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Abstract
Knowledge of protein function is important for biological, medical and therapeutic studies,

but many proteins are still unknown in function. There is a need for more improved func-

tional prediction methods. Our SVM-Prot web-server employed a machine learning method

for predicting protein functional families from protein sequences irrespective of similarity,

which complemented those similarity-based and other methods in predicting diverse clas-

ses of proteins including the distantly-related proteins and homologous proteins of different

functions. Since its publication in 2003, we made major improvements to SVM-Prot with (1)

expanded coverage from 54 to 192 functional families, (2) more diverse protein descriptors

protein representation, (3) improved predictive performances due to the use of more

enriched training datasets and more variety of protein descriptors, (4) newly integrated

BLAST analysis option for assessing proteins in the SVM-Prot predicted functional families

that were similar in sequence to a query protein, and (5) newly added batch submission

option for supporting the classification of multiple proteins. Moreover, 2 more machine

learning approaches, K nearest neighbor and probabilistic neural networks, were added for

facilitating collective assessment of protein functions by multiple methods. SVM-Prot can

be accessed at http://bidd2.nus.edu.sg/cgi-bin/svmprot/svmprot.cgi.

Introduction
The knowledge of protein function is essential for studying biological processes [1], under-
standing disease mechanisms [2], and exploring novel therapeutic targets [3,4]. Apart from
experimental methods, a number of in-silico approaches have been developed and extensively
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used for protein function prediction. These methods include sequence similarity [5], sequence
clustering [6], evolutionary analysis [7], gene fusion [8], protein interaction [9], protein remote
homology detection [10,11], protein functional family classification based on sequence-derived
[12,13] or domain [1] features, and the integrated approaches that combine multiple methods,
algorithms and/or data sources for enhanced functional predictions [5,14–16]. A protein func-
tional family is a group of proteins with specific type of molecular functions (e.g. proteases
[17]), binding activities (e.g. RNA-binding [18]), or involved in specific biological processes
defined by the Gene Ontology [19] (e.g. DNA repair [20]). Moreover, models of protein func-
tion prediction have been constructed for more broadly-defined functional families such as
transmembrane [21], virulent [22] and secretory [23] proteins, and a large-scale community-
based critical assessment of protein function annotation (CAFA) revealed that the improve-
ments of current protein function prediction tools were in urgent need [24]. Despite the devel-
opment and extensive exploration of these methods, there is still a huge gap between proteins
with and without functional characterizations. Continuous efforts are therefore needed for
developing new methods and improving existing methods. These efforts have been made possi-
ble by the rapidly expanding knowledge of protein sequence [25], structural [26], functional
[19] and other [27–30] data.

The uncharacterized proteins comprise a substantial percentage of the predicted proteins in
many genomes, and some of these proteins are of no clear sequence or structural similarity to a
protein of known function [31,32]. A particular challenge is to predict the function of these
proteins from their sequence without the knowledge of similarity, clustering or interaction rela-
tionship with a known protein. As part of the collective efforts in developing such prediction
methods, we have developed a web-based software SVM-Prot that employs a machine learning
method, support vector machines (SVM), for predicting protein functional families from pro-
tein sequences irrespective of sequence or structural similarity [12], which have shown good
predictive performances [33–40] to complement other methods or as part of the integrated
approaches in predicting the function of diverse classes of proteins including the distantly-
related proteins and homologous proteins of different functions.

The previous version of SVM-Prot covered 54 functional families. Its predictive accuracies
of these families were ranging from 53.03% to 99.26% in sensitivity and from 82.06% to 99.92%
in specificity [12]. Since the early 2000s, the number of proteins with sequence information
had dramatically expanded from 2 million to more than 48.7 million entries in the UniProt
database, and the number of annotated functional families with more than 100 sequence
entries had significantly increased from 54 to 192 [25]. Our analysis on all “reviewed” protein
entries in the UniProt database revealed that the overwhelming majority (80.23%) of these
entries were from those 192 families. The enriched protein sequence data could be employed to
expand the coverage and improve the predictive performance of SVM-Prot. Moreover, our ear-
lier study suggested that the prediction performance of SVM could be substantially enhanced
by the use of a more diverse set of protein descriptors for representing more comprehensive
classes of proteins [41]. Thus, SVM-Prot was upgraded by using the enriched protein data and
more diverse protein descriptors to train models for all 192 functional families and to improve
the predictive performance of SVM-Prot. The prediction models for an additional set of Gene
Ontology [19] functional families will be developed and added into SVM-Prot in the near
future.

To facilitate the analysis of specific proteins of the SVM-Prot predicted functional families
that might be relevant to a query protein, a new option conducting BLAST sequence alignment
was provided to [42] search proteins of the SVM-Prot predicted functional families that were
similar to the query protein. Moreover, a batch submission option for loading multiple protein
sequences was also included. Given that the functional prediction capacity could be enhanced
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by the integration of multiple methods [5,14,15], two machine learning prediction tools, K
nearest neighbor (kNN) and probabilistic neural networks (PNN), were integrated into this
version of SVM-Prot to facilitate the collective assessment of protein functional families. These
two tools had been explored for functional prediction of proteins [43–46] and other biomole-
cules [47]. Since these two tools had been extensively used for developing over 39 protein func-
tional family prediction models (S1 Table), and because of their potential utility in
complementing SVM from the nearest neighbor and neural network perspectives, SVM-Port
could serve the community by providing the alternative protein functional family prediction
tools based on these and other machine learning methods.

Results and Discussion
To evaluate the predictive performance of models in the SVM-Prot, the sensitivity (SE), preci-
sion (PR), and specificity (SP) of the independent evaluation datasets were calculated and dem-
onstrated in Table 1 and S2 Table. SE, PR and SP of the SVMmodel were in the range of
50.00~99.99%, 5.31~99.99% and 82.06~99.99%, respectively. In the kNNmodel, the perfor-
mances were 51.06~99.99% for SE, 17.86~94.49% for PR and 90.19~99.99% for SP. Moreover,
SE, PR and SP of the PNNmodel were in the range of 60.49~99.99%, 25.00~99.75% and
97.34~99.99%, respectively. The SEs and PRs of the SVM classifier were generally lower and
with larger variations than the SPs. This was partly due to the imbalanced training sets with the
numbers of non-members greatly surpassing those of the members. Imbalanced training sets
were known to adversely affect the machine learning prediction performance, particularly the
minority class [48,49]. Moreover, not all functional families were sufficiently covered by the
known proteins, particularly those with< 100 known protein members, the inadequate cover-
age of the respective training sets likely affect SEs to varying degrees.

To further evaluate the capability of SVM-Prot in predicting the functional families of novel
proteins, a comprehensive literature search for recently reported novel proteins was conducted
using the keyword “novel” in combination with “protein”, “enzyme”, “transporter”, “DNA
binding”, “RNA-binding”, “viral”, or “bacterial”. As a result, 42 novel proteins published in
2015 or 2014 that had been explicitly described as novel in the literature were identified. These
proteins were not in the SVM-Prot training datasets but with available sequence in the litera-
ture or public databases.

S3 Table summarized the prediction results of those 42 novel proteins by SVM-Prot,
FFPred 3 [50] and NCBI BLAST [51], and the detailed prediction results were further provided
in S4 Table. The function of a novel protein was considered as matched to a computer identi-
fied functional family when these two exactly matched at a specifically defined class level. Take
the formate-nitrite transporter as an example, it belongs to the formate transporter family, the
major intrinsic protein superfamily and the transporter TC1.A class. This families or classes
are considered as specifically defined class levels, but the transporter family is too broadly
defined. Overall, the number of functional families predicted or outputted by SVM-Prot for
each novel protein was in the range of 3~18, and that by FFPred was in the range of 16~55 (if
predictions of low reliability were included, the number should change to 45~101). Moreover,
the function of 13 out of those 42 novel proteins was correctly assigned to one functional family
predicted by SVM-Prot, and 7 (if prediction results of low reliability were included, the number
should change to 12) were correctly matched by FFPred (S3 Table). In particular, amongst
those 13 proteins predicted by SVM-Prot, 7 were ranked as top-1 in the list of predicted func-
tional families, 2 were ranked as top-2, and 4 were ranked as top-5. However, for FFPred, only
one protein was ranked as top-1, another one was ranked as top-2, and 2 more proteins were
ranked as top-10. The majority (8 proteins) of the predicted proteins by FFPred were ranked
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within the range of top-27 to top-70. Thus, SVM-Prot is capable of predicting the functional
families of novel proteins at comparable yield and reduced false hit rates with respect to
FFPred. It should be strongly cautioned that these two servers for protein function prediction
were upgraded at different times with varying coverage of training datasets, so the difference in
the prediction results may not reflect the true prediction capability of these servers.

As a further comparison, the performance of BLAST on those 42 novel proteins was also
evaluated. The number of similarity proteins with E-value< 0.05 for each novel protein was in
the range of 0~112, and the function of 30 out of those 42 novel proteins were correctly
matched to one of the BLAST identified similarity proteins (20, 2, 6, 2 are ranked as top-1, top-
2, top-4 and top-10, respectively) (S3 Table). However, caution needs to be raised about the
straightforward comparison of the BLAST results with those of the SVM-Prot and FFPred.
BLAST searched proteins may cover the previously or recently deposited similarity proteins
that are of the same or similar functions with respect to our tested novel proteins, while some
of these similarity proteins may not be in the training set of both SVM-Prot and FFPred. None-
theless, the better prediction performance of BLAST on these novel proteins suggests a need
for more frequent upgrade of the SVM-Prot and FFPred by enriched up-to-date training
datasets.

One useful strategy for overcoming the imbalanced datasets problem is to re-construct the
training sets into more balanced ones by either over sampling the minority class [48] or under
sampling the majority one [49], which might compromise the training datasets by introducing
noises to the minority class or reducing the diversity of the majority one. In SVM-Prot, the
training sets of the non-members were constructed from the minimal set of representative pro-
teins from the Pfam domain families. Our study showed that further reduction of the training
sets by one protein per Pfam family significantly reduced the SPs without much improvement
of the SEs. Therefore, no further reduction of the training data was made. Another effective
strategy for reducing the negative influence of imbalanced data is to separately optimize the
pair of cost parameters of SVMmodels at the same time [52], particularly the cost for the errors
on the positive samples compared to negative ones. In the development of SVMmodels, due to
the very high diversity of each training dataset (containing 7613~46,223 proteins), both the
separate and uniform cost parameter optimization scheme led to very high cost parameters for
both positive and negative samples that achieve similar levels of prediction performance.

The capability of protein function prediction can be affected by multiple factors, including
insufficient diversity of proteins in some functional families, inadequate coverage or represen-
tation of certain important structural and/or physicochemical features by the current datasets
and protein descriptors, deficiency of the computational algorithms and parameter optimiza-
tion procedures. The capability of the machine learning functional prediction tools has been
enhanced by the expanded protein data, improvement of computational algorithms and explo-
ration of integrated prediction strategies using multiple methods [53]. In addition to the
employment of the continuously expanding protein data, SVM-Prot may be improved by
exploring the newly developed computational methods. In particular, there have been new pro-
gresses in the development and the use of a new machine learning method, deep learning, for
predicting protein secondary structure and other local structural properties [54–56], which
may be potentially extended for protein function prediction. SVM-Prot can also be improved
by integrating multiple methods and algorithms for enhanced functional predictions [5,14,15].

As an effective ensemble classifier, LibD3C [57] was widely cited by the recent publications
aiming at identifying the DNA-binding proteins [58,59], predicting the cytokine-receptor
interactions [60] and discovering immunoglobulins [61]. S5 Table summarized the prediction
performances of the SVM, LibD3C, kNN and PNN on the independent testing sets of 10 ran-
domly selected representative families covered by the SVM-Prot. These 10 protein families
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included 4 enzyme families (EC1.5, EC2.9, EC4.4 and EC5.1), actin capping family, DNA
recombination family, DNA repair family, elongation factor activity family, GPCR family and
lipid-binding protein family. PR, SE and SP of the SVMmodel were in the range of
53.9~99.3%, 53.00~97.5% and 96.8~99.99%, respectively. In the LibD3C models the corre-
sponding performances were 52.39~90.51% for PR, 79.23~99.03% for SE and 96.86~99.89%
for SP. The kNN method resulted in the performances of 55.0~83.7% for PR, 67.5~96.6% for
SE and 93.8~99.9% for SP. Moreover, PR, SE and SP of the PNNmodel were in the range of
71.0~94.5%, 64.2~94.1% and 98.7~99.9%, respectively. As demonstrated in S5 Table, predic-
tion performances (PR, SE and SP) were comparable among SVM, LibD3C, kNN and PNN,
indicating that each method was an effective complement to other methods. It should be
strongly cautioned that those 10 randomly tested families may not be enough in representing
the prediction performances of all protein families covered by the current SVM-Prot. There-
fore, a comprehensive analysis on all SVM-Prot families using above classifiers is needed for
the next update of the SVM-Prot.

Methods
Instead of direct alignment or clustering of sequences, the SVM-Prot classification models classi-
fies a protein into functional families based on the analysis of sequence-derived structural and
physicochemical properties [33,34]. Proteins known to be in a functional family (e.g., proteases)
and those outside the family (e.g., representatives of all non-protease proteins) are used to train a
classification model, which recognizes specific sequence-derived features for classifying proteins
either into or outside the functional family. Proteins of specific functional family share common
structural and physicochemical features [62,63], which may be recognized by a machine learning
classification model given the availability of sufficiently diverse training datasets [64].

Data collection
Table 1 and S2 Table provided a partial and complete list of the protein functional families
covered by the upgraded SVM-Prot and the predictive performances of the SVM, kNN and
PNNmodels. These families included G-protein coupled receptor family from GPCRDB [63],
nuclear receptor family from NucleaRDB [63], 50 enzyme families from BRENDA [62], 20
transporter families from TCDB [65], 1 channel family from LGICdb [66], 24 molecular bind-
ing families (e.g. DNA-binding, RNA-binding, iron-binding), 67 Gene Ontology (30 molecular
function and 37 biological process) families, and 28 broadly defined functional families from
the UniProt database [25]. The 19 broadly defined functional families were selected on the fol-
lowing basis: either the prediction models for these families have been developed (e.g. allergen
proteins [47]), or the relevant functions have some common features exploitable for developing
prediction models (e.g.. cAMP binding). As illustrated above, the reason why protein func-
tional families were derived from multiple sources was partly because of their complementary
coverage and different functional perspectives. For instance, 122 functional families predictable
in SVM-Prot were not covered by FFPred [50], while 391 functional families provided in
FFPred were not covered by SVM-Prot. Thus, SVM-Prot may serve to complement other pre-
diction servers by providing different coverage of protein functional families.

Datasets construction
To prepare datasets for constructing the model of each functional family, the training, testing
and independent datasets were carefully prepared by following a strict procedure. Firstly, pro-
tein names of members in each family were collected from the UniProt [25], and protein mem-
bers of the same name but different species origin were grouped together. Secondly, protein
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members in each group were iteratively selected and put into the training, testing, and indepen-
dent datasets as positive samples. Thirdly, to generate negative samples, protein members in
each functional family were mapped into the pfam [67] protein families. The pfam families
with at least one member of the functional family were named as “positive family”, while the
rest of the pfam families were named as “negative family”. Fourthly, 3 representative proteins
from each “negative family” were randomly selected and iteratively put into the training, test-
ing, and independent datasets as negative samples.

During the model construction, the parameter optimization for each training set was tested
by testing set. When the optimized parameter was found, the training and testing sets were
combined together to form a new training set, and the optimized parameter was further applied
to train a new model. Then, independent dataset was used to evaluate the performance of the
newly constructed model and to detect the overfitting problem. Once the optimized parameter
passed the evaluation, it was used to train a final model by integrating training, testing, and
independent datasets. All duplicated proteins in each training, testing, independent evaluation
dataset or among them were removed before the model construction.

Protein representation
Extensive efforts were applied to the exploration of web-based or stand-alone tools for extracting
the features from protein sequences [68,69]. For example, the Pse-in-One is a server for generat-
ing various modes of pseudo components of DNA, RNA, and protein sequences [68]. In this
work, each sequence is represented by various physicochemical properties including 9 properties
of the early version SVM-Prot (amino acid composition, polarity, hydrophobicity, surface ten-
sion, charge, normalized Van der Waals volume, polarizability, secondary structure and solvent
accessibility) and 4 additional properties in this version SVM-Prot (molecular weight, solubility,
number of hydrogen bond donor in side chain, and number of hydrogen bond acceptor in side
chain) [69]. All properties are encoded in 3 descriptors, named as composition (C), transition
(T), and distribution (D) [70]. C is the fraction of amino acids with a particular property. T char-
acterizes the percent frequency of amino acids of a particular property neighbored by amino
acids of another specific property. D measures the fractional chain length within which the first,
25%, 50%, 75% and 100% of the amino acids of a particular property is located.

Take a hypothetical protein (AEAAAEAEEAAAAAEAEEEAAEEAEEEAAE) with 16 ala-
nines (n1 = 16) and 14 glutamic acids (n2 = 14) as an example. The composition (C) for these
two amino acids are n1/(n1 + n2) = 0.53 and n2/(n1 + n2) = 0.47, respectively. Moreover, this
protein contains 15 A-to-E and E-to-A transitions (T) with percent frequency of 15/29 = 0.52.
Furthermore, the first, 25%, 50%, 75% and 100% of amino acid A are located within the first, 5,
12, 20, and 29 residues, respectively. Therefore, the distribution (D) for amino acid A can be
calculated as (1/30 = 0.03, 5/30 = 0.17, 12/30 = 0.40, 20/30 = 0.67, 29/30 = 0.97, and that for
amino acid E can also be calculated in the same way. Overall, the amino acid descriptors for
this sequence are C = (0.53, 0.47), T = (0.51), and D = (0.03, 0.17, 0.40, 0.67, 0.97, 0.07, 0.27,
0.60, 0.77, 1.00), respectively. In most studies, amino acids are divided into three classes for
each property. The combined descriptors for each property consist of 21 elements (3 for C, 3
for T and 15 for D). Moreover, the Moreau-Broto autocorrelation [71] of amino acid index and
Pseudo-amino acid composition [72] are added for presenting correlation of the structural and
physicochemical properties within each protein sequence.

Protein functional family prediction models
Three types of classification models were developed for predicting protein functional families
in SVM-Prot. The first model is SVM, which is based on the structural risk minimization
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(SRM) principle from statistical learning theory [64]. In linearly separable cases, SVM con-
structs a hyperplane to separate two different classes of feature vectors with a maximum mar-
gin. A feature vector xi is composed of protein descriptors which were described in the
previous section. The hyperplane is constructed by finding another vector w and a parameter b
that minimizes kwk2 and satisfies the following conditions:

w � xi þ b � þ1 for yi ¼ þ1 ðin the functional familyÞ ð1Þ

w � xi þ b � �1 for yi ¼ �1 ðoutside the functional familyÞ ð2Þ

where yi is the class index, w is a vector normal to the hyperplane, |b|/kwk is the perpendicular
distance from the hyperplane to the origin and kwk2 is the Euclidean norm of w. After the
determination of w and b, a feature vector x can be classified by:

sign½ðw � xÞ þ b� ð3Þ

In non-linearly separable cases, SVMmaps the input variable into a high dimensional fea-
ture space using a kernel function K(xi,xj). In SVM-Prot, Libsvm-3.20 [73] was used for devel-
oping the SVMmodels using the Gaussian kernel:

Kðxi; xjÞ ¼ e�kxj�xik2=2s2 ð4Þ

The second model is kNN [74], which computes the Euclidean distance D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjx � xijj2

q

between the query vector x of a query protein and the vector xi of every protein in the training
set, then selects k vectors nearest to the query vector x, and predicts the class of the query vector
x based on the class of the majority of the k nearest neighbors.

The third model is PNN, which is a form of neural network that uses Bayes optimal decision
rule hicifi(x)> hjcjfj(x) for classification [75], where hi and hj are the prior probabilities, ci and
cj are the costs of misclassification and fi(x) and fj(x) are the probability density function for
class i and j respectively. A query vector x is classified into class i if the product of all the three
terms is greater for class i than for any other class j (j 6¼ i). The probability density function for
each class can be estimated by using the Parzen’s nonparametric estimator:

g xð Þ ¼ 1

n

Pn
i¼1expð�

Pp
j¼1ð

xj � xij
sj

Þ2Þ ð5Þ

where n is the number of proteins in a class, p is the number of features, xj is the j
th feature of a

query protein, xij is the j
th feature of the ith protein in the class, and σj is the smoothing factor of

this feature. PNN uses a single adjustable parameter, a smoothing factor σ for the radial basis
function in the Parzen’s nonparameteric estimator, to speed-up the training process orders of
magnitude faster than the traditional neural networks.

After the prediction of the functional families of a query protein, an option is provided for
the user to align their query protein sequence with the sequences of the seed proteins in the
SVM-Prot predicted functional families by using the BLAST sequence alignment program
obtained from NCBI [42]. The top-ranked proteins (up to 20 sequences) of each SVM-Prot
predicted family that are with the highest sequence similarity (the lowest E-values) to the query
protein are provided in a separate output page. As the knowledge of protein functional family
may not be specific enough to analyze the function of a query protein, this option facilitates the
convenient and quick assessment of potential specific functions of a query protein. Fig 1 illus-
trates an example of SVM-Prot prediction of an EGFR protein sequence, which predicted
EC2.7 Transferases transferring phosphorus-containing group family as the top family for this
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protein, a click of the BLAST search further indicated that this protein is a receptor protein-
tyrosine kinase.

Performance measurement
The performance of SVM, kNN and PNNmodels were assessed by three different measure-
ments. The first one is using sensitivity (SE), specificity (SP, also known as recall) and precision
(PR) to evaluate the predictive performance of the independent validation datasets, which are
defined as below:

SE ¼ TP=ðTP þ FNÞ ð6Þ

SP ¼ TN=ðTN þ FPÞ ð7Þ

PR ¼ TP=ðTP þ FNÞ ð8Þ
where TP, TN, FP and FN are the number of true positives, true negatives, false positives and
false negatives, respectively. In the real world, the number of proteins outside a specific

Fig 1. An example of SVM-Prot prediction of an EGFR protein sequence and the its subsequent BLAST
sequence alignment analysis of the similarity proteins of the SVM-Prot predicted functional family.

doi:10.1371/journal.pone.0155290.g001

SVM-Prot Update: A Web-Server for Protein Function Prediction Irrespective of Sequence Similarity

PLOS ONE | DOI:10.1371/journal.pone.0155290 August 15, 2016 9 / 14



functional family should significantly surpass that within the family. Thus, a slight decline of
specificity (SP) would induce tremendous false positive prediction results, which reminds us to
primarily focus on the SP when evaluating the model’s prediction performance.

The second measurement is the use of platt’s posterior class probability [50,76] for scoring
the predicted functional families of a query protein. This probability has been used for scoring
the machine learning classification of protein functional families [50], fold classes [77], trans-
membrane topology [78], secondary structures [79], and the effect of missense mutations on
protein function [80]. It has also been built into such popular machine learning software as
LibSVM [73], in which the posterior probability takes the form of a sigmoid function:

Pr y ¼ 1jfð Þ � PAB fð Þ � 1

1þ expðAf þ BÞ ð9Þ

where f = f(x) is the output of the SVM and the parameters A and B are optimized via cross val-
idation of the training sets.

The last measurement is the test of these models by a set of newly published novel proteins
(reported in 2014 and 2015) with their functions reported in the respective publications, and a
comparative analysis between SVM-Prot and two popular protein function prediction tools
were provided.

Supporting Information
S1 Table. List of literature-reported protein functional family prediction models developed
by using kNN and PNNmethods.
(DOCX)

S2 Table. Complete list of the protein functional families covered by SVMProt and the pre-
diction performance of the SVM, kNN and PNNmodels on the independent testing sets.
(DOCX)

S3 Table. List of the novel proteins published in 2015 and 2014 that are not in the SVMProt
training sets and have available sequence in the literature or public databases.
(DOCX)

S4 Table. The detailed results of the prediction of the functional families of the 42 novel
proteins by SVMProt, FFPred and NCBI BLAST.
(DOCX)

S5 Table. 10 representative protein functional families covered by SVM-Prot and the pre-
diction performance of the LibD3C, SVM, kNN and PNNmodels on the independent test-
ing sets.
(DOCX)
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