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Abstract: As COVID-19 continues to pose major risk for vulnerable populations, including the
elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination,
novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding
integrins, either independently or as a co-receptor with surface receptor angiotensin-converting
enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-
CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small
airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-
0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across
multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE
cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi)
VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate
transforming growth factor beta (TGF-β) signaling, we compared the plasma levels of active and
total TGF-β in COVID-19+ patients. The plasma TGF-β1 levels correlated with age, race, and number
of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels
correlated with activated TGF-β1 levels. Moreover, the inhibition of integrin signaling prevents
SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity
through decreased TGF-β1 activation. This therapeutic strategy may be further explored through
clinical testing in vulnerable and unvaccinated populations.

Keywords: HSAE; GLPG-0187; integrin; MEKi; SARS-CoV-2; TGF-β1; ACE2; COVID-19; Omi-
cron; Delta

1. Introduction

Although several highly effective vaccines have now been developed against coron-
avirus disease 2019 (COVID-19), its threat to public health persists due to the presence of
breakthrough cases, the current improbability of achieving herd immunity, reluctance to
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vaccinate among significant segments of the population, less available vaccines in much
of the developing world, and the emergence of highly transmissible and immune evasive
Delta and Omicron variants [1]. Though there is evidence to support the view that booster
doses following primary vaccine series induce neutralizing immunity against the Omicron
variant [2], this variant is thought to be capable of disrupting herd immunity [3]. Until
more robust, widely accepted vaccines are available, COVID-19 cases are likely to continue
to rise, necessitating the development of additional treatment options [1]. Novel treatment
strategies are urgently required to prevent severe disease, hospitalization and death, espe-
cially in vulnerable populations, such as the elderly and immunocompromised, as well as
those with pre-existing conditions, including patients with cancer, or those who cannot get
vaccinated. Here, we present integrin inhibition with or without MAP/ERK Kinase (MEK)
inhibition as a potential treatment strategy for severe COVID-19.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible
for COVID-19, enters cells via interaction of its spike protein with angiotensin-converting
enzyme 2 (ACE2) and possibly other receptors, such as CD147/26, on human cells [4–7].
The receptor-binding domain (RBD) of the spike contains a novel RGD (Arg-Gly-Asp)
motif upstream from the ACE2 binding site that is absent in SARS-1 [8]. Of note, the Delta
variant has two mutations in the RBD, while the Omicron variant has ten mutations [1].
The RGD motif was originally identified within several extracellular matrix proteins as the
minimal peptide sequence required for cell attachment via integrins [9–11], which make
transmembrane connections to the cytoskeleton and activate many intracellular signaling
pathways [12]. Integrins are also commonly used as receptors by many human viruses [13].
The conservation of the motif and its localization in the receptor-binding region of the
SARS-CoV-2 spike protein suggests that integrins may serve as alternative receptors for
this virus [14]. Indeed, recent evidence suggests that this motif allows SARS-CoV-2 binding
to integrins on human cells [15], facilitating viral infection [16], which may contribute to
the higher transmission efficiency compared to SARS-CoV-1. There are eight known RGD-
binding integrins with potential to impact on the pathogenesis of SARS-CoV-2: αvβ1, αvβ3,
αvβ5, αvβ6, αvβ8, α5β1, α8β1, and αIIbβ3 [8]. A recent study has shown that blocking
integrin αVβ3 prevents SARS-CoV-2 from binding to the vascular endothelium, potentially
inhibiting virus-induced loss of endothelial barrier integrity and spread of SARS-CoV-2 to
other organs [17]. Recent evidence supports the fundamental role of endothelial dysfunction
in the systemic manifestations of COVID-19 [18,19]. Indeed, serum endothelial cell adhesion
molecules are elevated in COVID-19 patients [20], and therapeutic intervention to improve
endothelial dysfunction may decrease the length of hospitalization and reduce the need
for respiratory support [21]. Other studies have shown that ATN-161, an integrin-binding
peptide, is able to inhibit the binding of SARS-CoV-2 spike protein to integrin α5β1,
resulting in diminished SARS-CoV-2 infection in vitro [22]. Furthermore, integrin α5β1
was targeted in vivo using ATN-161 and showed promising therapeutic efficacy [23]. Thus,
therapeutic inhibition of RGD-binding integrins may provide benefit to COVID-19 patients.

We previously demonstrated that treatment of normal human small airway epithelial
(HSAE) cells with various MEK inhibitor (MEKi) compounds, such as VS-6766, reduced
cellular expression of ACE2 and inhibited pseudovirus infection [24]. Thus, we hypothe-
sized that GLPG-0187 and VS-6766 may have an additive or synergistic inhibitory effect on
pseudovirus infection. VS-6766 received the FDA Breakthrough Therapy Designation in
combination with defactinib for treatment of ovarian cancer in 2021 [25], easing potential
clinical translation.

We previously reported that SARS-CoV-2 pathogenesis can lead to a myriad of changes
in cytokine, chemokine, and growth factor profiles in patient plasma samples and that these
changes are associated with disease severity [26]. We recognized in our previous study
that COVID-19 disease severity was associated with macrophage activation syndrome.
Integrins can activate transforming growth factor beta (TGF-β), a growth factor secreted as
a latent complex, which plays a role in the immune response [27], fibrosis [28], and viral
replication [29]. The TGF-β complex consists of three proteins, including TGF-β, latency-
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associated protein (LAP), and an extracellular matrix-binding protein. LAP contains an
RGD integrin-binding site, which mediates the activation of latent TGF-β via RGD-binding
integrins [30]. The chronic immune response observed with SARS-CoV-2 is believed to be
mediated by TGF-β [31]. Thus, it has been suggested that SARS-CoV-2 pathogenesis could
be controlled via modulation of TGF-β [32].

Our past work demonstrated the feasibility of a SARS-CoV-2 pseudovirus model
system to evaluate the effects of drug treatment on viral infection [24]. Here, we show that
the pan-integrin inhibitor GLPG-0187 inhibits infection of multiple pseudovirus variants in
HSAE cells, including the highly transmissible Delta variant, which was the most prevalent
strain as of August 2021 [33], and the even more transmissible [2,3] Omicron variant, which
became the most prevalent in December 2021 [34]. This finding is clinically relevant, as
GLPG-0187 is in Phase I for treatment of solid tumors [35] and has shown a favorable
toxicity profile in patients [36]. GLPG-0187 targets the integrins αvβ1, αvβ3, αvβ5, αvβ6,
α5β1, and αvβ8, which, in addition to allowing infection of the virus, may play a potential
role in SARS-CoV-2 pathogenesis by mediating activation of TGF-β, angiogenesis, lung
injury, and inflammation [8,36].

Our current study suggests that Omicron may be less likely to infect lower airway
cells in the lung compared to other COVID-19 variants and that integrin inhibitors have
the potential to prevent infection with SARS-CoV-2, including the Delta and Omicron
variants. This may decrease TGF-β levels, resulting in a decrease in COVID-19 severity,
hospitalization, and death, especially in vulnerable and unvaccinated populations.

2. Results
2.1. Integrin Inhibition Decreases Infection of SARS-CoV-2 Pseudovirus Variants in Human Small
Airway Epithelial Cells

To test the inhibition of SARS-CoV-2 pseudovirus infection with the integrin inhibitor
GLPG-0187, HSAE cells were pre-treated with 20 nM, 100 nM, 200 nM, or 1 µM GLPG-0187
for 2 h followed by spin infection with either a pseudovirus expressing the D614G spike
protein variant or a VsVg positive control for 24 h. Few ZsGreen+ cells were seen in the cells
not treated with spin infection, efficient viral infection was observed in cells treated with
spin infection, and no effect of the inhibitor was observed on the VsVg positive control, as
expected. Treatment with GLPG-0187 inhibited pseudovirus infection in a dose-dependent
manner in the D614G variant (Figure 1A). In addition to D614G, several other SARS-CoV-2
pseudovirus variants were also tested, including D614, N501Y, E484K, N501Y + E484K
(N + E), N501Y + E484K + K417N (NEK), R685A. Descriptions of these variants can be
found in Table 1. HSAE cells pre-treated with 1 µM GLPG-0187 for 3 h followed by spin
infection with pseudovirus variants for 20 h demonstrated inhibition of viral infection
of each variant (Figure 1B). To test the inhibition of Beta and Delta variant pseudovirus
infection, HSAE cells were pre-treated with 1 or 2 µM GLPG-0187 for 2 h followed by
spin infection with pseudovirus. Pre-treatment with the integrin inhibitor resulted in the
most significant decrease in pseudovirus infection by the Delta variant (Figure 1C). We
conducted experiments with Omicron pseudovirus infection on HSAE cells with or without
the integrin inhibitor GLPG-0187 (Figure 1D,E). The results suggest that the Omicron
pseudovirus was less capable of infecting small airway epithelial cells than the D614G or
Delta variant pseudovirus, which is in agreement with a recent study by Meng et al. [37].
Nevertheless, the integrin inhibitor GLPG-0187 effectively partially blocked D614G, Delta,
and Omicron pseudovirus infection of HSAE cells.
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Figure 1. GLPG-0187 inhibits infection of SARS-CoV-2 pseudovirus variants D614, D614G, N501Y,
E484K, N + E, NEK, R685A, Beta, Delta, and Omicron in small airway epithelial cells. (A) Treatment
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with 20 nM, 100 nM, 200 nM, or 1 µM GLPG-0187 for 2 h inhibits infection by the D614G pseudovirus
variant (24 h infection time) in small airway epithelial cells compared to the VsVg positive control in
a dose-dependent manner. DMSO was used as a vehicle control. (B) Treatment with 1 µM GLPG-0187
for 3 h inhibits infection by the D614, D614G, N501Y, E484K, N + E, NEK, R685A pseudovirus variants
(20 h infection time). (C) Treatment with 1 µM or 2 µM GLPG-0187 for 2 h inhibits infection by the
D614G, Beta, and Delta pseudovirus variants (20 h infection time). (D) Differential rates of infectivity
across D614G, Delta, and Omicron variants observed after cells were spin-infected with the same
amount of pseudovirus particles (1.0 × 106 transduction units (TU) per 1 × 105 cells/well) using
the same experimental conditions described in panel C. (E) Treatment with 1 µM GLPG-0187 for 2 h
inhibits infection by the Omicron pseudovirus variant (26 h infection time).

Table 1. Description of several SARS-CoV-2 viral spike variants that are represented in this study
with experimental pseudoviruses.

Variant Description

Omicron (B.1.1.529)

Dominant strain as of December 2021. Spike mutations include: A67V, ∆69–70, T95I,
G142D, ∆143–145, ∆211, L212I, ins214EPE, G339D, S371L, S373P, S375F, K417N,

N440K, G446S, S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K,
D614G, H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, L981F

Delta (B.1.617.2) Dominant strain as of August 2021. Spike mutations include: T19R, G142D, E156G,
F157∆, R158∆, L452R, T478K. D614G, P681R, D950N

Beta (B.1.351) Prevalent in late 2020. Spike mutations include: L18F, D80A, D215G, ∆242–244, R246I,
K417N, E484K, N501Y, D614G, A701V

D614G Dominant strain in the spring of 2020
D614 Prevalent strain in early 2020

N501Y A common mutation in the Alpha (B.1.1.7), Beta (B.1.351), and Gamma (P.1) variants
E484K A common mutation in the Beta (B.1.351) and Gamma (P.1) variants

N + E (N501Y + E484K) Common mutations in the Beta (B.1.351) and Gamma (P.1) variants
NEK (N501Y + E484K + K417N) Common mutations in the Beta (B.1.351) and Gamma (P.1) variants

R785A Furin-cleavage site mutated

2.2. MEK Inhibitor Pre-Treatment Enhances Inhibition of Pseudovirus Infection by GLPG-0187 in
Human Small Airway Epithelial Cells

We have previously demonstrated that MEKi compounds, including VS-6766, reduce
cellular expression of ACE2 and inhibit pseudovirus infection of multiple human cell
types [24]. Thus, we hypothesized that VS-6766 and GLPG-0187 could have an additive or
synergistic inhibitory effect on pseudovirus infection of lung epithelial cells. To investigate
this, we pre-treated HSAE cells with either 5 µM VS-6766 for 24 h, 1 µM GLPG-0187 for
3 h, or 5 µM VS-6766 for 24 h followed by an additional 3 h with GLPG-0187. After drug
treatment, cells were spin-infected with the D614G pseudovirus for 20 h. As expected,
VS-6766 and GLPG-0187 single treatment inhibited pseudovirus infection when compared
to the positive control. A combination treatment enhanced the inhibition of pseudovirus
infection compared to single agent treatment with either VS-6766 or GLPG-0187 (Figure 2).
MEKi treatment also seemed to inhibit entry of the VsVg positive control pseudovirus,
possibly due to unidentified off-target effects. Despite this, inhibition of the SARS-CoV-2
pseudovirus entry by MEKi treatment was enhanced compared to the positive control.
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Figure 2. MEK inhibitor VS-6766 enhances the inhibition of SARS-CoV-2 pseudovirus infection by
integrin inhibitor GLPG-0187 in small airway epithelial cells. Treatment with 5 µM VS-6766 for 24 h
or with 1 µM GLPG-0187 for 3 h inhibits infection by the D614G pseudovirus variant (20 h infection
time) in small airway epithelial cells compared to the VsVg positive control. DMSO was used as a
vehicle control. Combination treatment involved 24 h pre-treatment with VS-6766 followed by an
additional 3 h of treatment with GLPG-0187. The y axis shows side scatter, and the x axis shows
FITC-pseudovirus expression.

2.3. Plasma TGF-β1 Levels Correlate with Age, Race, and Number of Medications Administered
upon Presentation with COVID, but Not with Sex

Because it has been previously shown that the chronic immune response observed with
SARS-CoV-2 is mediated by TGF-β, we sought to compare the levels of TGF-β1 in plasma
samples from COVID-19 (+) patients upon admission to the emergency department (ED).
We chose to focus on TGF-β1, as opposed to TGF-β2 and 3, since it has been previously
shown that SARS-CoV-2 infection increased TGF-β1 expression in human epithelial cells
and it is a known driver of lung fibrosis [38]. We analyzed the levels of total TGF-β1
in COVID-19 (+) plasma samples and found a significant correlation between TGF-β1
concentration (pg/mL) and age (Figure 3A). We also found significant variations in TGF-β1
concentrations depending on the patient’s self-reported race or ethnicity, with notably
higher levels of the growth factor in White and Hispanic or Latino populations, and notably
lower levels in Black and Asian or Pacific Islander populations (Figure 3B). We next grouped
patients by the number of medications they received upon disease presentation to the ED
(Figure 3C). Medications reported included ibuprofen, acetaminophen, bronchodilators
(e.g., Albuterol), steroids (e.g., Prednisone), azithromycin, hydroxychloroquine, antibiotic,
or other. We noticed statistically significant decreased plasma TGF-β1 concentrations in
patients who received 2–4 medications in the ED, as compared to patients who received
0–1. Next, we grouped patients by number of symptoms self-reported upon admission to
the ED and noted a positive trend between TGF-β1 levels and the number of symptoms,
although not significant (Figure 3D). When comparing TGF-β1 levels between males and
females, we did not note a significant difference (Figure 3E).
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Figure 3. Plasma TGF-β1 levels correlate with age, race, and number of medications administered
upon presentation with COVID-19 to the ED, but not with sex. Total TGF-β1 levels were detected in
activated plasma samples. TGF-β1 plasma concentration correlation with (A) age, (B) race, (C) num-
ber of medications administered upon presentation with COVID-19 to the emergency department
(ED), (D) number of symptoms reported upon presentation to the ED, (E) sex, or (G) COVID-19
severity score. (G) COVID-19 severity score (CSS) legend. Sample values are reported in pg/mL
(n = 81 samples). Statistical significance was calculated using: (A) Spearman’s correlation, (B,D,F)
One-way Anova followed by a post hoc Tukey’s multiple comparisons test, and (C,E) two-tailed,
unpaired Student’s t-test. The minimal level of significance was p < 0.05. Bar graphs represent the
mean of the population, and error bars indicate standard deviation. * represents p < 0.05.

We also compared TGF-β1 levels in patients based on our COVID-19 Severity Score
(CSS) (Figure 3F), which was based on the presence or absence of symptoms, patient oxygen
requirements, and whether or not the patient was admitted to the ICU/step down units
(Figure 3G). We again noted a positive trend between growth factor levels and increasing
COVID-19 severity. Because we were interested in the role of TGF-β1 in the pathogenesis
of other diseases as well, we also compared TGF-β1 levels in patients with a prior history
of disease, including chronic lung disease, chronic kidney disease, chronic heart disease,
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pneumonia, high blood pressure, diabetes, previous stroke, and abnormal chest X-ray upon
ED admission (Supplementary Figure S1). However, due to a limited sample size, we only
noted a significant increase in TGF-β1 in patients with a history of chronic kidney disease
as compared to those without a history of chronic kidney disease.

2.4. Active Plasma TGF-β1 Levels Correlate with Total TGF-β1 Levels

Because we were interested in the concentrations of both active TGF-β1 and total
TGF-β1, we next analyzed the patient plasma samples for active TGF-β1. We observed
similar trends as described above and noted that active plasma TGF-β1 levels correlate with
total TGF-β1 levels (Figure 4). We again noted a significant correlation between TGF-β1
plasma concentration and patient age (Figure 4A). We similarly noted higher levels of the
growth factor in self-reported White and Hispanic or Latino populations and notably lower
levels in Black and Asian or Pacific Islander populations (Figure 4B). When comparing
active TGF-β1 levels between the sexes, we again did not note a significant difference
(Figure 4C). Finally, we again noted a positive trend between active TGF-β levels and
increasing COVID-19 severity, as determined by our CSS criteria (Figure 4D).
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were detected in non-activated plasma samples. TGF-β1 plasma concentration correlation with (A)
age, (B) race, (C) sex, or (D) COVID-19 severity score (CSS). Sample values are reported in pg/mL
(n = 81 samples). Statistical significance was calculated using: (A) Spearman’s correlation, (B,D) One-
way Anova followed by a post hoc Tukey’s multiple comparisons test, and (C) two-tailed, unpaired
Student’s t-test. Bar graphs represent the mean of the population, and error bars indicate standard
deviation. The minimal level of significance was p < 0.05.
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3. Discussion

SARS-CoV-2 remains a significant challenge in global health, and new treatment op-
tions are needed, especially for vulnerable and unvaccinated populations. As of November
2021, the Delta variant accounted for more than 99% of COVID-19 cases, and infection with
this variant may result in an increased likelihood of hospitalization [39]. Since then, the
Omicron variant rapidly spread around the globe and became the dominant strain in many
parts of the world [34].

Our current study suggests that integrin inhibition reduces infection of multiple SARS-
CoV-2 pseudovirus variants in HSAE cells and that GLPG-0187 may be particularly effective
in inhibiting infection by the Delta variant. These effects were seen at short time points of
2–3 h, and future work could involve the evaluation of later time points to enhance inhibition
of pseudovirus entry. As HSAE cells are thought to have very low expression of ACE2, our
data suggest that alternative targets, such as RGD-binding integrins, may have particular
value for treatment of COVID-19 [24,40,41]. Our findings also suggest that a combination
treatment with a MEKi enhances inhibition of pseudovirus entry. In addition to inhibiting
viral infection, it is possible that integrin inhibition could provide benefit to COVID-19
patients by reducing levels of active TGF-β, as integrins are a major regulator of TGF-β
activation [42]. Limited prior studies have reported that COVID-19 patients may have higher
levels of TGF-β compared to healthy controls, which may mediate some of the complications
in severe COVID-19 patients [8]. Others have reported that GLPG-0187 and other integrin
inhibitors decrease cellular TGF-β signaling [43,44]. Thus, treatment with GLPG-0187 may
especially benefit populations of patients with high levels of TGF-β1. Integrin inhibition may
provide benefit to COVID-19 patient populations with particularly high levels of TGF-β, such
as elderly, White and Hispanic or Latino patients, and patients who receive few medications
in the ED, report a high number of symptoms, have a high CSS, and/or have a history of
chronic kidney disease. We also observed that TGF-β1 levels were lower in patients who
identified as Black, despite recent reports that this population is more severely impacted by
SARS-CoV-2 [45]. We hypothesize that variables such as living condition, social environment,
and work situation may play important roles in this result. Moreover, we noted that there
were no statistically significant differences in TGF-β1 levels based on sex, which is a reported
risk factor, and hypothesize that a larger sample size or samples taken at different time points
during infection may lead to sex-based differences in TGF-β1 levels.

Repeat experiments, including those conducted with authentic SARS-CoV-2 virus,
are needed prior to clinical translation of these treatments. Other limitations of this study
include the small sample size of plasma samples from patients with COVID-19, as well
as the lack of serial samples over time from the same patient. Because we only analyzed
plasma from patients upon admission to the ED, we may have missed fluctuations in
TGF-β concentrations, which are thought to peak during the first two weeks post-infection
in severe COVID-19 cases [46]. Future work should monitor TGF-β dynamics in serial
patient samples, as well as in various cell culture supernatant samples post-treatment with
GLPG-0187. It should also be noted that a small proportion of latent TGF-β may have
been activated by freezing and thawing of the samples, which could contribute to the
relationship between active and total TGF-β that we observed.

Since its first identification in South Africa in November 2021, the SARS-CoV-2 Omi-
cron variant raised serious concerns of a significant reduction in efficacy of vaccines and
monoclonal antibody treatments and an increased risk of reinfection due to numerous
mutations in its spike protein, which is the antigenic target of infection- and vaccine-elicited
antibodies against SARS-CoV-2. Currently, the Omicron variant is on track to outcompete
the Delta variant, as cases have soared to record highs in parts of Europe and now the
U.S. according to the data released by Johns Hopkins University [47]. A number of recent
studies suggest that much of the Omicron variant’s dominance comes down to its ability
to evade the body’s immune defenses [37,48–51]. However, earlier analyses of patients in
South Africa suggest Omicron-infected individuals had a reduced risk of severe disease
when compared to Delta-infected individuals [50]. In the first findings on how the Omicron
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variant infects the respiratory tract, researchers from Hong Kong University reported that
the virus multiplies 70 times faster in the bronchi than Delta and the original SARS-CoV-2
virus [34]. In a potential clue regarding lower disease severity, they found that Omicron
replication was less efficient in deeper lung tissue, more than ten times lower than the
original virus. In a recent study by Meng et al. [37], the investigators found that despite
three mutations predicted to favor spike S1/S2 cleavage, the observed cleavage efficiency
was substantially lower than for Delta, and Omicron pseudovirus entry into lower air-
way organoids and Calu-3 lung cells was thus impaired. In the latest study on mice and
hamsters [49], Omicron produced less-damaging infections, often limited largely to the
upper airway, including the nose, throat, and windpipe. The variant did much less harm
to the lungs, whereas previous variants would often cause scarring and serious breathing
difficulty. In our current study, we found that the Omicron pseudovirus was less capable
of infecting the small airway epithelial cells than D614G or Delta variant pseudovirus
and that integrin inhibition effectively blocked D614G, Delta, and Omicron pseudovirus
infection of the small airway epithelial cells. Combined, these observations highlight
that Omicron has gained immune evasion properties while compromising cell entry in
lung cells, with possible implications for altered pathogenicity. In addition, targeting
alternative viral infection routes, such as integrin-mediated cell entry, and dampening TGF-
β1-mediated disease severity may have therapeutic implications, especially for vulnerable
and unvaccinated populations.

It is possible that GLPG-0187 inhibits pseudovirus variant infection by an off-target
effect on ACE2. It is also possible that (1) the virus may infect ACE2 negative cells by
using RGD-binding integrins as an alternative receptor to ACE2 and/or (2) the RGD motif
functions as a co-receptor that enhances viral infection via ACE2. Future work should
involve similar experiments in cells that are completely ACE2 negative, either naturally or
by genetic modification, as low levels of ACE2 expression may still be relevant for viral
infection. Moreover, because it has been recently demonstrated that the Omicron variant
shows rapid replication in nasal epithelial cells, similar experiments may be conducted
in this cell type to determine the inhibition of pseudovirus entry post-treatment with
GLPG-1087 [52]. Future work may also include the development of a pseudovirus with a
mutated RGD motif to assess the effects on viral infection, as well as to analyze which RGD-
integrin(s) are important for SARS-CoV-2 infection. Our results, nonetheless, demonstrate
that GLPG-0187 inhibits pseudovirus entry, providing rationale for further investigation
of integrin inhibitors and other host cell targeted therapies as a potential therapy for
COVID-19 [53–55]. Moreover, our findings offer a combinatorial strategy, combining
an integrin inhibitor with a MEK inhibitor as a therapeutic strategy against COVID-19,
including Delta and Omicron variants. These strategies could be further tested in clinical
trials with particularly at-risk patients with COVID-19 infection who are unvaccinated,
immunosuppressed, or with risk factors such as comorbidities, including cancer.

4. Methods
4.1. Cell Culture

HSAE cells (ATCC PCS-301-010) were cultured in Airway Epithelial Cell Basal Medium
(ATCC PCS-300-030) supplemented with the Bronchial Epithelial Cell Growth Kit (ATCC
PCS-300-040) at 37 ◦C in humidified atmosphere containing 5% CO2.

4.2. SARS-CoV-2 Pseudoviruses and Cell Entry Assays

We developed a SARS-CoV-2 pseudovirus model system that uses pseudotyped
SARS-CoV-2 viruses with a lentiviral core and a variety of SARS-CoV-2 spike protein
variants on its envelope. To assess the infectivity of normal human small airway epithelial
(HSAE) cells, we used flow cytometry to quantify infected cells that express a fluorescence
protein ZsGreen, which was detected using the FITC channel. A replication-incompetent
SARS-CoV-2 pseudovirus was generated using a lentiviral packaging system as previously
described [24]. Briefly, 293FT cells (Invitrogen) at 75% confluency were co-transfected
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with the backbone vector pHAGE-fullEF1α-Luciferase-IRES-ZsGreen plasmids expressing
lentiviral proteins Tat, Rev and Gag/Pol, and plasmids expressing D614 or D614G S protein
(a gift from Dr. Hyeryun Choe, The Scripps Research Institute, Jupiter, FL, USA), or S
protein with N501Y, E484K, N501Y + E484K or N501Y + E484K + K417N mutations. An
S protein expression plasmid construct containing all Beta variant (B.1.351) mutations
and another S protein construct containing all Delta variant (B.1.617.2) mutations were
gifts from Drs. Markus Hoffmann and Stefan Poehlmann [56] (German Primate Center,
Goettingen, Germany). An S protein expression plasmid construct containing all Omicron
variant (B.1.1.529) mutations [48] was custom-made by GenScript (Piscataway, NJ, USA):
pcDNA3.1(+)-SARS-CoV-2-Omicron-(6xHis)-Spike (human codon). The variant S genes in
the above constructs were sequenced to confirm all the corresponding mutations (Table 1).
A plasmid expressing VsVg protein instead of the S protein was used to generate a pantropic
control lentivirus. Cell culture supernatants were collected, filtered, concentrated using
ultra-centrifugation, aliquoted, and frozen at −80 ◦C. Virus titer was determined using
Lenti-X™ p24 Rapid Titration ELISA Kit (Takara Bio Inc., Shiga, Japan), and lentiviral
particles were analyzed on an SDS-PAGE gel followed by Western blot to detect C-terminal
FLAG-tagged S protein. HSAE cells were pre-treated with the integrin inhibitor GLPG-
0187 (Galapagos NV, Mechelen, Belgium), MEK inhibitor VS-6766 (Verastem Oncology,
Needham, MA, USA), or both, for 2–27 h. Following drug treatment, HSAE cells were spin-
infected with SARS-CoV-2 pseudoviruses or a pantropic VsVg positive control lentivirus
in a 12-well plate (931 g, 2 h, 30 ◦C with 8 µg/mL polybrene). Analysis of ZsGreen+ cells
was conducted by flow cytometry 20–24 h after infection using a BD LSRII flow cytometer
and FlowJo software (FlowJo, LLC, Ashland, OR, USA). DAPI was used to exclude dead
cells. ZsGreen+ cells were gated on based on an unstained, uninfected HSAE cell control,
as previously described [24].

4.3. Human Plasma Samples

COVID-19 (+) human plasma samples were received from the Lifespan Brown COVID-
19 Biobank at Rhode Island Hospital (Providence, RI, USA). All patient samples were
deidentified but contained associated clinical information, as described. The IRB study
protocol “Pilot Study Evaluating Cytokine Profiles in COVID-19 Patient Samples” did not
meet the definition of human subject research by either the Brown University or the Rhode
Island Hospital IRBs.

IRB/oversight of exemption for the research (as previously described) [26].
COVID-19 (+) and (−) human plasma samples were received from the Lifespan

Brown COVID-19 Biobank from Brown University at Rhode Island Hospital (Providence,
Rhode Island). All patient samples were deidentified but included the available clinical
information as described. The IRB study protocol “Pilot Study Evaluating Cytokine Profiles
in COVID-19 Patient Samples” did not meet the definition of human subject research
by either the Brown University or the Rhode Island Hospital IRBs. This is based on the
fact that the project used deidentified specimens from a biobank with a determination
that this project did not meet the definition of human subject research based on specific
criteria as described below. The original samples were collected at Rhode Island hospital by
the Lifespan Brown COVID-19 Biobank through an IRB-approved protocol that involved
informed consent, which was used by the biobank. We completed a human subjects
determination form for the Human Subjects Protection Program at Brown University.
We explained the purpose of our research and that we would be receiving deidentified
samples from the COVID-19 biobank. We further answered questions about our study
that led to the determination that our study constitutes research because we answered
“yes” to the following two questions: (1) Does your proposed project involve a systematic
investigation, that is, a prospective plan that incorporates qualitative or quantitative data
collection and data analysis to answer a question; and (2) Is the intent of your proposed
project to develop or contribute to generalizable knowledge, that is, to create knowledge
from which conclusions will be drawn that can be applied to populations beyond the
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specific population from which it was collected. In addition, we answered “no” to four
questions regarding whether the project involves human subjects. The questions were:
(1) Does your proposed project involve an intervention, that is, a physical procedure or
manipulation or a living individual (or their environment) to obtain information about
them; (2) Does your proposed project involve an interaction, that is, communication or
contact with a living individual (in person, online, or by phone) to obtain information
about them; (3) Does your proposed project involve identifiable private information or
identifiable biospecimen, that is, receipt or collection of private information or biospecimen
about a living individual to obtain information about them; and (4) Does your proposed
project involve coded information/biospecimens, that is, where a link exists that could
allow information about a living individual to be reidentified AND you are able to access
the link. Since we answered “no” to all these questions, our proposed project did NOT
involve “Human Subjects.” Based on the information included in the Human Subjects
Determination Form, The Human Research Protection Program at Brown University agreed
with the investigator’s self-determination that the project does not meet the definition of
human subject research. This determination was made by the Human Research Protection
Program at Brown University on 17 June 2020.

4.4. Cytokine Profiling

A Human Magnetic Luminex Performance Assay TGF-β1 Base Kit (Cat # LTGM100,
R&D Systems, Inc., Minneapolis, MN, USA) was run on a Luminex 200 Instrument (LX200-
XPON-RUO, Luminex Corporation, Austin, TX, USA) according to the manufacturer’s
instructions. Total TGF-β1 was quantified by activating patient samples with 1N HCl,
neutralizing with 1.2N NaOH/0.5M HEPES, and then immediately assaying for TGF-β1.
Active TGF-β1 was quantified without sample activation or neutralization prior to analysis.

4.5. Statistical Analysis

Spearman’s correlation was used to calculate statistical significance of the scatter plots,
while the statistical significance between groups was determined using a one-way Anova fol-
lowed by a post hoc Tukey’s multiple comparisons test. A two-tailed, unpaired Student’s t-test
was used to calculate the statistical significance of pairs. The minimal level of significance
was p < 0.05. The following symbols, * and **, represent p < 0.05 and p < 0.01, respectively.

5. Conclusions

Here, we show that pan-integrin inhibitor GLPG-0187 reduces SARS-CoV-2 pseu-
dovirus infection of HSAE cells. Omicron pseudovirus infectivity was significantly reduced
as compared to D614G or Delta variants, and GLPG-0187 reduced SARS-CoV-2 pseudovirus
infection in a dose-dependent manner across multiple viral variants. This inhibition was
most efficient in the Omicron and Delta variants. VS-6766 enhanced inhibition of pseu-
dovirus infection by GLPG-0187. We compared plasma levels of active and total TGF-β
in COVID-19+ patients because integrins activate TGF-β signaling. Plasma TGF-β1 levels
correlated with age, race, and number of medications upon presentation with COVID-19,
but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels.
Integrin inhibition as a therapeutic strategy may be further explored through additional
preclinical and clinical testing in vulnerable and unvaccinated populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15050618/s1, Figure S1. Plasma TGF-β1 levels are elevated
in patients with a history of kidney disease. Total TGF-β1 levels were detected in activated plasma
samples. TGF-β1 plasma concentration correlated with (A) history of chronic lung disease, (B) history
of chronic kidney disease, (C) history of chronic heart disease (D) pneumonia upon presentation to
the emergency department (ED), (E) history of high blood pressure, (F) history of diabetes, (G) history
of stroke, or (H) chest x-ray upon presentation to the ED. Statistical significance was calculated using
a two-tailed, unpaired Student’s t-test. The minimal level of significance was p < 0.05 indicated by *.
Bar graphs represent the mean of the population, and error bars indicate the standard deviation.

https://www.mdpi.com/article/10.3390/ph15050618/s1
https://www.mdpi.com/article/10.3390/ph15050618/s1


Pharmaceuticals 2022, 15, 618 14 of 17

Author Contributions: Conceptualization, M.P. and W.S.E.-D.; methodology, K.E.H., L.C., E.-Y.S.,
M.P., O.L. and W.S.E.-D.; data curation, K.E.H., L.C. and E.-Y.S.; writing—original draft preparation,
K.E.H., L.C., E.-Y.S., M.P. and O.L.; writing—review and editing, K.E.H., L.C., E.-Y.S., M.P., O.L. and
W.S.E.-D.; funding acquisition, W.S.E.-D. and O.L. All authors have read and agreed to the published
version of the manuscript.

Funding: The work was supported by a Brown University COVID-19 Seed Grant (to W.S.E-D.)
and the Mencoff Family Professorship at Brown University (W.S.E-D.). O.L. was supported in
part by a grant from the National Institutes of Health (P20 GM119943). The COVID-19 Biobank,
through which plasma samples were obtained, was supported by Institutional Development Award
Number U54GM115677 from the National Institute of General Medical Sciences of the National
Institutes of Health, which funds Advance Clinical and Translational Research (Advance-CTR).
E-Y.S. was supported in part by several grants from the National Institutes of General Medical
Science (5P30GM122732-05), The Rhode Island Foundation (841-20210959), the University of Rhode
Island/NIGMS (0009351/10262021), and Brown Physicians Incorporated (BPI Research Award). K.H.
and L.C. were supported by the Teymour Alireza P’98, P’00 Family Cancer Research Fund established
by the Alireza Family.

Institutional Review Board Statement: COVID-19 (+) human plasma samples were received from
the Lifespan Brown COVID-19 Biobank at Rhode Island Hospital (Providence, RI, USA). All patient
samples were deidentified but contained associated clinical information, as described. The IRB
study protocol “Pilot Study Evaluating Cytokine Profiles in COVID-19 Patient Samples” did not
meet the definition of human subject research by either the Brown University or the Rhode Island
Hospital IRBs. IRB/oversight of exemption for the research (as previously described). COVID-19 (+)
and (−) human plasma samples were received from the Lifespan Brown COVID-19 Biobank from
Brown University at Rhode Island Hospital (Providence, Rhode Island). All patient samples were
deidentified but included the available clinical information as described. The IRB study protocol
“Pilot Study Evaluating Cytokine Profiles in COVID-19 Patient Samples” did not meet the definition
of human subject research by either the Brown University or the Rhode Island Hospital IRBs. This is
based on the fact that the project used deidentified specimens from a biobank with a determination
that this project did not meet the definition of human subject research based on specific criteria as
described below. The original samples were collected at Rhode Island hospital by the Lifespan Brown
COVID-19 Biobank through an IRB-approved protocol that involved informed consent, which was
used by the biobank. We completed a human subjects determination form for the Human Subjects
Protection Program at Brown University. We explained the purpose of our research and that we would
be receiving deidentified samples from the COVID-19 biobank. We further answered questions about
our study that led to the determination that our study constitutes research because we answered “yes”
to the following two questions: (1) Does your proposed project involve a systematic investigation,
that is, a prospective plan that incorporates qualitative or quantitative data collection and data
analysis to answer a question; and (2) Is the intent of your proposed project to develop or contribute
to generalizable knowledge, that is, to create knowledge from which conclusions will be drawn that
can be applied to populations beyond the specific population from which it was collected. In addition,
we answered “no” to four questions regarding whether the project involves human subjects. The
questions were: (1) Does your proposed project involve an intervention, that is, a physical procedure
or manipulation or a living individual (or their environment) to obtain information about them;
(2) Does your proposed project involve an interaction, that is, communication or contact with a
living individual (in person, online, or by phone) to obtain information about them; (3) Does your
proposed project involve identifiable private information or identifiable biospecimen, that is, receipt
or collection of private information or biospecimen about a living individual to obtain information
about them; and (4) Does your proposed project involve coded information/biospecimens, that is,
where a link exists that could allow information about a living individual to be reidentified AND
you are able to access the link. Since we answered “no” to all these questions, our proposed project
did NOT involve “Human Subjects.” Based on the information included in the Human Subjects
Determination Form, The Human Research Protection Program at Brown University agreed with
the investigator’s self-determination that the project does not meet the definition of human subject
research. This determination was made by the Human Research Protection Program at Brown
University on 17 June 2020.



Pharmaceuticals 2022, 15, 618 15 of 17

Informed Consent Statement: The samples used in this study were collected at Rhode Island
hospital by the Lifespan Brown COVID-19 Biobank through an IRB-approved protocol that involved
informed consent.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The content is solely the responsibility of the authors and does not necessarily
represent the official views of the National Institutes of Health. Figures were created with BioRender.com.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

ACE2 angiotensin-converting enzyme 2
COVID-19 coronavirus disease 2019
CSS COVID-19 severity score
ED emergency department
HSAE human small airway epithelial
LAP latency-associated protein
MEK MAP/ERK kinase
MEKi MEK inhibitor
RBD receptor-binding domain
SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
TGF-β transforming growth factor beta
TU transduction units
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