacturer’s protocol.
Cells were stained with antibodies for the innate immune populations’ analysis or seeded
at a density of 1 × 106 cells per well into flat-bottom 96-well tissue culture plates (Nunc) in
RPMI 1640 (Gibco, Waltham, Massachusetts, USA) medium containing 10% fetal bovine
serum (FBS, Gibco) and 1% penicillin/streptomycin solution (Gibco). To stimulate cytokine
production, cells were incubated with 5 µg/mL of NP366-374 peptide and brefeldin A
(Biolegend) for 6 h at 37 ◦C and 5% CO2. The peptide was synthesized by Verta Ltd.
(Saint-Petersburg, Russia). Then, 10 mg of dry peptide were dissolved in 1 mL of DPBS
(Biolot) and stored in small aliquots at −20 ◦C. The purity of the peptide was >90%, as
determined by high-performance liquid chromatography.

2.7. Flow Cytometry

To analyze the innate immune cell populations, the panel of fluorochrome-conjugated
antibodies was used, including CD11b-PE/Cy7, CD11c-PE, MHCII-Alexa488, CD103-
PerCP-Cy5.5, CD45-APC/Cy7, CD64-BV421, and CD24-BV510. To estimate the percentage
of CD8+ T-lymphocyte-producing cytokines after the peptide stimulation, cells were stained
with CD8-PE/Cy7, CD4-PerCP-Cy5.5, CD44-BV510, CD62L-APC/Cy7, IFNγ-FITC, TNFα-
BV421, and IL2-PE antibodies using the Fixation and Permeabilization Solution reagent kit
(BD Biosciences) according to the manufacturer’s instructions. Zombie Red viability marker
(BioLegend) was used to identify the dead cells. True Stain reagent, containing antibodies
to CD16/CD32, was used to block nonspecific antibody binding (BioLegend). Data were
collected on a CytoFlex flow cytometer (Beckman Coulter). The results were analyzed
using the Kaluza Analysis v2 program (Beckman Coulter). To estimate the increase in the
cytokine production levels upon the peptide stimulation, the background values obtained
from the nonstimulated cells were subtracted from the corresponding values of stimulated
samples before the statistical analysis.

2.8. ELISA

The levels of influenza-specific IgG antibodies were determined by ELISA using
96-well plates (NuncMaxisorp, Thermo Fisher Scientific, Waltham, MA, USA) covered
by the A/Puerto Rico/8/1934 influenza virus accumulated in MDCK cell culture. The
virus suspension at a concentration of 4 µg/mL in PBS (Biolot) was added to the wells
and the plates were incubated for 12 h at 4 ◦C. Further, the plates were washed with 0.1%
Tween20 solution (Thermo Fisher Scientific) and incubated for 2 h in PBS containing 5% FBS
(Gibco) and 0.1% Tween20. The same buffer was used to prepare serial double dilutions
of the analyzed sera samples. Plates were incubated for 1 h at room temperature. After
extensive washing with 0.1% Tween20, secondary HRP-conjugated antibodies were added
to the plates. A 100 µL volume of TMB substrate (KPL) was added to the wells, and the
plates were incubated for 15 min. The development of a color reaction was stopped by
the addition of 100 µL/well of 1N H2SO4. Optical density at a wavelength of 450 nm was
measured using Synergy H1 Hybrid Multi-Mode Reader and analyzed with Gen5 software.

2.9. Statistical Analysis

RStudio Desktop 1.0.153 (RStudio Inc, Northern Ave, Boston, USA) was used for
statistical data analysis. The Dunnett test was used to compare several experimental
groups with one control group. To compare two experimental groups, the Student’s t-test
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was used. Multiple comparisons were performed using univariate analysis of variance
(ANOVA) followed by pairwise comparison of groups using the Tukey criterion.

3. Results
3.1. Humoral and T-Cellular Immune Response to Immunization with A/PR8/NS124 or
A/PR8/NSfull Influenza Virus

It is shown [9] that A/PR8/NS124 and A/PR8/NSfull strains differ significantly in
their pathogenicity and reproduction activity in mouse lungs. For immunization with the
A/PR8/NSfull virus, we selected the dose of 2.5 log10[TCID50] as the highest nonlethal
dose. Mice immunized with the A/PR8/NS124 strain received a sublethal dose of the virus
equal to 6 log10[TCID50]. To analyze the humoral immune response, blood samples were
collected 21 days postimmunization (d.p.im.), and influenza-specific IgG antibody levels
were estimated with ELISA (Figure 1) and confirmed in the hemagglutination inhibition
(HAI) test (data not shown). Average HAI titers were 1:128 in both NS124 and NSfull
groups. The T-cell immune response was measured in lungs and spleen 32 d.p.im.

Figure 1. Humoral and CD8+ T-cellular immune response to intranasal immunization with
A/PR8/NSfull or A/PR8/NS124 influenza strains. (A). Total level of influenza-specific IgG de-
termined with ELISA. The histograms represent the optical density of the serum samples di-
luted 1:800 (mean ± SD, n = 8). (B). Total percentage of cytokine-producing effector memory
CD8+CD44+CD62L− T-lymphocytes after 6 h of in vitro lung or spleen cells stimulation with the
NP366-374 peptide 32 d.p.im. (C). Histograms represent the percentage of different populations of
cytokine-producing T-cells in the total effector memory (EM) CD8+CD44+CD62L− T-lymphocytes
population. Pie charts represent the percentage of cells producing any combination of IFNγ, IL2, or
TNFα cytokines in the total cytokine-producing CD8+ EM T-cell subset. Color bars under histogram
mark different cytokine-producing populations and correspond to the pie chart color scheme. Groups
were compared using ANOVA followed by Tukey’s post-hoc test (*: p < 0.05, **: p < 0.001, n = 4).
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The analysis of humoral immune response revealed that the inoculation of mice
with 2.5 log10[TCID50] of A/PR8/NSfull and 6 log10[TCID50] of A/PR8/NS124 induced
comparable levels of influenza-specific IgG antibodies. To estimate the level of the T-
cellular immune response, we calculated the percentage of CD8+ effector memory T-
lymphocytes (Tem) producing any combination of IFNγ, IL2, and TNFα in response to
in vitro stimulation with the NP366-374 peptide. A pronounced systemic (spleen) and local
(lungs) CD8+ T-cellular immune response was formed in both groups at 32 d.p.im. Most
of the antigen-specific T-cells were represented by double-positive (IFNγ+IL2−TNFα+)
and triple-positive (IFNγ+IL2+TNFα+) cytokine-producing CD8+ T-lymphocytes both in
the lungs and spleen. The A/PR8/NS124 virus induced the formation of higher numbers
of polyfunctional IFNγ+IL2+TNFα+ Tem (p = 0.02), but no significant difference between
the experimental groups was shown in the total content of cytokine-producing cells as
well as in the level of single-positive or double-positive T-lymphocytes. Thus, based on
the results of humoral and T-cellular immune response analysis, we conclude that the
proposed immunization scheme allowed the induction of similar levels of influenza-specific
immunity in both NSfull and NS124 groups.

3.2. Immunity Triggered by A/PR8/NS124 Prevents Mortality after the Heterologous Challenge

To determine the cross-protection efficiency of the acquired immune response, mice
were challenged with 2.5 LD50 of the A/Aichi/2/68 (H3N2) virus 32 d.p.im. The mortality
and the bodyweight dynamics were monitored for 14 days after the heterologous challenge
(d.p.c.). Proinflammatory cytokine concentrations and viral loads were measured in lungs
homogenates 2 and 4 d.p.c. The percentage of T-regulatory cells and the level of influenza-
specific CD8+ T-cellular immune response were estimated in lungs 4 d.p.c. The relative
content of innate immune cell populations was analyzed right before heterologous infection
(0 d.p.c.) and on 1 and 4 d.p.c.

The results of mortality, body weight dynamics, and viral load analyses are represented
in Figure 2. Mice infected with 2.5 log10[TCID50] of the A/PR8/NSfull virus, as well as
nonimmunized animals, were characterized by a bodyweight reduction up to 80–75% of the
initial values during 8 d.p.c. In both control and NSfull groups, the mortality rate was about
40%. At the same time, intranasal immunization with 6 log10[TCID50] of A/PR8/NS124
completely abolished mortality and significantly reduced weight loss in mice (Figure 2A,B).

Figure 2. Survival dynamics, body weight dynamics, and lung viral titers of mice intranasally
immunized with A/PR8/NSfull and A/PR8/NS124 viruses after the heterologous challenge with
A/Aichi/2/68. (A). The Kaplan–Meier curves representing the percentage of survived animals at
different time points after the challenge (*: p < 0.05, the curves were compared using the Cox method,
n = 6). (B). Bodyweight dynamics. (C). Viral load (log10[TCID50]/mL, mean ± SD, n = 4; *: p < 0.05.
Groups were compared using ANOVA followed by Tukey’s post-hoc test.

It is noteworthy that immunization did not prevent infection with A/Aichi/2/68
and the viral replication. Figure 2C shows that viral titers in lung homogenates in both
immunized and nonimmunized mice were about 6.16–6.79 log10[TCID50]/mL 2 d.p.c.
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There was no significant difference between the experimental groups. The viral load
decreased in the NS124 group in comparison to the control (p = 0.03) 4 d.p.c., but the
difference between NS124 and NSfull groups remained insignificant. Thus, immunization
with A/PR8/NS124 reduced the severity of the disease and contributed to the survival of
infected animals by the mechanisms that do not rely on the control over the viral infection.

3.3. Intranasal Immunization with the A/PR8/NS124 Virus Restrains the Inflammatory Response
in the Lungs after the Heterologous Challenge

The better protection after immunization with the A/PR8/NS124 virus could be
explained by the attenuation of the inflammatory response in the lungs of challenged
animals. To test this hypothesis, we measured the concentration of inflammatory cytokines
in lung homogenates two and four days after the infection with the A/Aichi/2/68 virus.
We also estimated the dynamics of the innate immune cell populations on 0, 1, and 4 d.p.c.
The results are shown in Figure 3.

Figure 3. Proinflammatory cytokine response and innate immune cells’ dynamics in mice intranasally
immunized with the A/PR8/NSfull and A/PR8/NS124 viruses after the heterologous challenge
with A/Aichi/2/68. (A). Concentration of cytokines in lung tissue homogenates 2 and 4 days after
the heterologous challenge (*: p < 0.05. Groups were compared using ANOVA followed by Tukey’s
post-hoc test). (B). Percentage of alveolar macrophages, interstitial macrophages, and neutrophils in
the lungs of immunized mice 0, 1, and 4 days after the heterologous challenge (mean ± SEM, n = 4,
*: p < 0.05. Groups were compared using ANOVA followed by Tukey’s post-hoc test).

The analysis of proinflammatory cytokine concentrations in the lung homogenates of
mice showed that immunization with A/PR8/NS124 led to a substantial reduction in the
cytokine response compared to the control group 2 d.p.c. On the contrary, the infection
with A/PR8/NSfull was not accompanied by a decreased inflammatory response after the
heterologous challenge. The greatest difference between the NSfull and NS124 groups was
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associated with the levels of type I IFNs (Figure 3A). The concentrations of IFNα and IFNβ

were on average 22 and 10 times (respectively) lower in the NS124 group than in the NSfull
group (p = 0.04; p = 0.001). In addition, the significant difference between A/PR8/NS124-
and A/PR8/NSfull-immunized mice 2 d.p.c. was shown in the levels of IL-6 (p = 0.05),
IL-27 (p = 0.02), IL-23 (p = 0.01), TNFα (p = 0.05) and GM-CSF (p = 0.002).

At 4 d.p.c., a slight increase in the concentrations of the cytokines was observed in the
NS124 group, and the difference from the NSfull group became less prominent. Both NSfull
and NS124 groups showed a significantly increased IFNγ concentration compared to the
control (p = 0.01, 0.05, respectively). Similarly, an increased IL-10 level was observed in both
NSfull and NS124 groups, which may indicate more active T-regulatory lymphocytes in the
immunized animals (Figure 3A). The obtained data confirm the hypothesis that the survival
of mice in the NS124 group after heterologous infection was higher due to a decreased
inflammatory response. The reduced level of MCP-1 and GM-CSF in the NS124 group, in
comparison to the control and the NSfull group 4 d.p.c., allows expecting a decrease in
lung infiltration by the innate immune cells, such as neutrophils and macrophages.

To estimate the difference in the relative content of innate immune cell populations in
the NSfull, NS124, or control groups before and after the heterologous challenge, processed
lung tissue was stained with fluorescently labeled CD45, MHCII, CD11b, CD11c, CD24,
CD64, and Ly6G antibodies. In comparison to the control group, the level of alveolar
macrophages (AMP) retained in the lung tissue of A/PR8/NS124-immunized mice in-
creased 32 days after immunization (0 d.p.c.). Moreover, 24 h after the challenge with the
A/Aichi/2/68 virus, the NS124 group showed a statistically significant increase in the
relative content of these cells compared to the control (p = 0.0006) and the NSfull group
(p = 0.0045). However, the percentage of AMP was similar in all three groups 4 d.p.c.
(Figure 3B).

The most prominent difference between the control, NSfull, and NS124 groups was
associated with the neutrophils and interstitial macrophage (IMP) dynamics. Nonimmu-
nized animals showed a three-fold increase in the relative content of these populations
in the lungs. Mice in the NSfull and NS124 groups also showed a slight increase in the
number of neutrophils and IMP, but the values did not differ significantly from Day 0 in
these groups. The percentage of IMP in the control group was 26.91 ± 0.98% of total CD45+

cells 4 d.p.c., whereas only 15.73 ± 1.28% (p = 0.0002) and 14.30 ± 2.18% (p = 0.0003) of
lung CD45+ cells were represented by IMP in the NSfull and NS124 groups, respectively.
Interestingly, despite the higher concentrations of proinflammatory cytokines in the NSfull
group compared to the NS124 group, no difference was shown between these groups in the
IMP percentage. The percentage of neutrophils 4 d.p.c. was 19.49 ± 0.82% in the control
group, while it was 10.56 ± 0.95% (p = 0.0002) and 7.29 ± 1.07% (p = 0.0002) in the NSfull
and NS124 groups, respectively. It should be noted that the number of neutrophils was also
significantly higher in the NSfull group compared to the NS124 group 4 d.p.c. (p = 0.03).
The decreased neutrophilic infiltration of lungs in the NS124 group is likely to be associated
with the attenuation of immunopathology after the heterologous influenza challenge.

3.4. Enhanced CD8+ T-Cellular Immune Response in A/PR8/NS124-Immunized Mice after the
Heterologous Challenge

To estimate the antigen-specific T-cellular immune response in the immunized mice
after heterologous infection with A/Aichi/2/68, cells from lung homogenates were stimu-
lated with the NP366-374 peptide 4 d.p.c. (Figure 4). The percentage of cytokine-producing
T-cells was evaluated with flow cytometry.

As shown in Figure 4, mice immunized with A/PR8/NS124 had a higher total per-
centage of cytokine-producing CD8+ effector T-lymphocytes compared to the NSfull group
(p = 0.002). It should be emphasized that the difference between the NS124 and NSfull
groups was much more pronounced four days after infection with A/Aichi/2/68 compared
to the baseline (Figure 1A). Heterologous infection led to an increased CD8+ T-cellular
immune response in the NS124 group but not in the NSfull group, where the proportion
of cytokine-producing T-lymphocytes remained the same as before the challenge. In both
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groups, polyfunctional T-lymphocytes (IFNγ+IL2−TNFα+ and IFNγ+IL2+TNFα+) domi-
nated the immune response, but the percentages of these populations were approximately
three times higher in the NS124 group than in the NSfull group (p = 0.004; 0.00003).

Figure 4. CD8+ T-cellular response in mice immunized with the A/PR8/NSfull or A/PR8/NS124
influenza strain after the challenge with A/Aichi/2/68. Box plots represent the total percentage
of cytokine-producing effector memory CD8+CD44+CD62L− T-lymphocytes after 6 h of in vitro
lung or spleen cells stimulation with the NP366-374 peptide 4 d.p.c. Histograms represent the per-
centage of different populations of cytokine-producing T-cells in the total effector memory (EM)
CD8+CD44+CD62L− T-lymphocytes population. Pie charts represent the percentage of cells produc-
ing any combination of IFNγ, IL2, or TNFα cytokines in the total cytokine-producing CD8+ EM T-cell
subset. Color bars under histogram mark different cytokine-producing populations and correspond
to the pie chart color scheme. Groups were compared using ANOVA followed by Tukey’s post-hoc
test (**: p < 0.001, ***: p < 0.0001, n = 4).

Thus, both A/PR8/NSfull and A/PR8/NS124 viruses induced comparable levels
of T-cell immune response in the lungs after intranasal immunization. The intensity of
the response decreased over time in both groups. However, after the reinfection with the
heterologous virus, A/PR8/NS124-immunized mice demonstrated the increased reactivity
of antigen-specific CD8+ T-lymphocytes.

3.5. Induction of T-Regulatory Cells in Mouse Lungs after the Heterologous Challenge

Immunization with the NS1-truncated influenza virus attenuated the severity of the
secondary innate immune inflammatory reaction but enhanced the T-cellular response to
the immunodominant NP366-374 epitope after the heterologous challenge. The lower weight
loss and the zero mortality rate, as well as the reduced concentrations of proinflammatory
cytokines, may indicate the enhanced activity of the regulatory mechanisms of the immune
system in the NS124 group compared to the NSfull or control groups. To address this
hypothesis, we analyzed the relative content of T-regulatory cells in the lungs of exper-
imental animals four days after the challenge. A significant increase in the proportion
of FOXP3+Helios+ T-regs was shown in both NSfull and NS124 groups compared to the
control (p = 0.007; 0.001, respectively, Figure 5). The data are consistent with the increased
concentration of regulatory cytokine IL-10 observed in the lung homogenates of mice
from the NS124 (p = 0.01) and NSfull (p = 0.008) groups 4 d.p.c. compared to the control
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(Figure 5). No significant difference was shown between the two experimental groups in
the percentage of T-regulatory cells; however, in the NS124 group, the number of T-regs
was higher than in the NSfull group.

Figure 5. T-regulatory cells in the lungs of mice intranasally immunized with the A/PR8/NSfull
and A/PR8/NS124 viruses after the heterologous challenge with the A/Aichi/2/68. The right plot
represents the percentage of FOXP3+Helios+ T-regs in mouse lungs 4 d.p.c. *: p < 0.05. Groups were
compared using ANOVA followed by Tukey’s post-hoc test.

4. Discussion

Existing inactivated and live-attenuated flu vaccines should be renewed every year
due to extremely high evolutionary variability and genetic heterogeneity of circulating
influenza viruses. Research mostly considers adaptive immunity to the conserved antigens
of the influenza virus as a major factor of cross-protection. Inactivated influenza vaccines
primarily induce a humoral immune response, providing effective protection only when
the antigenic structure of surface influenza proteins in vaccine strains coincides with the
one of circulating viruses [16]. Live-attenuated influenza vaccines (LAIVs) induce both
humoral and T-cellular immunity due to their capacity to replicate in the upper respiratory
tract and stimulate the MHC-I/II-dependent antigen presentation. Influenza viruses of A,
B, and C types share some common CD4/8+ T-cellular epitopes, which could induce the
cross-protective immune response [17]. However, the T-cellular immune response induced
by LAIVs is insufficient to provide broader cross-protection [18].

Modern variations of universal vaccines, such as HA stalk-based constructions [19–22],
peptide vaccines [23,24], DNA/RNA-vaccines [25–30], or artificial HA-proteins created
using Computationally Optimized Broadly Reactive Antigen (COBRA) technology [31],
are focused on the induction of antibodies and effector T-cells, recognizing the conserved
epitopes of the influenza virus. However, the immune response to the restricted set of
the conserved epitopes does not prevent the formation of the escape mutants. Even the
conserved stalk regions of HA can acquire mutations that lead to the formation of virulent
strains resistant to cross-reactive human antibodies [32,33]. The selective host immune
system pressure reduces the number of epitopes per virus due to the accumulation of
mutations primarily in the immunogenic regions of viral proteins [34]. It is shown that,
since 1968, the total number of the T-cellular epitopes of circulating influenza strains of the
H3N2 subtype has been decreasing with the rate of more than one epitope per three years.
The overall HLA binding affinity of influenza epitopes has been decreasing as well [34]. It is,
therefore, important to pay attention to the nonspecific protection mechanisms related to the
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phenomenon known as the “innate immune memory” or “trained innate immunity”, which
is induced by influenza vaccines [35–40]. The activity of the immune system regulatory
component should also be considered in the context of the postvaccine immune response
to the heterologous viral strains. As shown by several studies, mortality, induced by the
influenza virus, arises from the immunopathology and cytokine storm rather than directly
from the viral burden [41]. The balance between the effector and regulatory components of
the immune response and their coordination provides the elimination of the pathogen and
prevents immunopathology.

In the present work, we compare the heterologous immune response induced either by
immunization with the NS1-truncated influenza virus or by the nonlethal infection with the
wild-type A/PR/8/34 influenza strain. Previous studies have shown that the shortening
of the NS1 protein enhances the innate and adaptive (T-cellular and humoral) immune
response to the influenza virus [1,9,11]. Cross-protection against heterologous influenza
strains in mice immunized with the NS1-modified influenza viruses is also reported [4,6,42].
To investigate the mechanisms of heterologous protection, we immunized mice with the
A/PR8/NS124 or A/PR8/NSfull virus and challenged them with the A/Aichi/2/68
influenza strain 32 days after immunization. The doses of viral strains, chosen for primary
infection, induced comparable levels of humoral and T-cellular immune response.

The A/PR8/NS124-immunized mice demonstrated better protection against A/Aichi/
2/68 compared to those preinfected with the A/PR8/NSfull virus. Immunization did
not prevent infection with A/Aichi/2/68 in the NSfull or NS124 groups. No statisti-
cally significant difference was found in viral titers between these groups two and four
days after the challenge. However, the levels of proinflammatory cytokines in the lungs,
such as IFNα/β, IL-6, IL-23, GM-CSF, were lower in the NS124 group compared to the
NSfull and control groups. Since the hyperproduction of IFN-I is the major cause of im-
munopathology [43,44], the decrease in the inflammation intensity could be assumed to
have prevented the lethality in the NS124 group. We also showed that immunization with
the NS1-truncated influenza virus prevented the excessive neutrophil infiltration of the
lungs upon heterologous infection.

On the other hand, immunization with the A/PR8/NS124 virus led to a more robust
T-cellular immune response to the NP366-374 epitope after the heterologous challenge com-
pared to the NSfull group. Even though both NSfull and NS124 groups mount a similar
T-cellular immune response to the in vitro stimulation with the NP366-374 32 d.p.im., the
A/PR8/NS124-immunized mice showed a three-fold increase in the number of antigen-
specific T-cells after the heterologous challenge, while in the NSfull group, the level of
antigen-specific T-lymphocytes did not change compared to 32 d.p.im. We assume that
the truncation of the NS1 protein intensified the impact of the influenza virus on both
the effector and the regulatory component of the immune response. The advantages
of A/PR8/NS124-induced immunity could be realized through several mechanisms, in-
cluding the modulation of the innate immune response, the formation of more effective
T-regulatory cells, and the generation of local antigen-specific T-lymphocytes.

The analysis of innate immune cell populations in the NSfull and NS124 groups
revealed an increase in the percentage of AMP in the lungs of mice, immunized with
the A/PR8/NS124 virus, on the first day after A/Aichi/2/68 infection. The increase is
accompanied by the attenuated inflammatory reaction 2 d.p.c. The alveolar macrophages
are located in the airways and normally produce the regulatory cytokines, such as IL-10 and
TGFβ [45]. It is known that depletion of the AMPs before viral infection leads to the burst
of virus replication and a significant aggravation of the disease [46]. AMP deficiency is also
shown to promote immunopathology in mice [47]. Thus, it is possible that the influenza
virus with the truncated NS1 protein stimulated the influenza virus AMPs migration to the
airways and induced the activated state of these cells. After the challenge infection, AMPs
mounted an increased anti-inflammatory response, preventing immunopathology.

The analysis of the T-regulatory cell levels in the lungs of immunized mice after the
heterologous challenge revealed an increase in the percentage of FOXP3+Helios+ T-regs in
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both experimental groups in comparison to the control. According to the literature data [48],
FOXP3+Helios+ T-regs are characterized by the most pronounced immunosuppressive
activity compared to other regulatory lymphocyte populations. Despite the absence of a
statistically significant difference in the percentage of these cells between the NSfull and
NS124 groups, the T-regulatory lymphocytes in the A/PR8/NS124-immunized mice are
possibly more active and prevent excessive inflammation and lung infiltration through the
mechanisms, which has not been studied here.

NS1-truncated influenza viruses are strong IFN-I-inducers [49–51]. However, an
increase in the IFN-I concentration upon intranasal immunization with these viruses
is transient due to their restricted ability to proliferate in the lung tissue. Short-term
exposure to IFN-α/β is shown to enhance the subsequent T-cell proliferation [52,53]. On
the other hand, prolonged exposure to IFN-α/β has an antiproliferative effect [54]. We
assume that immunization with the A/PR8/NS124 virus induces higher proliferative
potential in the influenza-specific T-lymphocytes that results in an increased response to
the subsequent infection.

It could be concluded that the impairment of the NS1 protein activity promotes not
only the enhanced immunogenicity of the T-cellular epitopes of the influenza virus but
also better regulation of the inflammatory immune response to the heterologous challenge.
All the modern live influenza vaccines approved for clinical usage express the full-length
NS1 protein, which may jeopardize their advantages over the inactivated flu vaccines. We
claim that the truncation of the NS1 protein can be used to create the highly immunogenic
influenza vaccines inducing the cross-protection through the activation of both the effector
and regulatory component of the immune system.

Author Contributions: Conceptualization, K.V., A.-P.S., and A.E.; methodology, K.V.,
M.S. (Maria Sergeeva), and A.E.; software, K.V.; validation, K.V., A.-P.S., M.S. (Maria Sergeeva),
and A.E.; formal analysis, K.V., A.-P.S., M.S. (Marina Stukova), and A.E.; investigation, K.V.; re-
sources, M.S. (Marina Stukova); data curation, K.V. and A.E.; writing—original draft preparation, K.V.
and A.E.; writing—review and editing, K.V., A.-P.S., M.S. (Maria Sergeeva), M.S. (Marina Stukova),
and A.E.; visualization, K.V.; supervision, M.S. (Marina Stukova), A.E.; project administration, M.S.
(Marina Stukova), A.E. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: All animal studies were done in accordance with the in-
ternational recommendations (Directive 2010/63/EU), and the protocols approved by the Bioethic
Committee at the Smorodintsev Research Institute of Influenza (Approval №71/2 dated 2018-02-05).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ferko, B.; Stasakova, J.; Romanova, J.; Kittel, C.; Sereinig, S.; Katinger, H.; Egorov, A. Immunogenicity and protection efficacy of

replication-deficient influenza A viruses with altered NS1 genes. J. Virol. 2004, 78, 13037–13045. [CrossRef]
2. Quinlivan, M.; Zamarin, D.; García-Sastre, A.; Cullinane, A.; Chambers, T.; Palese, P. Attenuation of equine influenza viruses

through truncations of the NS1 protein. J. Virol. 2005, 79, 8431–8439. [CrossRef] [PubMed]
3. Vincent, A.L.; Ma, W.; Lager, K.M.; Janke, B.H.; Webby, R.J.; García-Sastre, A.; Richt, J.A. Efficacy of intranasal administration of a

truncated NS1 modified live influenza virus vaccine in swine. Vaccine 2007, 25, 7999–8009. [CrossRef]
4. Hai, R.; Martínez-Sobrido, L.; Fraser, K.A.; Ayllon, J.; García-Sastre, A.; Palese, P. Influenza B virus NS1-truncated mutants:

Live-attenuated vaccine approach. J. Virol. 2008, 82, 10580–10590. [CrossRef]
5. Romanova, J.; Krenn, B.M.; Wolschek, M.; Ferko, B.; Romanovskaja-Romanko, E.; Morokutti, A.; Shurygina, A.P.; Nakowitsch, S.;

Ruthsatz, T.; Kiefmann, B.; et al. Preclinical evaluation of a replication-deficient intranasal ∆NS1 H5N1 influenza vaccine. PLoS
ONE 2009, 4. [CrossRef]

http://doi.org/10.1128/JVI.78.23.13037-13045.2004
http://doi.org/10.1128/JVI.79.13.8431-8439.2005
http://www.ncbi.nlm.nih.gov/pubmed/15956587
http://doi.org/10.1016/j.vaccine.2007.09.019
http://doi.org/10.1128/JVI.01213-08
http://doi.org/10.1371/journal.pone.0005984


Microorganisms 2021, 9, 690 12 of 13

6. Steel, J.; Lowen, A.C.; Pena, L.; Angel, M.; Solórzano, A.; Albrecht, R.; Perez, D.R.; García-Sastre, A.; Palese, P. Live attenuated
influenza viruses containing NS1 truncations as vaccine candidates against H5N1 highly pathogenic avian influenza. J. Virol.
2009, 83, 1742–1753. [CrossRef]

7. Wressningh, N.; Shurygina, A.P.; Wolff, T.; Redlberger-Fritz, M.; Popow-Kraupp, T.; Muster, T.; Egorov, A.; Kittel, C. Influenza
B mutant viruses with truncated NS1 proteins grow efficiently in vero cells and are immunogenic in mice. J. Gen. Virol. 2009,
90, 366–374. [CrossRef] [PubMed]

8. Zhou, B.; Li, Y.; Belser, J.A.; Pearce, M.B.; Schmolke, M.; Subba, A.X.; Shi, Z.; Zaki, S.R.; Blau, D.M.; García-Sastre, A.; et al.
NS-based live attenuated H1N1 pandemic vaccines protect mice and ferrets. Vaccine 2010, 28, 8015–8025. [CrossRef]

9. Vasilyev, K.A.; Yukhneva, M.A.; Shurygina, A.-P.S.; Stukova, M.A.; Egorov, A.Y. Enhancement of the immunogenicity of influenza
A virus by the inhibition of immunosuppressive function of NS1 protein. MIR J. 2018, 5, 48–58. [CrossRef]

10. Mueller, S.N.; Langley, W.A.; Carnero, E.; Garcia-Sastre, A.; Ahmed, R. Immunization with Live Attenuated Influenza Viruses
That Express Altered NS1 Proteins Results in Potent and Protective Memory CD8+ T-Cell Responses. J. Virol. 2010, 84, 1847–1855.
[CrossRef] [PubMed]

11. Vasilyev, K.A.; Shurygina, A.-P.S.; Stukova, M.A.; Egorov, A.Y. Enhanced CD8+ T-cell response in mice immunized with
NS1-truncated influenza virus. MIR J. 2020, 7, 24–33. [CrossRef]

12. Li, R.; Lim, A.; Phoon, M.C.; Narasaraju, T.; Ng, J.K.W.; Poh, W.P.; Sim, M.K.; Chow, V.T.; Locht, C.; Alonso, S. Attenuated
Bordetella pertussis protects against highly pathogenic influenza A viruses by dampening the cytokine storm. J. Virol. 2010,
84, 7105–7113. [CrossRef] [PubMed]

13. Salomon, R.; Hoffmann, E.; Webster, R.G. Inhibition of the cytokine response does not protect against lethal H5N1 influenza
infection. Proc. Natl. Acad. Sci. USA 2007, 104, 12479–12481. [CrossRef]

14. Council, N.R. Guide for the Care and Use of Laboratory Animals; National Academies Press: Washington, DC, USA, 2010;
ISBN 0309186633.

15. Reed, L.J.; Muench, H. A simple method of estimating fifty per cent endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [CrossRef]
16. Ni, Y.; Guo, J.; Turner, D.; Tizard, I. An improved inactivated influenza vaccine with enhanced cross protection. Front. Immunol.

2018, 9, 1–13. [CrossRef]
17. Koutsakos, M.; Illing, P.T.; Nguyen, T.H.O.; Mifsud, N.A.; Crawford, J.C.; Rizzetto, S.; Eltahla, A.A.; Clemens, E.B.; Sant, S.; Chua,

B.Y.; et al. Human CD8 + T cell cross-reactivity across influenza A., B and C viruses. Nat. Immunol. 2019, 20, 613–625. [CrossRef]
[PubMed]

18. Ohmit, S.E.; Victor, J.C.; Rotthoff, J.R.; Teich, E.R.; Truscon, R.K.; Baum, L.L.; Rangarajan, B.; Newton, D.W.; Boulton, M.L.;
Monto, A.S. Prevention of antigenically drifted influenza by inactivated and live attenuated vaccines. N. Engl. J. Med. 2006, 355,
2513–2522. [CrossRef] [PubMed]

19. Impagliazzo, A.; Milder, F.; Kuipers, H.; Wagner, M.V.; Zhu, X.; Hoffman, R.M.B.; van Meersbergen, R.; Huizingh, J.; Wanningen,
P.; Verspuij, J. A stable trimeric influenza hemagglutinin stem as a broadly protective immunogen. Science 2015, 349, 1301–1306.
[CrossRef]

20. Krammer, F. The quest for a universal flu vaccine: Headless HA 2.0. Cell Host Microbe 2015, 18, 395–397. [CrossRef] [PubMed]
21. Yassine, H.M.; Boyington, J.C.; McTamney, P.M.; Wei, C.-J.; Kanekiyo, M.; Kong, W.-P.; Gallagher, J.R.; Wang, L.; Zhang, Y.; Joyce,

M.G. Hemagglutinin-stem nanoparticles generate heterosubtypic influenza protection. Nat. Med. 2015, 21, 1065. [CrossRef]
[PubMed]

22. Valkenburg, S.A.; Mallajosyula, V.V.A.; Li, O.T.W.; Chin, A.W.H.; Carnell, G.; Temperton, N.; Varadarajan, R.; Poon, L.L.M.
Stalking influenza by vaccination with pre-fusion headless HA mini-stem. Sci. Rep. 2016, 6, 22666. [CrossRef] [PubMed]

23. Fox, A.; Quinn, K.M.; Subbarao, K. Extending the Breadth of Influenza Vaccines: Status and Prospects for a Universal Vaccine.
Drugs 2018, 78, 1297–1308. [CrossRef] [PubMed]

24. Soema, P.C.; Huber, S.K.R.; Willems, G.J.; Jacobi, R.; Hendriks, M.; Soethout, E.; Jiskoot, W.; de Jonge, J.; van Beek, J.; Kersten,
G.F.A.; et al. Whole-inactivated influenza virus is a potent adjuvant for influenza peptides containing CD8+T cell epitopes. Front.
Immunol. 2018, 9. [CrossRef]

25. Ulmer, J.B.; Donnelly, J.J.; Parker, S.E.; Rhodes, G.H.; Felgner, P.L.; Dwarki, V.J.; Gromkowski, S.H.; Deck, R.R.; Dewitt, C.M.;
Friedman, A. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science 1993, 259, 1745–1749.
[CrossRef]

26. Donnelly, J.J.; Friedman, A.; Martinez, D.; Montgomery, D.L.; Shiver, J.W.; Motzel, S.L.; Ulmer, J.B.; Liu, M.A. Preclinical efficacy
of a prototype DNA vaccine: Enhanced protection against antigenic drift in influenza virus. Nat. Med. 1995, 1, 583. [CrossRef]
[PubMed]

27. Laddy, D.J.; Yan, J.; Kutzler, M.; Kobasa, D.; Kobinger, G.P.; Khan, A.S.; Greenhouse, J.; Sardesai, N.Y.; Draghia-Akli, R.; Weiner,
D.B. Heterosubtypic protection against pathogenic human and avian influenza viruses via in vivo electroporation of synthetic
consensus DNA antigens. PLoS ONE 2008, 3, e2517. [CrossRef]

28. Kallen, K.-J.; Heidenreich, R.; Schnee, M.; Petsch, B.; Schlake, T.; Thess, A.; Baumhof, P.; Scheel, B.; Koch, S.D.; Fotin-Mleczek, M.
A novel, disruptive vaccination technology: Self-adjuvanted RNActive®vaccines. Hum. Vaccin. Immunother. 2013, 9, 2263–2276.
[CrossRef] [PubMed]

29. Khan, K.H. DNA vaccines: Roles against diseases. Germs 2013, 3, 26. [CrossRef] [PubMed]

http://doi.org/10.1128/JVI.01920-08
http://doi.org/10.1099/vir.0.006122-0
http://www.ncbi.nlm.nih.gov/pubmed/19141445
http://doi.org/10.1016/j.vaccine.2010.08.106
http://doi.org/10.18527/2500-2236-2018-5-1-48-58
http://doi.org/10.1128/JVI.01317-09
http://www.ncbi.nlm.nih.gov/pubmed/19939929
http://doi.org/10.18527/2500-2236-2020-7-1-24-33
http://doi.org/10.1128/JVI.02542-09
http://www.ncbi.nlm.nih.gov/pubmed/20444902
http://doi.org/10.1073/pnas.0705289104
http://doi.org/10.1093/oxfordjournals.aje.a118408
http://doi.org/10.3389/fimmu.2018.01815
http://doi.org/10.1038/s41590-019-0320-6
http://www.ncbi.nlm.nih.gov/pubmed/30778243
http://doi.org/10.1056/NEJMoa061850
http://www.ncbi.nlm.nih.gov/pubmed/17167134
http://doi.org/10.1126/science.aac7263
http://doi.org/10.1016/j.chom.2015.10.003
http://www.ncbi.nlm.nih.gov/pubmed/26468743
http://doi.org/10.1038/nm.3927
http://www.ncbi.nlm.nih.gov/pubmed/26301691
http://doi.org/10.1038/srep22666
http://www.ncbi.nlm.nih.gov/pubmed/26947245
http://doi.org/10.1007/s40265-018-0958-7
http://www.ncbi.nlm.nih.gov/pubmed/30088204
http://doi.org/10.3389/fimmu.2018.00525
http://doi.org/10.1126/science.8456302
http://doi.org/10.1038/nm0695-583
http://www.ncbi.nlm.nih.gov/pubmed/7585127
http://doi.org/10.1371/journal.pone.0002517
http://doi.org/10.4161/hv.25181
http://www.ncbi.nlm.nih.gov/pubmed/23921513
http://doi.org/10.11599/germs.2013.1034
http://www.ncbi.nlm.nih.gov/pubmed/24432284


Microorganisms 2021, 9, 690 13 of 13

30. Kranz, L.M.; Diken, M.; Haas, H.; Kreiter, S.; Loquai, C.; Reuter, K.C.; Meng, M.; Fritz, D.; Vascotto, F.; Hefesha, H. Systemic RNA
delivery to dendritic cells exploits antiviral defence for cancer immunotherapy. Nature 2016, 534, 396. [CrossRef]

31. Giles, B.M.; Ross, T.M. A computationally optimized broadly reactive antigen (COBRA) based H5N1 VLP vaccine elicits broadly
reactive antibodies in mice and ferrets. Vaccine 2011, 29, 3043–3054. [CrossRef]

32. Throsby, M.; van den Brink, E.; Jongeneelen, M.; Poon, L.L.M.; Alard, P.; Cornelissen, L.; Bakker, A.; Cox, F.; van Deventer, E.;
Guan, Y. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human
IgM+ memory B cells. PLoS ONE 2008, 3, e3942. [CrossRef]

33. Wang, T.T.; Tan, G.S.; Hai, R.; Pica, N.; Petersen, E.; Moran, T.M.; Palese, P. Broadly protective monoclonal antibodies against H3
influenza viruses following sequential immunization with different hemagglutinins. PLoS Pathog. 2010, 6, e1000796. [CrossRef]
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