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The hospital water environment, including the waste-
water drainage system, is increasingly reported as 
a potential reservoir for carbapenemase-producing 
Enterobacterales (CPE). We investigated a persistent 
outbreak of OXA-48 CPE (primarily  Citrobacter fre-
undii) in a haematological ward of a French teaching 
hospital by epidemiological, microbiological and envi-
ronmental methods. Between January 2016 and June 
2019, we detected 37 new OXA-48 CPE-colonised and/
or infected patients in the haematological ward. In 
October 2017, a unit dedicated to CPE-colonised and/or 
infected patients was created. Eleven additional spo-
radic acquisitions were identified after this date with-
out any obvious epidemiological link between patients, 
except in one case. Environmental investigations of 
the haematological ward (June–August 2018) identi-
fied seven of 74 toilets and one of 39 drains positive 
for OXA-48 CPE (seven  C. freundii, one  Enterobacter 
sakazakii, one  Escherichia coli). Whole genome com-
parisons identified a clonal dissemination of OXA-48-
producing  C. freundii  from the hospital environment 
to patients. In addition to strict routine infection 
control measures, an intensive cleaning programme 
was performed (descaling and bleaching) and all 
toilet bowls and tanks were changed. These additional 
measures helped to contain the outbreak. This study 

highlights that toilets can be a possible source of 
transmission of OXA-48 CPE.

Background
Carbapenems represent a last resort antibiotic ther-
apy for patients infected with extended-spectrum 
β-lactamase-producing Enterobacterales. Thus, the 
growing prevalence of carbapenemase-producing 
Enterobacterales (CPE) is of great concern since carbap-
enemase production is associated with an increased 
mortality rate [1]. Since the beginning of the 2000s, 
outbreaks of CPE are reported worldwide and CPE has 
become endemic in some countries [2]. In 2018, data 
reported to the European Antimicrobial Resistance 
Surveillance Network (EARS-Net) concerning invasive 
isolates indicated that 0.1% and 7.5% of  Escherichia 
coli  and  Klebsiella pneumoniae,  respectively, were 
resistant to carbapenem [3]. In France, the number of 
cases (infections and colonisations) and outbreaks of 
CPE has steadily increased since 2009. Although most 
cases are patients with a recent history of travelling 
or hospitalisation abroad, the number of autochtho-
nous cases, often caused by OXA-48 CPE, is on the 
rise [4,5]. Patient-to-patient cross-transmission is the 
main spreading mechanism of CPE during nosocomial 
outbreaks. Environmental reservoirs, such as con-
taminated sinks, have been reported as sources of 
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such outbreaks and may act to amplify dissemination 
[6,7]. Transmission may occur from direct or indirect 
water contact as well as from droplets generated dur-
ing water use in health care, such as shower and sink 
cleaning, hand washing or patient cleaning [6].

Between 2016 and 2019, the haematological ward of 
our hospital experienced a large and protracted out-
break caused by OXA-48 CPE, mostly Citrobacter freun-
dii. The outbreak was successfully controlled only after 
recognising the toilets were the source of transmission. 
Here, we report the epidemiological and microbiologi-
cal investigations.

Methods

Setting
Saint Antoine hospital is a 685-bed teaching hospital in 
Paris, France. It includes a haematological ward with 74 
single-bed rooms comprising four units, and a haema-
tological day care unit with 34 beds. In 2018, the ward 
recorded 923 admissions resulting in a total of 21,308 
hospitalisation days.

Case definitions
Cases were defined as colonised or infected patients 
identified with an OXA-48 CPE while in the haemato-
logical ward between January 2016 and June 2019. 
Colonised patients were defined as patients in whom 
OXA-48 CPE was identified only on rectal swabs. 
Infected patients were defined as patients with at least 
one clinical sample positive for OXA-48 CPE.

Cases were categorised as imported into the haema-
tological ward when CPE was identified within 48 h 
after admission. Acquired cases were defined as a CPE 
detection at least 48 h after admission or on admission 
if the patient was previously identified as a contact 
patient in the haematological ward.

A contact patient was defined as any patient cared 
for by the same healthcare team as a CPE case before 
implementation of contact precautions.

Microbiological investigations
Weekly routine rectal samples were recovered with pre-
moistened swabs. Samples were directly inoculated on 
ChromID CARBA SMART (bioMérieux, Marcy-l’Etoile, 
France) screening agar.

Between January 2016 and June 2018, intermittent 
environmental sampling was performed to identify 
potential reservoirs of CPE. Overall, 263 samples were 
collected from the patient environment (n = 118, includ-
ing 44 tables, 26 toilet seats, 23 bed frames, 10 mat-
tresses, 10 other surfaces and five armchairs), sinks 
and shower drains (n = 137), and medical devices (n = 8).
From June 2018 to August 2018, all toilet rims in the 
haematological ward (n = 74), some toilet tanks (n = 6) 
and a toilet seat as well as some sink and shower 
drains (n = 39) were screened for CPE.
Environmental samples from dry or damp surfaces 
were recovered with sterile cotton-tipped swabs. A pre-
enrichment, performed in a tryptic soy broth, was incu-
bated at 37 °C in an aerobic atmosphere for 24 h before 
plating on ChromID CARBA SMART agar.

Cultured isolates were identified using the MALDI 
Biotyper based on matrix-assisted laser desorption/
ionisation time-of-flight mass spectrometry (MALDI-
TOF MS, Bruker, Wissembourg, France).

Antimicrobial susceptibility testing was performed by 
disk diffusion method on Mueller-Hinton agar (Bio-Rad, 
Marnes-la-Coquette, France) and interpreted as recom-
mended by the European Committee on Antimicrobial 
Susceptibility Testing (EUCAST) [8].

When CPE was suspected, the identification of carbap-
enemase type was confirmed by PCR (Xpert Carba-R 
assay, Cepheid, Maurens-Scopont, France) or by immu-
nochromatographic assay (RESIST-4 O.K.N.V, Coris 
BioConcept, Gembloux, Belgium).

OXA-48 CPE isolates from patients and from the 
environment were sent to the associated National 
Reference Centre (NRC) for antimicrobial resistance for 
confirmation and typing. In the NRC, carbapenemase 
production was reassessed using both the RAPIDEC® 

Figure 1
Epidemiological curve of cases with OXA-48-producing Enterobacterales infection or colonisation in the haematological 
ward, France, January 2016– June 2019 (n = 37) 
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Cases were categorised as imported into the haematological ward when CPE was identified within 48 h after admission. Acquired cases were 
defined as a CPE detection at least 48 h after admission or on admission if the patient was previously identified as a contact patient in the 
haematological ward.
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CARBA NP test (bioMérieux, Marcy-l’Etoile, France) and 
another immunochromatographic assay (NG-CARBA 5, 
NG Biotech, Guipry, France), as previously described 
[9,10].

Whole genome sequencing
To distinguish carbapenemase producers belonging to 
the same sequence type, whole genome sequencing 
was performed using Illumina technology (Illumina, 
Evry, France) as previously described [11]. Total DNA was 
extracted from colonies using the Ultraclean Microbial 
DNA Isolation Kit (MO BIO Laboratories, Ozyme, 
Saint-Quentin, France) following the manufacturer’s 
instructions. De novo assembly and read mappings 
were performed using CLC Genomics Workbench v10.1 
(Qiagen, Les Ulis, France). The acquired antimicrobial 
resistance genes were identified using Resfinder server 
v3.1 (https://cge.cbs.dtu.dk/services/ResFinder/) and 
CARD database (https://card.mcmaster.ca). Phylogeny 
was performed using CSIphylogeny v1.4 server 
(https://cge.cbs.dtu.dk/services/CSIPhylogeny/) and 
visualised using FigTree software v1.4.3 (http://tree.
bio.ed.ac.uk/).

Nucleotide sequence accession numbers
Sequencing reads from the 29 sequenced OXA-48-
producing C. freundii isolates of sequence type (ST)-22 
that have been used to construct the phylogenetic tree 
have been deposited in the GenBank database under 

the BioProject accession number PRJNA664303 in the 
NCBI BioProject database (https://www.ncbi.nlm.nih.
gov/bioproject/).

Infection control measures
During the outbreak (January 2016–June 2019), con-
tact precautions were applied for all cases and contact 
patients according to French guidelines [12,13]. CPE 
patients were cohorted inside the haematological ward 
with dedicated staff.

Since April 2007, active surveillance for CPE colonisa-
tion has been performed on admission and thereafter 
weekly for all patients admitted to the haematological 
ward. The infection control team implemented a pro-
gramme to limit in-hospital transmission, including a 
mandatory training course for all healthcare workers 
on infection control measures, opportunities for hand 
hygiene with alcohol hand gels, and contact precau-
tions. Furthermore, hand hygiene and excreta man-
agement were evaluated in the ward. Weekly meetings 
between the infection control team and haematological 
staff were implemented to help strengthen compliance 
with the control measures.

Spatio-temporal links were found for CPE-positive 
patients between January 2016 and September 2017, 
suggesting a possible cross-transmission via the 
healthcare workers’ hands despite infection control 

Figure 2
Timeline of the detection of OXA-48-producing Enterobacterales cases, France, November 2017–July 2018 (n = 9)
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measures. Consequently, in October 2017, a dedicated 
six-bed unit for all CPE patients was created with dedi-
cated nurses and nurse assistants, in order to separate 
CPE-positive patients from other patients hospitalised 
in the haematological ward.

Matched case–control study
Variables associated with OXA-48 CPE acquisition were 
investigated in a matched case–control study. Cases 
were patients who acquired OXA-48 CPE between 
January 2017 and June 2018 in the haematological ward. 
Controls were contact patients of acquired cases. Each 
case was matched with three control patients according 
to the exposure time in the unit. Matched controls were 
randomly selected. Collected data included age, sex, 
haematopoietic stem cell transplantation, antibiotic 
exposure and immunosuppressive therapy (defined 
as treatment with chemotherapy, immunosuppressive 
drugs, radiotherapy or corticosteroids) in the previous 
month, room number and length of stay in the previous 
6 months in our hospital. Univariate analyses were per-
formed using conditional logistic regression. Statistical 
analysis was performed using Stata software (v15.1, 
StataCorp, College Station, Texas, United States).

Results

Case characteristics
Between January 2016 and June 2019, 37 new OXA-48 
CPE cases were detected in the haematological ward 
(Figure 1  and  Supplementary Table S1). Of these, 31 
were considered as acquired cases, and six were iden-
tified as imported cases. The median age was 59.5 
years (interquartile range: 45.0–69.4) and 19 patients 
were male. Among the 37 OXA-48 CPE cases, 32 were 
initially detected by rectal screening, and 21 developed 
an infection. These included 13 urinary tract, seven 
bloodstream, and one pneumonia infection. Three 
patients (Cases 11, 22 and 34) carried a strain harbour-
ing both bla  OXA-48 and bla  NDM genes, and two of these 
cases were acquired (Cases 11 and 22).

A total of 78 OXA-48 CPE were detected including 22 C. 
freundii, 19 E. coli, 15 K. pneumoniae, seven Klebsiella 
oxytoca, six  Enterobacter cloacae, two  Citrobacter 
koseri, two  Enterobacter aerogenes, one  Hafnia alvei, 
one  Kluyvera cryocrescens, one  Citrobacter amalonati-
cus, one Morganella morganii, and one Raoultella orni-
thinolytica. Eighteen patients harboured at least two 
different CPE (Supplementary Table S1).

Figure 3
Phylogenetic tree of OXA-48-producing Citrobacter freundii sequence type (ST)-22 isolates, France, 2016–2019 (n = 28)
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In addition, two NDM-CPE-positive patients were hos-
pitalised in the haematological ward (one imported in 
2017 and one acquired in 2019).

In October 2017, a dedicated unit was opened for CPE-
positive patients, but this did not help to contain the 
outbreak; 13 new cases were identified in the follow-
ing months up until the study endpoint of June 2019. 
Of these, 11 cases were acquired, and nine occurred 
between November 2017 and June 2018 (Figure 2), sug-
gesting the presence of a potential environmental res-
ervoir of CPE. Only one (Case 32) was identified as a 
contact of a known case. 

Environmental investigations
Between January 2016 and June 2018, all 263 envi-
ronmental samples were negative for CPE. From June 
2018 to August 2018, eight samples of 119 were posi-
tive for OXA-48 CPE in two units including seven of 74 
toilet rims and one of 39 sink drains. Strains isolated 
by culture included  C. freundii  (n = 7),  Enterobacter 
sakazakii  (n = 1) and  E. coli  (n = 1). Of the seven  C. fre-
undii  isolates, five belonged to ST-22, one to ST-253-
like, and one was not typed. In contrast, 104 toilets 
randomly selected elsewhere within the hospital 
were screened and only two were  C. freundii  OXA-48-
positive (p = 0.034).

Comparison of OXA-48-producing Citrobacter 
freundii isolates
Sequence type was determined for 34 CPE isolates. We 
focused our attention on C. freundii since all acquired 
isolates (n = 17) belonged to the same sequence type 
(ST-22). In contrast, the remaining OXA-48 CPE species 
(nine E. coli, four K. pneumoniae, two K. oxytoca, one E. 
cloacae, one  C. freundii) belonged to different STs 
(Supplementary Table S1).

We compared 23 clinical and six environmental (toi-
let) isolates of OXA-48-producing C. freundii by whole 
genome sequencing (Figure 3). Twenty-two were 

identified in the haematological ward (17 clinical and 
five environmental strains (179 H9, 179 H10, 179 I1, 179 
I3 and 179 I4)), two were identified elsewhere in our 
hospital (one clinical strain (137 I7) and one environ-
mental strain (179 I5)) and five unrelated strains came 
from the collection of the NRC (169 J8, 178 H10, 195 J10, 
169 B1 and 195 G4).

All 24 OXA-48-producing  C. freundii  identified in our 
hospital belonged to ST-22, except Case 8, which was 
an imported case. In addition, determination of single 
nucleotide polymorphisms (SNPs) in the whole genome 
revealed that all ST-22 OXA-48-producing  C. freun-
dii  belonged to the same cluster (< 50 SNPs between 
strains) except for five isolates: 179 I1 (environmental 
strain from haematology), 137 I7 (patient from another 
ward in the same hospital), 149 J4 (Case 22, patient 
positive for both OXA-48 and NDM-1), 137 I5 (Case 13), 
and 244 E5 (Case 37). Three patients (Cases 22, 13 
and 37) presented no traditional risk factors for CPE 
carriage (i.e. previous travel or hospitalisation abroad).

Matched case–control study
Nineteen acquired CPE cases identified between 
January 2017 and June 2018 (Cases 14 to 16 and 18 to 
33) were matched to 57 controls. The only factor sig-
nificantly associated with CPE acquisition was hospi-
talisation in a room with a toilet that was positive for 
OXA-48 CPE (odds ratio = 6.2; 95% confidence inter-
val: 2.0–19.6; p = 0.002) (Table).

Outbreak control measures
Following the identification of the toilets as a poten-
tial source of the outbreak, intensive toilet clean-
ing with descaling and bleaching (initially daily, then 
weekly) was implemented. Afterwards, 23 environ-
mental samples were taken (including 21 toilet rims 
and two drains), and only one toilet remained positive 
for OXA-48-producing  C. freundii. This toilet was suc-
cessfully re-decontaminated by performing a single 
additional cleaning and bleaching. In August 2018, 

Table
Matched case–control study of a CPE outbreak in a haematological ward, France, January 2017–June 2018 (n = 76)

Variable
Cases 

 
(n = 19)

Controls 
 

(n = 57)
OR 95% CI p

Median (IQR)
Age in years 58 (40–70) 63 (55–67) 1.0 0.9–1.0 0.38
Length of stay (previous 6 months, in days ) 28 (13–71) 54 (27–96) 1.0 1.0–1.0 0.11
n (%)
Men 8 (42) 37 (65) 0.4 0.1–1.2 0.10
Haematopoietic stem cell transplantation 14 (74) 39 (68) 1.3 0.4–4.3 0.65
Antibiotic exposure (previous month) 18 (95) 45 (80) 4.5 0.5–36.6 0.17
Immunosuppressive therapy (previous month) 17 (89) 51 (89) 1.0 0.2–5.3 1.00
Hospitalisation in a room with OXA-48 CPE-positive toilet 14 (74) 15 (26) 6.2 2.0–19.6 0.002

CI: confidence interval; CPE: carbapenemase-producing Enterobacterales; IQR: interquartile range; OR: odds ratio.
Multiple variables can apply to more than one case.
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all toilets bowls and tanks in two units with environ-
mental CPE-positive samples were replaced by rimless 
toilets. Rimless toilets are easier to clean and reduce 
the risk of limescale deposits. After implementation 
of the environmental measures, the incidence of new 
CPE cases declined, and only two unrelated CPE cases 
(Cases 35 and 37) (Figure 1  and  Supplementary Table 
S1) were acquired 8 and 10 months, respectively, after 
this measure. The origin of these two CPE cases remain 
undetermined.

Discussion
We report here the persistent transmission of OXA-48 
CPE in a haematological ward and provide arguments 
to support the role of toilets in the transmission of CPE. 
Firstly, environmental sampling confirmed that toilets 
were contaminated by CPE and represented a poten-
tial reservoir. This could explain the persistence of the 
transmission despite the implementation of infection 
control measures including a cohorting unit dedicated 
to CPE cases. Secondly, the only factor significantly 
associated with CPE acquisition was hospitalisation 
in a room with OXA-48-positive toilets. Thirdly, the 
incidence of CPE cases declined after intensive toilet 
cleaning, and subsequent replacement with rimless 
toilets. Through ongoing surveillance, we reported 
only two new unrelated acquired CPE cases, 8 and 10 
months apart respectively, after this measure.

Patient-to-patient transmission via the hands of health-
care workers has been considered as the major route 
of CPE transmission [14,15]. However, the water envi-
ronment is widely reported as a reservoir for hospi-
tal-acquired transmission of carbapenem-resistant 
organisms. Drains, sinks and faucets are the most 
frequently contaminated sites, with Pseudomonas aer-
uginosa  as the predominant microorganism [6,7,16]. A 
combination of interventions including reinforcement 
of infection control measures, environmental cleaning 
and replacement of all the toilets has been shown to be 
successful in controlling the outbreaks [17,18]. However, 
to our knowledge, toilets have never been shown to be 
exclusively responsible for CPE transmission.

When flushed, toilets splash and produce droplet 
aerosols. Aerosolisation of microorganisms from con-
taminated toilets during flushing has repeatedly been 
demonstrated for various toilet types and organisms 
for the past 50 years [19]. Transmission of microorgan-
isms from toilets is attributed to splashing directly on 
the patient or by contamination of the environment. 
Recently, Buchan et al. found a high prevalence of car-
bapenemase-producing bacteria in sink drains, espe-
cially next to toilets, suggesting a contamination of the 
sink via droplets during toilet flushing [20].

If toilets are indeed a reservoir and a potential source 
of CPE transmission, then additional interventions such 
as optimisation of toilet disinfection protocols (such as 
serial cleaning with descaling and bleaching), rimless 
toilet bowls, patient hand hygiene reinforcement, use 

of removable seats to optimise disinfection, or patient 
education to close the toilet lid before flushing, should 
be implemented.

In our cohort, 21 of the total 37 patients had a CPE 
infection. Of those infections, seven were bacteraemia, 
including one case caused by C. freundii. This propor-
tion is considerably higher than that reported in the lit-
erature [21]. This high proportion of infected patients is 
probably due to the fact that most of the patients were 
immunocompromised. Because our outbreak involved 
multiple Enterobacterales species, we hypothesised 
that the  bla  OXA-48carrying plasmids spread among 
various species in the same patient, as described by 
Conlan et al. [22]. Indeed, the high conjugation fre-
quency of the prototypical  bla  OXA-48carrying plasmid 
has been attributed to the disruption of the  tir  gene, 
encoding a transfer inhibition protein, by insertion of 
the transposon Tn1999 where bla OXA-48 is localised [23]. 
The fact that, on one hand, all OXA-48-producing C. fre-
undii  isolates were clonal and, on the other hand, the 
OXA-48 CPE species other than  C. freundii  belonged 
to different STs, suggests that a transmission of  C. 
freundii  occurred first, followed by a transfer of the 
OXA plasmid to other Enterobacterales present in each 
patient’s gut. However, the reason why the  C. freun-
dii species (especially the ST-22 cluster), rather than K. 
pneumoniae or E. cloacae, played a key role in the dis-
semination of OXA-48 via toilets as a reservoir needs 
further investigation.

Our study has several limitations. Firstly, as a single 
centre study, its generalisation is limited. Secondly, 
there was no assessment of adherence to the infec-
tion control team recommendations. Thirdly, as with 
any observational study, other events (i.e. antibiotic 
use, alcohol hand rub use) may have had an impact 
on the reduction of CPE acquisition. Finally, the infec-
tion control strategies that were implemented included 
bundled approaches (reinforcement of hand hygiene, 
cleaning with descaling, bleaching and replacing the 
standard toilets with rimless toilets) making it diffi-
cult to demonstrate the relative effect of each measure 
individually.

Conclusion
This outbreak highlights the possible role of toilets as 
a source of transmission of OXA-48 CPE. It was suc-
cessfully controlled only after replacing all the toilets 
in the ward. When confronted with a protracted out-
break, infection control teams should take into account 
uncommon environmental reservoirs in their investiga-
tion and enactment of control measures.
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