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a b s t r a c t

Bone morphogenetic proteins (BMPs), have been shown to enhance the osteogenic differentiation of
mesenchymal cells (MCs) and to promote bone formation. BMP6 is known to play an important role in
the process of MCs towards osteogenic differentiation by virtue of their osteoinductive and cell type
specific proliferative activity. However, the molecular mechanism relate to BMP6 osteoinductive activity
is still unclear and continues to warrant further investigation. Msx2 is a member of the homeobox gene
family of transcription factors and promotes calcification. Hence, we wondered if it might also play a role
in BMP6-induced osteogenesis. In this study, two mouse mesenchymal cell lines were treated with
BMP6, adenovirus-Msx2 (Ad-Msx2) or adenovirus-siMsx2 (Ad-siMsx2). Based on the results of mRNA
and protein expression, it was indicated that BMP6 could enhance the expression of Msx2 and activate
the phosphorylation of Smad 1/5/8, p38 and ERK1/2. Being transfected by Ad-Msx2, the BMP6-induced
activation of phosphorylation was significantly promoted. On the contrary, two cell lines transfected by
Ad-siMsx2 presented an inhibited expression of three phosphorylated proteins even after being induced
by BMP6. The evaluation of ALP, OPN, OC and calcium deposits revealed the osteogenic results those were
corresponding to the results of mRNA and protein. Taken together, these findings can be a novel
viewpoint for the understanding of the mechanisms of BMP6-induced osteogenesis and provide thera-
peutic targets of bone defect.
© 2020, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Bone tissue defect is a common issue in clinic. Although bone
tissue has some extent inherent ability of regeneration, there are
still 5e10% of fracture patients facing insufficient healing [1]. As the
“gold standard” method for injured bone repairment, autologous
bone graft has been widely used in clinic. Nevertheless, the donor-
site morbidity is still an unsolved issue in the process [2,3]. Tissue
engineering is a promising tool for bone tissue reconstruction. Two
mouse mesenchymal cell lines (MCs), C3H10T1/2 and C2C12, were
widely used in studies of osteogenic differentiation and bone tissue
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engineering [4,5]. Due to the similar features with tissue-derived
mesenchymal stem cells (MSCs), the study of these two cell lines
may provide us with a lot of useful information.

Bone morphogenetic proteins (BMPs), the largest subdivision of
transforming growth factor-b (TGF-b) superfamily, contain 20 iden-
tified members and play a key role in the development and
homeostasis of organs [6,7]. Osteogenesis is the most studied bio-
logical function of BMPs. After regulating the BMPs signaling an-
tagonists and agonists, the adipose-derived stem cells (ASCs) display
a significant up-regulated osteogenic differentiation [8]. The poly
lactic acid (PLA) scaffold combined with BMP2 has been proved to
have a potential for promoting the osteogenic differentiation ofMSCs
[9]. Similarly, during the repairing process of rat calvarial defect with
a 3D vehicle system that contains MSCs and BMP2, the enhanced
osteogenic differentiation and new bone formation have been
observed [10]. For a long time, BMP2has been considered as themost
important member in BMPs’ family which is associated with osteo-
genesis. Interestingly, recent studies have indicated that BMP6 may
have a stronger effect of osteogenesis than BMP2 [1,11]. BMP6 has
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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been demonstrated to possess a potential for restoring the osteo-
genesis capability of the bone marrow mesenchymal stem cells
derived from the type I diabetes [12]. The calcium phosphate scaffold
combined with BMP6 greatly facilitated the osteogenesis of human
periosteum derived progenitor cells and new bone formation [13].
However, the molecular mechanism relates to BMP6-induced
osteogenesis is still unclear and needs a further investigation.

As a member of the homeobox gene family of transcription
factors, Msh homeobox 2 (Msx2) is highly expressed in the axial
skeleton and is required for craniofacial, tooth and limb develop-
ment. It has been regarded as a key factor in vascular calcification
[14]. Moreover, there is a synergy effect between Msx2 and BMP2
on osteogenic differentiation [15]. A study focused on the effect of
overexpressed microRNA-203 on osteogenic differentiation of
osteoblast revealed that this promoted osteogenesis was induced
by up-regulated Msx2 [16]. These results indicate that Msx2 play a
key role in osteogenesis and associate with BMPs during the
calcification process. Hence, we hypothesized that Msx2 may also
play a key role in BMP6-induced osteogenic differentiation.

2. Methods

2.1. Cell culture and recombinant BMP6 treatment

Two types of mouse mesenchymal cell lines including C3H10T1/
2 (ATCC, CRL-3268) and C2C12 (ATCC, CRL-1772), were cultured on
6-well plastic plates with a concentration of 1.0 � 105 cells/well.
2 mL DMEM containing 10% FBS was added into each well and
replaced for every other day. After reaching 80e90% confluence of
all samples, 200 ng/mL recombinant BMP6 was added into each
well. Cells cultured with DMEM were served as blank.

2.2. BMP6 induction

For evaluating the effect of BMP6 on Msx2 expression in MCs,
the expression levels of mRNA and protein were detected by
quantitative real-time PCR (qRT-PCR) and Western blot, respec-
tively. After being treated by BMP6 for 24 h, the total RNA of each
sample was harvested by TRIzol Reagent (Invitrogen, USA). A
reverse transcription kit (Takara, Japan) was used to synthesize the
cDNA of all samples. All primers were designed by Life Technologies
(ThermoFisher Scientific, USA) and the sequences of primers were
displayed in Table 1. The quantification of mRNA level of Msx2 was
performed using a SYBR green Supermix (Takara, Japan) on a Roche
Lightcycler 96 system (Roche, Switzerland). All data were normal-
ized by glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and
analyzed using the 2-△△Ct method. Total proteins of each sample
were extracted from the organic phase after the TRIzol treatment
and dissolved in 1% SDS. After being mixed with 2 � loading buffer
(Beyotime Biotechnology, China) and heated at 100 �C for
5e10 min, all specimens were separated by 10% Tris-SDS-PAGE.
Table 1
Primer sequences and product sizes used for quantitative real-time PCR.

Genes 50-30 Primer sequences Production size (bp)

Msx2 Forward CTGGTGAAGCCCTTCGAGAC 133
Reverse ATATGTCCTCCTACTCCTGCCC

GAPDH Forward GCAAGTTCAACGGCACAG 140
Reverse GCCAGTAGACTCCACGACAT

Dlx5 Forward CTACCAGTACCAGTACCACGG 148
Reverse TTCTTTCTCTGGCTGGCTGGT

Osx Forward AGTGGGAACAAGAGTGAGCTG 145
Reverse TAGGAGCTTCTTCCTGGGT

Runx2 Forward CCCAGTATGAGAGTAGGTGTCC 149
Reverse GGGTAAGACTGGTCATAGGACC
All separated proteins were transferred onto 0.22 mm PVDF mem-
brane by wet-blotting system (Bio-Rad, USA). After being blocked
with 5% skim milk, PVDF membrane was incubated with primary
antibody (Rabbit anti-Msx2, Abcam, ab223692; Rabbit anti-Gapdh,
Abcam, ab181602) and horseradish peroxidase conjugated sec-
ondary antibody (Goat anti-Rabbit, Abcam, ab223692) in sequence.
The target blot was observed using a CCD camera gel imaging
system (ChemiDoc XRS, Bio-Rad, USA).

2.3. Overexpression and attenuation of Msx2

The sequence of mouse full-length Msx2 gene was obtained
from GenBank. The adenovirus that encoding Msx2 was purchased
from Shanghai GenePharma Co., Ltd. (Shanghai, China). The MCs
were transfected with adenovirus encoding GFP or Msx2 at MOI of
50:1 in DMEM. After 24 h, the viral particles were discarded. Cells
were harvested for extracting the total proteins. The proteic
expressions of Msx2 in C3H10T1/2 and C2C12 were detected by
Western blot assay.

The process of Msx2 attenuation was performed according to
previous study [17]. The sequences of siRNA for Msx2 were 50-
GCAGGCAGCGUCCAUAUAUTT-30 and 50-UAUACAUUGCGCGCGU-
GUUU-3’. Briefly, 50 nmol siRNA was mixed with SilentFect™
Reagent (Hercules, CA). Then the mixture was supplemented into
the 6-well culture plates when two types of MCs were 70%
confluence. After 24 h incubation, the total proteins of each sample
were extracted. Western blot assay was used to evaluate the proteic
expression of Msx2 in C3H10T1/2 and C2C12.

2.4. Detection of early and late osteogenesis in C3H10T1/2 and
C2C12

In this work, 6 groups including MCs (blank), Ad-Msx2-
transfected MCs (Ad-Msx2), siRNA-transfected MCs (siMsx2),
BMP6-induced MCs (BMP6), Ad-Msx2-transfected-BMP6-induced
MCs (BMP6þAd-Msx2), and siRNA-transfected-BMP6-induced MCs
(BMP6þsiMsx2) were prepared. For the detection of early stage
osteogenesis in each group, the expressions of ALP and two bone-
related proteins (osteopontin, OPN and osteocalcin, OC) were
measured after 7 d culture. The relative activity of ALP in each group
was detected with the same protocol in previous study [18]. Briefly,
all sampleswerewashedwithPBS and lysed by sonification. Then the
lysates were incubated with p-nitrophenol phosphate (Sigma, USA)
at 37 �C for 1 h 1M sodiumhydroxidewas used to stop the enzymatic
reaction. The absorbance was measured at 540 nm (Biotek, USA).

At the end of 7 d culture, the total proteins of each group were
harvested and separated by SDS-PAGE. After transferring, blocking,
incubating with primary antibodies (rabbit anti-OPN, Abcam,
ab8448; rabbit anti-OC, Abcam, ab93876) and secondary antibody
(Goat anti-Rabbit, Abcam, ab223692), the target bands were
observed using a CCD camera gel imaging system (ChemiDoc XRS,
Bio-Rad, USA).

Calcium deposits were regarded to be the late stage marker of
osteogenesis. In this study, after 21 d culture, all samples from two
MCs were washed with PBS and fixed with 4% paraformaldehyde
for 10 min. After thrice washing with distill water, all samples were
stained by 0.2% alizarin red reagent (Solarbio, China) for 30 min.
Then each sample was washed by distill water and observed by
microscope (Olympus, Japan). Orange red indicates the positive
staining of calcium deposits.

2.5. Detection of pivotal osteogenic transcription factors

After 24 h culture, C3H10T1/2 (6 groups) in all six groups were
harvested and extracted the total RNA and proteins. The genetic
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and proteic expression levels of runt-related transcription factor 2
(Runx2), osterix (Osx) and distal-less homeobox 5 (Dlx5) were
detected in this work. The specific primers were shown in Table 1.
The procedures of qRT-PCR andWestern blot are same as described
before. Primary antibodies involved in this work were rabbit
anti-Runx2 (Abcam, ab192256), rabbit anti-Osx (Abcam, ab209484)
and rabbit anti-Dlx5 (Abcam, ab109737). The following second
antibody was goat anti-rabbit (Abcam, ab223692).

2.6. Activation of signaling pathway

The total proteins of C3H10T1/2 (6 groups) were also used to
detect the proteic expressions of p-Smad 1/5/8, Smad 1/5/8, p-p38,
p38, p-ERK 1/2 and ERK 1/2. Primary antibodies involved in this
experiment were rabbit anti-p-Smad 1/5/8 (CST, 13820), rabbit
anti-Smad 1/5/8 (Abcam, ab13723), rabbit anti-p-p38 (Abcam,
ab4822), rabbit anti-p38 (Abcam, ab170099), rabbit anti-p-ERK 1/2
(Santa Cruz, sc-136521), and rabbit anti-ERK 1/2 (Abcam, ab17942).
The following second antibody was goat anti-rabbit (Abcam,
ab223692).

2.7. Statistical analysis

In this study, all experiments were repeated at least three times.
Data presented in this manuscript are from one independent set.
The statistical analysis was performed by t-test and ANOVA. All data
were presented as means ± standard error. P < 0.05 indicated that
the difference is significant.

3. Results

3.1. qRT-PCR and Western blot of Msx2 after treating with BMP6,
Ad-Msx2 and Ad-siMsx2

After treating with BMP6 for 24 h, both of C3H10T1/2 and C2C12
showed a significantly higher mRNA expression level of Msx2
(p < 0.001) than those in blank control. Similarly, the significantly
up-regulated levels of Msx2 protein (p < 0.001) were also observed
in BMP6 groups (Fig. 1A). After transfection with Ad-Msx2, the
expressions of Msx2 protein in both two MCs were significantly
increased. On the contrary, the expressions of Msx2 protein in two
MCs were significantly decreased after attenuation by Ad-siMsx2
Fig. 1. The expression of Msx2 in two MCs after treating with BMP6, Ad-Msx2 and Ad-siMsx
Msx2 in two MCs after overexpression or silencing (B and C).
(Fig. 1A). These results showed that either supplementation of
BMP6 or overexpression of Msx2 could significantly improve the
expression of Msx2 in both types of MCs. After silencing, the
expression of Msx2 can be effectively inhibited. In addition, the Ad-
GFP group showed no difference with blank group. This indicated
that no effect of transfected-GFP on the expression of Msx2 in both
two MCs.

3.2. ALP activity

After 7 d cultivation, there was no difference ALP activity in
C3H10T1/2 among blank group, Ad-Msx2 group and Ad-siMsx2
group. The ALP activity in other three groups including BMP6,
BMP6þAd-Msx2, and BMP6þAd-siMsx2 were significantly higher
than that in blank group. BMP6þAd-Msx2 group was the highest
one, followed by BMP6 group and BMP6þAd-siMsx2 group. There
were significant differences among these three groups. Interest-
ingly, the results of ALP activity in C2C12 displayed a similar trend
with that in C3H10T1/2 (Fig. 2 A).

3.3. Western blot of OPN and OC

twAfter 7 d cultivation, the expression of OPN was similar in
two types of MCs. In the order of expression level of OPN from high
to low, each group was BMP6þAd-Msx2, BMP6, Ad-Msx2,
BMP6þAd-siMsx2, and blank, respectively. There were differ-
ences between twoMCs in the expression of OC. In C3H10T1/2, the
expression of OC of blank and Ad-siMsx2 were almost negative.
The BMP6þAd-Msx2 group presented the highest expression of
OC, followed by BMP6, BMP6þAd-siMsx2, and Ad-Msx2. Never-
theless, all groups in C2C12 displayed positive expression of OC. As
the two groups with the highest expression levels of OC, there was
almost no difference between BMP6þAd-Msx2 group and BMP6
group. In the remaining groups, the expression levels from high to
low were Ad-Msx2, blank, BMP6þAd-siMsx2, and Ad-siMsx2
(Fig. 2 B).

3.4. Calcium deposits staining

The most positive staining of calcium deposits was observed in
BMP6þAd-Msx2 group for both MCs. Two BMP6 groups in both
MCs displayed the second most positive staining, followed by two
2. The mRNA and protein expression of Msx2 after BMP6 induction (A). Western blot of



Fig. 2. Early and Late osteogenesis of MCs. The relative ALP activity of two MCs in 6 groups (A). The expression of two key proteins (B). The staining of calcium deposits in each
group (C). * indicates p < 0.05, compared with blank. # indicates p < 0.05 between two groups.

C. Cai et al. / Regenerative Therapy 14 (2020) 245e251248
BMP6þAd-siMsx2 groups and two Ad-Msx2 groups. The significant
difference between two MCs was mainly in blank group and Ad-
siMsx2 group. In C3H10T1/2, almost no calcium deposits of blank
group and Ad-siMsx2 group was stained. However, in C2C12, there
was a small amount of positive staining of calcium deposits in these
two groups (Fig. 2C).

3.5. Osteogenic differentiation

The significantly increased expressions of Runx2, Osx and Dlx5
were observed in BMP6þAd-Msx2 group, compared with other 5
groups. In addition to BMP6þAd-Msx2 group, BMP6 group dis-
played highest expression of three genes among 5 groups. Three
genes expression in BMP6þAd-siMsx2 group was rank second only
to group BMP6 (Fig. 3A). Western blot assay also indicated that
BMP6þAd-Msx2 group possessed the highest expression of Msx2
protein. It was also followed by BMP6 group and BMP6þAd-siMsx2
group (Fig. 3B).

3.6. Activating of signaling pathway

Fig. 4 presented the expressions of proteins which are involved
in osteogenesis-related signaling pathways. The expression of
unphosphorylated proteins including Smad 1/5/8, p38 and ERK 1/2
was no significant different in each group, whilst the expression of
phosphorylated proteins was quite different. Intriguingly, the ex-
pressions of three phosphorylated proteins were still the highest in
BMP6þAd-Msx2 group. This was consistent with the results of
previous assays. These results indicated that BMP6 could effectively
activate the phosphorylation of Smad 1/5/8, p38 and ERK 1/2. Msx2
further enhances this activation. Silencing Msx2 could impair the
phosphorylation that was activated by BMP6.
4. Discussion

As an important component of cell-therapy strategy, exogenous
cells are widely used to repair bone defects [19,20]. These cells
must be exposed to a large number of growth factors when they are
working in the niche of bone regeneration. BMPs are the most
remarkable growth factors that are associated with bone healing
[21]. BMP6 is the one of 20 members of BMPs family and it is
demonstrated to have a great potential in promoting the bone
regeneration in recent studies [22,23]. It is worth noting that BMP6
is capable of inducing bone growth at a lower dose than other BMPs
[1,24,25]. It may have a greater advantage in bone defect repair.
Therefore, this study focused on the molecular mechanism of
BMP6-induced osteogenesis.

Msx2, a member of homeobox gene family of transcription
factors, has involved in the vascular calcification [26]. It also plays
an important role in BMP2-induced osteogenesis [27,28]. The
overexpressed Msx2 could enhance the osteogenesis of mouse
blastema-like cells via activation of BMP4 [29]. Hence, it may be
noteworthy in BMP6-induced osteogenesis. In the present study,
we first examined the expression of Msx2 in two MCs after BMP6-
inducing. Similar with previous studies, the mRNA and protein
expression of Msx2 was significantly up-regulated after BMP6-
inducing [30,31]. Interestingly, previous studies indicated that
BMP4 up-regulated the expression of Msx2 by activating Smad 1/5
signaling pathway [32,33]. In this work, we also observed that the
expression of phosphorylated Smad 1/5/8 in BMP6 group was
higher than that in blank group. This phenomenon suggested that
BMP6 may also regulate Msx2 expression through Smad signaling
pathway, but the specific relationship between them needs further
study. In addition, we also detected the expression of Msx2 in MCs
after overexpression and attenuation of Msx2. The results indicated



Fig. 3. The mRNA and protein expression of osteogenic markers. The expression levels of Run2, Osx and Dlx5 in each group (A). Protein bands of Runx2, Osx and Dlx5 (B). #
indicates p < 0.05 between two groups.
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that the adenovirus transfection is successful. The transfected-GFP
would not affect the expression of Msx2 in MCs.

As an ectoenzyme crucially required for active biomineraliza-
tion, ALP has been commonly used to evaluate the osteogenic
differentiation of stem cells at early stage [34,35]. It was reported
that the overexpression of Msx2 could promote the secretion of ALP
Fig. 4. Western blot of unphosphorylated and phosphorylated proteins in
osteogenesis-related signaling pathway.
in MCs [36]. In this work, we observed the similar result with that
in previous study. However, the difference between Ad-Msx2 group
and blank group was not significant. Notably, BMP6 groups
displayed the significantly higher relative activity of ALP than those
in Ad-Msx2 groups. Moreover, the relative activities of ALP in
BMP6þAd-Msx2 groups were significantly higher than those in
BMP6 groups. This was indicated that high expression of Msx2
could indeed promote BMP6-induced osteogenic differentiation of
MCs. Interestingly, the BMP6þAd-siMsx2 groups also showed the
higher relative activity of ALP, compared with blank, Ad-Msx2, and
Ad-siMsx2 groups. It implied that in addition to Msx2, BMP6-
induced osteogenesis may also involve other mediator, such as
Msx1 [37e40].

OPN and OC are the well-known biomarkers of osteogenic dif-
ferentiation and influence the bone morphology and mechanics
[41e43]. The Western blot assay of these two non-collagenous
proteins also demonstrated that the overexpressed Msx2 had a
potential for facilitating the BMP6-induced osteogenesis. Calcium
deposit is regarded as the marker of late osteogenesis [44]. In the
present study, the calcium deposits in each group were detected to
evaluate the promotion effect of overexpressed Msx2 on BMP6-
induced osteogenesis at a late stage. As described in previous
studies, the enhanced BMP expression and BMP supplementation
could effectively promote the calcium deposit [45,46] which was
also observed in our study. The staining of calcium deposits in each
group exhibited the similar trend with the staining of ALP, OPN and
OC. This meant the facilitation of Msx2 on BMP6-induced osteo-
genesis also existed at the late stage of osteogenic differentiation.

Furthermore, due to the important role in osteogenic differen-
tiation of stem cells [47,48], the mRNA and protein expression of
three bone-related markers including Runx2, Osx and Dlx5 were
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also detected in this study. The BMP6-induced osteogenesis of MCs
has been proved to require Osx [49]. Moreover, the BMP-induced
expression of Osx is mediated by Msx2 [28]. The Dlx and Msx can
form heterodimers to regulate the promoter of OC and control the
development of limb [50,51]. In the Msx2 deficiency mice model,
no expression of Dlx5 was detected [52]. In most occasions, Runx2
is regarded as a partner of Msx2 in regulation of osteogenesis [53].
In this study, the results of both genes and proteins also proved that
the BMP6-induced osteogenesis can be strengthened by Msx2.

For gaining further understanding of the mechanism that Msx2
would enhance the BMP6-induced osteogenesis, the MAPK and
Smad signaling were detected in the present study because these
two signaling pathways were known to involved in osteogenesis
[54,55]. In p38 deletion mouse, the osteoblast differentiation is
deficient and bone mass is reduced. It also mediates the phos-
phorylation of Runx2 that is an important event for the osteoblastic
differentiation of MCs [56]. In BMP9-induced mineralization, the
activity of ALP and phosphorylation of Smad 1/5/8 are abolished by
the p38 inhibitor [57]. In addition to the p38 MAPKs, the phos-
phorylated ERK MAPK signaling also stimulates the osteoblast
differentiation [58]. Previous study has demonstrated that ERK
MAPK signaling pathway is phosphorylated during the fucoidan-
induced osteogenesis [59].

We also found that BMP6þAd-Msx2 markedly facilitated the
phosphorylation of Smad 1/5/8. Similar with the p38 and ERK
signaling pathway, Smad 1/5/8 also involve in osteogenic differ-
entiation. Biomechanical stimulation could activate Smad 1/5/8 and
furtherly enhance the osteogenesis of osteoblast [60]. The BMP2-
induced osteogenic differentiation of C2C12 could be attenuated
by strontium via formation of strontium-BMP2 complex and inhi-
bition of Smad-dependent signaling pathway [61]. In the present
study, we observed that after transfecting with Msx2 and inducing
with BMP6, the phosphorylated Smad 1/5/8, p38 and ERK 1/2 in
C3H10T1/2 were the most up-regulated among 6 groups. These
results were keeping with those in ALP activity, expression of OPN
and OC, calcium deposits, and expression of bone-related genes.
Based on the present study, Msx2 is shown to have a potential for
enhancing the BMP6-induced osteogenesis. Furthermore, the
possible mechanism of this enhancement is that Msx2 facilitates
the activation of MAPK and Smad signaling pathways in BMP6-
induced MCs.

5. Conclusion

In summary, this study has made a point that the osteogenesis
induced by BMP6 could be reinforced with overexpression of Msx2.
This reinforced osteogenesis may be mediated by Smad 1/5/8, p38
and ERK 1/2 signaling pathways. However, details in this process
are still unclear. All molecules involved in signal transduction
should be elucidated as far as possible. If the results obtained from
the two mesenchymal cell lines can be applied to the study of
tissue-derived mesenchymal stem cells? Therefore, the RNA-seq
and Proteomic analyses of each group will be performed in the
next step. Furthermore, the following works will focus on the
performance of tissue-derived mesenchymal stem cell after various
treatments.
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