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ork pharmacology and an
experimental validation strategy elucidates the
protective effect and mechanism of callicarpa
nudiflora against neuroinflammation†

Guodong Yang, a Yufu Liu,a Yonglin Liu,a Yu Ma,a Yiguang Lib and Jie Chen*a

Abnormal activation of microglia promotes neuroinflammation (NI) in Alzheimer's disease (AD). Callicarpa

nudiflora Hook et Arn. (CN) is a traditional Chinese herb with a wide range of clinical applications and

definite anti-inflammatory effects. However, the anti-inflammatory action and mechanism of NI are not

known. The purpose of this research was to survey whether CN could inhibit lipopolysaccharide (LPS)-

induced inflammatory activation in BV-2 microglia. This study used a network pharmacology and

pharmacophore model-based approach to explore the molecular mechanism of CN anti-NI by

combining molecular docking and experimental validation. First, we screened the key active components

and targets of CN anti-NI by network pharmacology. Then, the common structural features of these

functional molecules in the treatment of neuroinflammation were predicted by 3D-QSAR

pharmacodynamic modeling. Finally, the molecular mechanism of the active ingredient 5-hydroxy-

3,7,4′-trimethoxyflavone (THF) against neuroinflammation was validated by molecular docking and in

vitro experiments. In conclusion, this study established the structure–activity relationships of the active

components of CN anti-NI and provided new insights into the pharmacological mechanisms of CN anti-

NI at an integrative level.
1. Introduction

Alzheimer's disease (AD) is a progressive neurodegenerative
disease that is the main cause of the progression of dementia.1

As the disease progresses, AD patients experience a variety of
symptoms, beginning with impaired speech and memory,
leading to a vegetative state and eventual death.2 Currently,
about 50 million people worldwide suffer from dementia,3 most
of whom are affected by AD.4 And the number of people with
dementia in various stages is still increasing rapidly, making it
a major public health problem around the world and a huge
social and economic burden for patients and their families.5 AD
is mainly characterized by senile macules or Ab spots resulting
from abnormal changes in amyloid precursor protein (APP) and
neurobrillary tangles (NFTs) with hyperphosphorylated tau (P-
tau).6,7 Now, these two hypotheses have been in-depth studies
and are thought to be important targets for the treatment of AD.
Ever, up until now, clinical trials modulating both pathological
proteins by direct amyloid or tau immunotherapy have shown
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disappointing results. Abundant nitric oxide in the brain trig-
gers oxidative damage to neurons and contributes to the acti-
vation of apoptosis.8 Hence, effective inhibition of
neuroinammation represents a critical strategy for the treat-
ment of AD. Neuroinammation is an immune response acti-
vated by microglia and astrocytes in the CNS, which leads to the
emission of pro-inammatory cytokines and chemokines.9

Microglia have a role in the CNS response with neuro-
modulatory, neurotrophic and neuroimmune roles. When the
CNS is injured, microglia are activated and translocate to the
site of injury, unleashing a host of pro-inammatory, anti-
inammatory, and neurotoxic responses.10–12 Thus, suppress-
ing microglia activation may be an effective strategy to combat
neuroinammation. Lipopolysaccharide (LPS), an
inammation-inducing endotoxin, is frequently utilized to
boost microglia and build a useful in vitromodel to research the
mechanism of neuronal injury.13 Over recent years, several
reports on LPS-activated microglia modeling neuro-
inammation have been published.14,15 Nevertheless, the in vivo
effectiveness of anti-neuroinammatory and micro-glia-
targeting drugs remains undened.16 It is therefore imperative
to search for a new drug with few or no side affects.17

Traditional Chinese medicine (TCM) has a multi-target and
multi-component history of preventative and curative treatment
of different disorders for thousands of years18 and performed an
© 2022 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d2ra05143e&domain=pdf&date_stamp=2022-10-30
http://orcid.org/0000-0002-8532-4105
https://doi.org/10.1039/d2ra05143e


Paper RSC Advances
outstanding effect. TCM is oen considered to be an easily
accessible, inexpensive, and less harmful manner of therapeu-
tics. Traditional Chinese herbal medicine can be an effective
alternative treatment tactic for a wide range of multifactorial
and complex chronic diseases, of which AD is one.19 For this
reason, the search for herbal remedies for NI has become a hot
spot in modern pharmacological research. CN is a member of
the Verbenaceae family, widely scattered in South China.20 CN
has tremendous anti-inammatory properties. Crude extracts
and extracted fractions of CN have been reported to be found to
have good anti-inammatory activity.20,21 In addition, Sun et al.
found that nine previously undescribed Seco-labdane diterpe-
noids isolated from the leaves of CN exhibited signicant
inhibition of nitric oxide (NO) production in LPS-induced
Fig. 1 Schematic diagram of the anti-NI mechanism of CN. Network pha
NI treatment; the common structural features of four anti-NI active com
molecular docking showed that all four drug candidates could bind w
candidate compound 5-hydroxy-3,7,4′-trimethoxyflavone can polarize m
modulating the expression of inflammatory factors and promoting the a

© 2022 The Author(s). Published by the Royal Society of Chemistry
mouse microglial BV2 cells.22 Although studies have docu-
mented the biological activity of CN as an anti-inammatory
agent, reports on the molecular mechanisms of the anti-
inammatory effects of CN remain scarce due to the
complexity of its chemical composition. However, efforts are
necessary to elucidate the molecular mechanisms by which CN
regulates microglia activation in the context of AD.

Network pharmacology is a research approach developed
based on systems biology and multifaceted pharmacology.23 It
shows a high degree of congruence with the holistic dynamic
approach and multi-component, multi-target, and multi-
pathway interactions of TCM in the treatment of disorders.24

The network pharmacology approach can be an effective way to
identify the critical role of herbal medicine in the treatment of
rmacology analyzed the active components and core targets of CN for
pounds in CN were identified by 3D-QSAR pharmacological modeling;
ell to interleukin-6 targets. Cellular experiments confirmed that the
icroglia from pro-inflammatory to anti-inflammatory phenotypes by

nti-inflammatory phenotype.
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diseases.25 This approach reects the complex and diverse
relationships among drugs, targets, diseases, and signaling
pathways in the form of a network, thereby demonstrating the
workings of various active ingredients, helping us to better
understand the effects of drugs and facilitating the develop-
ment of new drugs. Pharmacophore modeling is a widely
applicable and effective method for the discovery of new active
compounds. It is based on the common characteristics of
molecules and is studied by using mathematical and statistical
methods and reveals a series of ligand molecules that are
shared by chemical characteristics, and based on the structure
of these standard features than composite pharmacophore
model of automatic generation, thus further compounds to
search the database to nd possible precursor molecules and
explore the structure–activity relationships of a series of mole-
cules with similar activity but different structures.26 In
a nutshell, molecular docking can predict the affinity of the
ligand by calculating the interaction between the ligand and the
protein, illustrating the mechanism of interaction between the
two at the molecular level.27

The purpose of this effort was to identify the molecular
mechanism of action of the anti-neuritis activity of CN. We used
network pharmacology to analyze the compound–target inter-
actions and relevant signaling pathways of CN. And then, a 3D-
QSAR pharmacophore model based on molecular co-features
was built using the HipHop method to anticipate the
common structural characterization of the active components
in CN against NI. Finally, molecular docking showed that these
compounds docked tightly with the predicted target proteins.
We further established a NI model of LPS-induced BV2 micro-
glia to evaluate the anti-NI effect of CN, which provides a basis
for the rational use and in-depth development of new drugs.
This workow is shown in Fig. 1.

2. Materials and methods
2.1. Network pharmacology

2.1.1. Screening active compounds and prediction of
ADMET. By analyzing the physicochemical and structural
characteristics of drug candidates, researchers have summa-
rized the concept of drug-like properties, which has been widely
used in the screening of lead compounds. Thus, as an estab-
lished concept for drug design, ADMET can estimate which
compounds have “drug-like” characteristics. We systematically
and comprehensively investigated the chemical composition of
CN publicly reported in CNKI, Wanfang, Web of Science data-
base, and PubMed database,28 and ChemDraw29 is used to draw
molecular formulas of compounds, entering the canonical
(SMILES) information. Import it into the Discovery Studio
soware (Discovery Studio 2019; BIOVIA; San Diego, USA) and
select “calculate molecular properties” in the “small molecules”
module. In the “calculate molecular properties” module, click
on “ADMET descriptors” to set the parameters, and the levels
can be classied as 0, 1, 2, and 3, representing very good, good,
poor, and very poor intestinal absorptivity and blood–brain
barrier penetration, respectively, according to the human
intestinal absorptivity model blood–brain barrier penetration
31126 | RSC Adv., 2022, 12, 31124–31141
model, relatively poor and very poor. The greater the Mahala-
nobis distance (MD) and the smaller the p-value of MD (MD p-
value) in the hepatotoxicity and plasma protein binding rate of
the drug, the less reliable the predicted results. According to the
hepatotoxicity measure, 0 and 1 levels represent no hepatotox-
icity and hepatotoxicity, respectively. Compounds with no
hepatotoxicity and small MD values and large MD p-values are
considered ideal.

2.1.2. Collection and lter of active compounds and NI-
related targets. The targets relevant to each candidate
compound were looked for from the PharmMapper database
(https://www.lilab-ecust.cn/pharmmapper)30 and then
converted to the corresponding gene names from the Uniprot
database (https://www.uniprot.org/).31 Furthermore, the
SMILES formula of the candidate components was used to
seek potential targets on the SwissTargetPredictioninterface
(https://www.swisstargetprediction.ch/).32 Finally, the
constituent targets derived from the two databases were then
combined to eliminate duplicate terms.

Known disease targets were located and ltered by the
keywords “neuroinammation” by using GeneCardsdatabase
(https://www.genecards.org/),33 OMIM database (https://
omim.org/),34 and DrugBank database (https://
www.drugbank.ca/).35 Aerward, all results were then
consolidated and intersecting targets were excluded.

2.1.3. Obtain intersection target genes and draw a Venn-
diagram. To obtain potential targets for CN treatment of NI, the
targets of CN components collected in the previous study were
incorporated with the NI-related targets to obtain the co-targets
of both. The co-targets of both were then input to Draw Venn
Diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/)
Center for analysis,36 and subsequently, their co-targets were
used as the core targets for follow-up analysis.

2.1.4. Protein-protein-interaction (PPI) and hub target
analysis. To recognize the core modulation targets, we input the
common targets of CN anti-NI obtained earlier into the STRING
database (https://string-db.org/)37 for PPI analysis. The
condition was selected as “Homo sapiens”, and the default
condence level was greater than or equal to 0.4; other
parameters remained unchanged. Aerward, Cytoscape 3.7.2
was used to visualize the interaction information in the
network. The CytoNCA plugin of Cytoscape38,39 were selected
for analyzing the topological properties of the data. Among
these, betweenness centrality (BC), closeness centrality (CC),
and degree centrality (DC) were selected to assess the
signicance of nodes in the network. The greater the value of
these three, the more critical the target pointed is in the
network. In the PPI network, BC, CC, and DC are selected as
variables for the core targets, and the core target network
correlation diagram is constructed on the result of the selection.

2.1.5. GO and KEGG pathway enrichment analysis. To
further analyze the specic mechanism of action of CN in anti-
NI, we entered the common targets of active ingredients and
diseases into the DAVID database (https://david.ncifcrf.gov/
summary.jsp) for biological procedure enrichment analysis
and pathway enrichment analysis, selecting “Homo sapiens”
and the signicance condition P < 0.01. The results of the
© 2022 The Author(s). Published by the Royal Society of Chemistry

https://www.lilab-ecust.cn/pharmmapper
https://www.uniprot.org/
https://www.swisstargetprediction.ch/
https://www.genecards.org/
https://omim.org/
https://omim.org/
https://www.drugbank.ca/
https://www.drugbank.ca/
https://bioinformatics.psb.ugent.be/webtools/Venn/
https://string-db.org/
https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp


Paper RSC Advances
enrichment analysis were displayed visually based on R 4.0.2
and related R packages (cluster prole, ggplot2, enrichplot,
preview, and BiocManager).

2.1.6. Network construction. Network building was done
using the network visualization soware Cytoscape 3.7.2, which
can intuitively show the compound–target–pathway association
between CN and NI, including 2 networks, respectively: (1)
compound-predicted target for CN network; (2) effective
compound–hub target–pathway network for CN anti-NI.

2.2. Construction of the 3D-QSAR pharmacophore model

2.2.1. Construction of pharmacophore model based on
common molecular feature. Twenty-six IL-6 inhibitors that
passed the laboratory analysis were selected from the published
papers as the training set.40. (ESI Fig. 1†). The structures of these
compounds were drawn using ChemDraw, and the energies of
the molecules were energy minimized by the Minimization
module in Discovery Studio soware (Discovery Studio 2019;
BIOVIA; San, USA). Based on the common structural charac-
teristics of the 26 compounds in the training set, the ultimate
pharmacophore model has been created utilizing the HipHop
approach of the Common Feature Pharmacophore generation
module under the Pharmacophore item in the Discovery Studio
soware.41 Briey, the principal value of the active compound
was set to 2, and the MaxOmitFeat value was set to 1, indicating
the conformational space of the established pharmacophore
reference ligand. The hydrogen bond acceptor, hydrogen bond
donor, hydrophobic center, positively charged ion center, and
aromatic ring center were selected as the characteristic
elements of pharmacophore in the HipHop module, and the
range of each pharmacophore was set as 0–5. The best mode
was adopted for superposition, the upper limit of conformation
generated by each compound was set at 255, and only the model
whose energy difference with the lowest conformation was less
than 20 kcal mol−1 was saved. Aer the analysis, only the 10
highest-rated pharmacophore models were maintained.

2.2.2. 3D-QSAR pharmacophore verication. The top 10
generated pharmacophores were evaluated using the Ligand
Proler module in Discovery Studio. 21 active compounds with
IL-6 inhibition published in the literature and 5 with no re-
ported activity were used as the test set for the generated
pharmacophores (ESI Fig. 2†). The nal selected pharmaco-
phore was required to meet the characteristics of having a high
match to the active compound and a low match to the inactive
compound with the highest possible scoring value. Aer
obtaining the preferred pharmacophore, the 26 active ingredi-
ents predicted by network pharmacology were matched to the
pharmacophore and the results were analyzed.

2.3. Molecular docking

2.3.1. Reliability verication of molecular docking process.
In the current study, we selected four active components esti-
mated by the pharmacological model as ligand compounds,
and selected IL-6, which had the highest score in the network
pharmacological search lter, as the receptor protein, and
downloaded the crystal structure of the protein. Discovery
© 2022 The Author(s). Published by the Royal Society of Chemistry
Studio was used for molecular docking, and the ligand expan-
sion method was used to determine the active site. This means
that the ligand is centered on the location of the ligand and
then expands outward to a certain extent, generally with
a radius of 9 Å. The receptor residues within this range
constitute the relevant active site. Before the molecular docking
of the four active ingredients, the accuracy and reliability of the
docking process should be evaluated. The target protein
complex containing the original ligand was rst obtained from
the RCSB PDB database (https://www.rcsb.org/), aer which the
original ligand was abstracted and then docked to the binding
pocket of the complex, and the root-mean-square deviation
(RMSD) of the conformation of the docked ligand from the
conformation of the ligand in the original crystal structure was
calculated. It is generally believed that the method is reliable
when RMSD is less than or equal to 2.0.

2.3.2. Molecular docking of four active ingredients. The
prepared target proteins and four active ingredients are
imported into Discovery Studio and docked using the LibDock
module. This method is fast and accurate and is suitable for fast
and accurate virtual screening of large databases. The param-
eters' active site radius is set to 9, the number of Hotspots is set
to 100, and the rest of the parameters are Default.
2.4. Experimental verication in vitro

2.4.1. Microglial BV2 cell culture. The BV2 microglial cell
line was purchased from the China Typical Culture Collection of
Wuhan University. Cells were cultured in Dulbecco's Modied
Eagle Medium (DMEM) (Solarbio, China) containing 10% fetal
bovine serum (FBS, Gibico, Mexico origin). Cells were incubated
at 37 °C and 5% CO2.

2.4.2. Cell viability assay. The cell viability is evaluated via
the Cell Counting Kit-8 (CCK-8) assay (Beyotime, China). BV2
cells at the logarithmic growth stage were inoculated in 96-well
plates at a density of 9 × 103 per well, 100 mL per well, and aer
the cells were plastered, the experiment was divided into the
blank group; the LPS group (1 mg mL−1); THF in each dose
group (0, 3.125, 6.25, 12.5, 25, 50 and 100 mM), Each group was
repeated 5 times, the blank group with fresh culture medium,
dosing group pretreated for 3.5 h before adding LPS stimulation
or THF alone. Aer incubation for 24 h, 10% CCK-8 medium
was added and incubated for 2 h at 37 °C. Aer that, the
absorbance was tested at 450 nm.

2.4.3. Nitric oxide (NO) assay. The concentration of NO in
the cell culture supernatant was determined by the Griess
method. Cells were inoculated in 96-well plates at a density of 9
× 103 per well. Aer the cells were plastered, the experiment was
divided into the blank group; LPS group (1 mg mL−1); THF each
dose group (12.5 mM, 25 mM and 50 mM), with 5 parallel sub-
wells in each group, and the blank group was added with
fresh culture medium, and the drug administration group was
pretreated for 3.5 h before adding LPS stimulation. Aer 24 h of
incubation, supernatants were collected and assayed without
following the manufacturer's protocol (Beyotime, China).

2.4.4. Enzyme-linked immunosorbent assay. Cellular
inammatory factors tumor necrosis factor TNF-a and
RSC Adv., 2022, 12, 31124–31141 | 31127
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Table 1 67 Potential targets of CN anti-NI

No. Gene No. Gene No. Gene No. Gene No. Gene

1 UGT2B7 15 ACE 29 IL6 43 EGFR 57 MAP2K1
2 AR 16 F2 30 PTGS2 44 TRPV1 58 SNCA
3 NR1H3 17 NOS3 31 STAT3 45 ACHE 59 CASP8
4 MME 18 NOS2 32 CYP1B1 46 BCL2 60 FOS
5 ESR1 19 KIT 33 PLG 47 RET 61 MET
6 NR3C1 20 CA2 34 ABCC1 48 SKY 62 TLR2
7 TP53 21 NOS1 35 AKT1 49 MAPT 63 NLRP3
8 IL1B 22 IL6ST 36 VEGFA 50 SRC 64 MAPK1
9 MIF 23 PPARG 37 CASP3 51 CYP2C19 65 MAPK14
10 MMP3 24 JAK1 38 TTR 52 CYP3A4 66 MAPK3
11 MMP13 25 TLR1 39 ABCB1 53 CYP2C9 67 NTRK1
12 MMP9 26 COMT 40 PIK3CA 54 CYP1A2
13 MMP2 27 APP 41 RELA 55 BCHE
14 MAPK8 28 TNF 42 TERT 56 PDGFRA
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interleukin-6 were evaluated using an enzyme-linked immuno-
sorbent assay (ELISA) kit (Beyotime, China). Cells were cultured
in 24-well plates at a density of 1 × 105 per well. Aer allowing
the cells to adhere to the walls, they were processed as described
in Section 2.4.3. Aer 24 h of enculturation, the cell culture
supernatant was obtained and the supernatant was collected
through centrifugation (4 °C, 1000 × g, 10 min) and then added
to a 96-well plate in the ELISA kit at 100 mL per well. IL-6 and
TNF-a concentrations were measured with the ELISA manu-
facturer's instructions.

2.4.5. RNA isolation and quantitative real-time polymerase
chain reaction. Total sample RNA was extracted using Trizolszol
up (TransGen Biotech, China) and reverse transcribed into
cDNA using the TransScript One-Step gDNA Removal and cDNA
synthesis SuperMix (TransGen Biotech., China) according to the
manufacturer's guidelines, qPCR was performed on an ABI Step
One system (Thermo, USA) using the TransStrart Green
QpcrSuperMix kit (TransGen Biotech, China). The primer
sequences used in this study are listed in Table 1 b-actin was
used as a normalization control. The relative RNA expression of
each gene was analyzed by the 2−DDCT method.

2.4.6. Statistical analysis. GraphPad Prism 8.0 soware (La
Jolla, CA, USA) was utilized. Statistical analysis of the data was
performed. The measured data were represented as mean and
standard deviation (SD). Differences between the two sample
means were statistically analyzed by t-test, and P-values < 0.05
were deemed statistically signicant. The model and control
groups were considered statistically signicant at #p < 0.05, ##p
< 0.01, ##p < 0.001, ####p < 0.0001. Values of *p < 0.05, **p <
0.01 and ***p < 0.001 indicate statistical signicance between
the treatment and model groups.
3. Results
3.1. Network pharmacology analysis

3.1.1. The acquisition of active compounds using ADMET
screening. In total, we identied 137 drug-related components
from the published literature. In this study, the solubility,
human intestinal absorption, blood–brain barrier penetration,
hepatotoxicity, and plasma protein binding of these
31128 | RSC Adv., 2022, 12, 31124–31141
compounds were predicted using ADMET, resulting in the
screening of a total of 26 CN anti-NI active compounds. Among
them, Fig. 2 shows the distribution of only 26 active compounds
in the 95% and 99% condence intervals of the blood–brain
barrier permeability and intestinal absorption models. Specic
information on the other models is shown in ESI Table 1,† and
information on the 26 active compounds is shown in ESI
Table 2.†

3.1.2. Targets of bioactive compounds in CN and NI-
related targets. We identied the SMILES formula of these
compounds by searching in PubChem. 227 potential targets
corresponding to the above compounds were retrieved accord-
ing to the structural similarity of the compounds from SwissTar-
get prediction and PharmMapper databases. In addition, 602
NI-related gene targets were gained from the GeneCards data-
base, 40 gene targets from the OMIM database, and 31 gene
targets from the DrugBank database. Aer duplication removal,
a total of 655 NI-associated gene targets were acquired. Next, the
Venn diagram showed that there were 67 intersections of
disease-related gene targets and drug-related gene targets
(Fig. 3A), and the specic target information is shown in Table
1, and these targets were determined as potential targets for CN
anti-NI.

3.1.3. Protein-protein-interaction (PPI) network construc-
tion. The 67 shared targets were entered into the STRING
database, and then the data acquired from this center were
entered into Cytoscape 3.7.2 for network mapping and topology
analysis (Fig. 3B). The PPI network results showed that it was
composed of 67 nodes and 861 edges. The topological proper-
ties of the shared targets were analyzed through the CytoNCA
plugin with median BC, CC, and DC values of 15.80787644, 0.6,
and 24, respectively. 30 genes were nally found to have target
values above the median, and these genes were deemed to be
the core targets for CN treatment of NI (Fig. 3C). The number of
those nodes' edges was 56 in IL-6, 53 in TNF, 52 in AKT1, 50 in
TP53, 49 in CASP3, 48 inMAPK3, 47 in VEGFA, 46 in EGFR, 46 in
IL1B, 45 in STAT3, 44 in ESR1, and 44 in PTGS2, respectively. It
is suggested that these genes may be the core genes for the CN
treatment of NI. The degree values of all protein nodes corre-
lated with the targets are shown in the bar graph (Fig. 3D).
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 Distribution of intestinal absorption and blood–brain barrier penetration of 137 CN compounds predicted by ADMET.
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3.1.4. GO and KEGG pathway enrichment analyses. To
explain the therapeutic mechanism of CN anti-NI more clearly,
we analyzed 30 shared targets with GO annotation and KEGG
pathway analysis utilizing the DAVID database. Aer screening
with p-values # 0.01, 239 GO terms were derived, including 172
for biological processes (BP), 50 for molecular functions (MF),
and 17 for cellular constituents (CC). The enrichment results
were sorted depending on the p-value of each biological process
and pathway. This is illustrated in Fig. 4. Among the 172 BP GO
terms, the most enriched BP terms were the transcriptional
promotion of RNA polymerase II promoter (GO:0045944), and
cytokine-mediated signaling pathway (GO:0019221). And
among the 50 MF GO terms, the most signicant terms relevant
to NI treatment are identical protein binding (GO:0042802), and
ATP binding (GO:0005524). Among the 17 CC GO terms corre-
lated with NI treatment, plasma membrane (GO:0005886), and
cytoplasm (GO:0005737) were listed in the top 10 entries.

The KEGG pathway enrichment analysis yielded as many as
161 pathways, and the top 20 pathways were displayed for
graphical visualization. The data were ranked per their p-values
and then converted into histograms and bubble plots for
presentation, respectively (Fig. 5A and B). The results showed
that the common signaling pathways were mainly focused on
the MAPK signaling pathway (hsa04010), IL-17 signaling
pathway (hsa04657), lipid and atherosclerotic signaling
pathway (hsa05417), Toll-like receptor signaling pathway
(hsa04620), and TNF signaling pathway (hsa04668). This
suggests that the active components of CN may exert anti-NI
effects by participating in various bioregulatory processes.
© 2022 The Author(s). Published by the Royal Society of Chemistry
3.1.5. Network construction of compound-predicted target
of CN. As shown in Fig. 6, a total of 26 effective components and
277 predicted targets in CN were derived. The Herbs–
compound–predicted target network (H–C–P) includes 253
nodes (16 compounds and 285 targets) and 407 edges. In this
network, 5-hydroxy-3,7,4′-trimethoxyavone (degree = 28), cal-
licarpaolide (degree = 25), 7a-hydroxy sandaracopimaric acid
(degree = 24), and nudiopenes I (degree = 22) were the main
active ingredients of CN for the treatment of various diseases. It
is furthermore that multiple targets are regulated by multiple
chemical components at the same time. These results demon-
strate that CN-active compounds have an important role in
disease treatment through multi-target modulation.

3.1.6. Construction of effective compounds-hub targets-
pathway network of CN for anti-NI. To further reveal the
mechanism of CN action on NI, this section constructs
a systematic and mature herbal-active-component–center–
target–pathway–disease network (C–E–H–P–D) through 26
active ingredients, 67 shared targets, and 30 KEGG signaling
pathways (Fig. 7). The network consists of 125 nodes and 662
edges, and a single compound in the CN can interact with
multiple targets, and a single target can be regulated by
multiple components. For example, 7a-hydroxy sandar-
acopimaric acid targets 14 central targets, including MIF, TNF,
IL6, IL1A, PIK3CA, RELA, JAK1, BCL2, NOS1, TERT, TRPV1,
MME, ESR1, and CA2. 5-Hydroxy-3,7,4′-trimethoxyavone also
modulates 9 central targets such as MAPK8, TNF, TP53, CASP8,
NOS1, IL1B, ABCC1, MAPT, and ACHE. There are other
compounds and related targets, reecting the positive multi-
RSC Adv., 2022, 12, 31124–31141 | 31129



Fig. 4 CN annotation of GO functions for NI. The bar chart shows the top 10 GO enrichment items for BP, CC, and MF.

Fig. 3 Drug-disease target intersecting Venn diagrams with protein–protein interaction networks. (A) Venn diagram of 227 targets of CN
intersected with 655 targets of NI, (B) PPI network of shared targets correlated with CN and NI. Darker colors indicate larger degree values and
greater importance in this network, (C) a protein–protein cluster containing 30 nodes and 316 edges, (D) top 30 core targets of the PPI network
(Y-axis shows the top 30 important targets, X-axis shows the number of interconnected targets).

31130 | RSC Adv., 2022, 12, 31124–31141 © 2022 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 67 common targets of CN anti-NI, (A) histogram of the top 20
KEGG pathways, (B) bubble plot of the top 20 KEGG pathways.
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component and multi-target intervention of CN in the treat-
ment of NI. In the bioinformatics network, purple represents
herb; green indicates bioactive compounds from CN; yellow
stands for the target genes; blue represents signal pathway; red
is the disease. One target simultaneously corresponds to
multiple components, and besides a potential active ingredient
also responds to multiple targets. It can be seen that the neu-
roprotective mechanism of Chinese medicine is featured
multiple ingredients, multiple targets, and multiple mecha-
nisms. The details of the effective compound–hub target–
pathway–disease network of Chinese medicine are illustrated in
Fig. 5 and 7. The C–E–H–P–D system network indicates that
many target genes of CN are closely related to inammation-
related signaling pathways, including the IL-17 signaling
pathway (hsa04657), TNF signaling pathway (hsa04668), Toll-
like receptor signaling pathway (hsa04620) and MAPK
signaling pathway (hsa04010), and the schematic diagram of
inammation-related signaling pathways is presented in Fig. 8.
3.2. 3D-QSAR pharmacophore model analysis

Although the network pharmacology screening successfully
anticipated important active components of CN for the treat-
ment of NI and the core anti-NI target of CN, interleukin-6.
However, to further elucidate the common structural features
of the key active ingredients predicted by network pharma-
cology in the treatment of neuroinammatory disorders. In this
section, a pharmacophore model based on common molecular
features was constructed to further explore the structural
commonality of active compounds in CN anti-NI, using the key
target interleukin-6 as the active study target. It provides a basis
for elucidating the material basis of CN anti-NI, expanding the
© 2022 The Author(s). Published by the Royal Society of Chemistry
scope of Chinese medicine research, and enriching the theory
of Chinese medicine.

3.2.1. Construction and evaluation of 3D-QSAR pharma-
cophore model. To elucidate the common structural features
among the CN anti-NI active components and to nd the best
pharmacophore model for CN anti-NI, ten 3D-QSAR pharma-
cophore models were developed in this section using the
HipHop method. Table 2 shows the resulting parameters of the
ten pharmacophore models. Each row in the table represents
one pharmacophore. As shown in the table, the rst pharma-
cophore has a higher score. Among them, pharmacophore 01
has the feature RHHA, which indicates that the pharmacophore
contains one aromatic ring center, two hydrophobic features,
and one hydrogen bond acceptor feature. The ranking shows
that this pharmacophore has a score of 109.898; a Direct Hit
indicates that the pharmacophore features match 4 small
molecules. Partial Hit indicates that the number of partially
matched pharmacophores containing 4 small molecules is 0.
Max Fit indicates that all 4 pharmacophore features can be
matched (Table 3).

To validate the validity of the pharmacophore model con-
structed by HipHop, we need to verify whether the pharmaco-
phore has a good ability to distinguish between active and
inactive molecules by using the training set of known
compounds with activity. Fig. 9 shows the heat map of the ten
3D-QSAR pharmacophore models used to predict the training
set compounds. ESI Table 3† shows the corresponding ts. The
closer the t value is to 4, the better the compound ts the
model; the closer the t value is to 0, the lower the compound
ts the model. As shown in Fig. 9, the FitValue values of the
compounds with higher activity in “Pharmacophore 01” were
higher than those with lower activity in “Pharmacophore 01”.
RSC Adv., 2022, 12, 31124–31141 | 31131



Fig. 6 The herb-compound-prediction target network (H–C–P) is composed of 253 nodes (16 ingredients and 285 targets) and 407 edges.
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This result indicates that “Pharmacophore 01” is the best 3D-
QSAR pharmacophore model to predict the activity of CN
compounds. The pharmacophore model may be the decisive
therapeutic pharmacophore for CN anti-NI.

In summary, network pharmacology was used to successfully
screen for highly active compounds for CN anti-NI. Then,
a HipHop approach was used to construct a pharmacophore
model predicting the common molecular structure-based
features possessed by CN active molecules in the treatment of
neuroinammation. Finally, the validity of the 3D-QSAR phar-
macophore was veried by a training set of compounds with
known activity, and the possible decisive therapeutic effect of
“pharmacophore 01” was postulated. Therefore, we will validate
it by molecular docking and in vitro experiments to further
explore the molecular mechanism of CN anti-NI.

3.2.2. Prediction of CN activity based on the 3D-QSAR
pharmacophore model. For the exploration of the structural
31132 | RSC Adv., 2022, 12, 31124–31141
characteristics of CN anti-NI, this part used the HipHopmethod
to forecast the anti-NI activity of CN compounds by building 3D-
QSAR pharmacophore models which are based on molecular
common features. As shown in Fig. 10, 5-hydroxy-3,7,4′-trime-
thoxyavone, ent 3,4-seco-16-hydroxy-12,15-epoxy-
4(18),8(17),12,14-labdatetraen-3-oic acid, nudiopenes C,
nudiopenes M displayed higher activity in the pharmaco-
phore model with FitValues of 3.39, 3.28, 3.10 and 3.04,
respectively. Furthermore, in the H–C–P network, 5-hydroxy-
3,7,4′-trimethoxyavone, Callicarpaolide, 7a-hydroxy sandar-
acopimaric acid, and nudiopenes I was suggested to be
essential active ingredients of CN for the treatment of various
diseases. Both models showed good results for the prediction of
5-hydroxy-3,7,4′-trimethoxyavone. Furthermore, we choose the
predicted values of the 3D-QSAR pharmacophore model estab-
lished by this method as a follow-up study because of the better
accuracy of the pharmacophore model built by 3D-QSAR. In
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 7 Chinese medicines-effective compounds–hub targets–pathways–disease (C–E–H–P–D) network of Callicarpa nudiflora Hook et Arn.
(CN) an-ti-neuroinflammation (NI). The C–E–H–P–D network of CN anti-NI was composed of 26 ingredients, 67 common targets, and 30
pathways, covering 125 nodes and 662 edges. The purple color represents herbs; green indicates bioactive compounds from CN; yellow stand
for the target genes; blue represents signal pathway; red is the disease.

Fig. 8 Schematic diagram of MAPK signaling pathway. The red nodes represent CN–NI-related genes.

© 2022 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2022, 12, 31124–31141 | 31133
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Table 2 Parameters of 10 common features of the pharmacophore

Pharmacophore Feature Rank Direct Hit Partial Hit Max Hit

01 HHHA 109.898 11111111111110 00000000000001 4
02 HHHA 109.617 11111111111110 00000000000001 4
03 HHHA 107.512 11111111111110 00000000000001 4
04 RHHA 107.175 11111111111110 00000000000001 4
05 RHHA 104.751 11111111111110 00000000000001 4
06 RHHA 104.386 11111111111110 00000000000001 4
07 HHHA 103.734 11111111111110 00000000000001 4
08 HHHA 103.709 11111111111110 00000000000001 4
09 HHHA 103.257 11111111111110 00000000000001 4
10 RHHA 102.531 11111111111110 00000000000001 4

Table 3 qPCR primer sequence

Gene 5′ to 3′

TNF-a Forward ATGGCCTCCCTCTCATCAGT
Reverse TTTGCTACGACGTGGGCTAC

IL-6 Forward CTCCCAACAGACCTGTCTATAC
Reverse CCATTGCACAACTCTTTTCTCA

IL-10 Forward ACATACTGCTAACCGATCCTT
Reverse GCTCCACTGCCTTGCTCTT

Arg-1 Forward ATGCTCACACTGACATCAACAC
Reverse CTTCCATCACCTTGCCAATCC

IL-4 Forward GCTAGTTGTCATCCTGCTCTTC
Reverse GGTGTTCTTCGTTGCTGTGA

iNOS Forward ACTACTGCTGGTGGTGACAA
Reverse CCTGAAGGTGTGGTTGAGTTC

b-actin Forward AAGTGTGACGTTGACATCCG
Reverse TCTGCATCCTGTCAGCAATG
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parallel, we selected 5-hydroxy-3,7,4′-trimethoxyavone (THF),
a common ingredient predicted by the network pharmacology
and 3D-QSAR pharmacophore model, as the active ingredient
for in vitro experimental validation.
3.3. Molecular docking results

Inmolecular docking, the ligand is bound to one ormore amino
acid residues through hydrogen bonds in the active pocket,
participating in the process of conformational change and
energy complementation.42 The binding site, binding fraction,
and RMSD value can visualize the interaction and stability of
the docking model. Here, we constructed protein receptors
based on IL-6, the core target of PPI. Based on the 3D-QSAR
pharmacophore model, four highly active compounds were
screened from CN for molecular docking. Before performing
molecular docking of CN components, we rst veried the
reliability of the molecular docking process. Since the crystal
structure of the IL-6 (6CQ5) target protein contains the original
ligand of F8S. We extracted the ligand molecules from the
complex and then docked them into the binding pocket of the
complex using LibDock. The root-mean-square deviation
(RMSD) of the docked ligand from the ligand conformation in
the original crystal structure was calculated to be 1.41428,
which is less than 2. 0, indicating that this docking process has
good accuracy for this target. Subsequently, we used ent 3,4-
31134 | RSC Adv., 2022, 12, 31124–31141
seco-16-hydroxy-12,15-epoxy-4(18),8(17),12,14-labdatetraen-3-
oic acid, nudiopenes C, 5-hydroxy-3,7,4′-trimethoxyavone,
nudiopenes M four active ingredients as ligands and key
target proteins as receptors for molecular docking. The docking
results are shown in ESI Table 4.† The docking results showed
that the docking scores of the four active compounds to the core
target IL-6 were greater than 90, indicating relatively stable
binding between the ligand and the receptor (Fig. 11).

Fig. 11 shows the binding pattern of the IL-6 target protein to
its corresponding original ligand and the four CN active
compounds mentioned above. A high similarity was observed
between the active compounds and the original ligands of the
proteins, which occupy almost the same active site. The binding
pattern of ent 3,4-seco-16-hydroxy-12,15-epoxy-
4(18),8(17),12,14-labdatetraen-3-oic acid at the IL-6 active site
is shown in Fig. 11A in three- and two-dimensional modes,
respectively. Two amino acid residues formed hydrogen bond
interactions with ent3,4-seco-16-hydroxy-12,15-epoxy-
4(18),8(17),12,14-labdatetraen-3-oic acid, and the phenolic
hydroxyl group on this compound was attached to Ser93 and
Lys38 residues via two hydrogen bonds, respectively. Fig. 11B
shows the mode of binding of nudiopenes C to the IL-6 active
site. The molecule is located in the binding capsule surrounded
by residues Gys89 and Ser93. The binding pattern between 5-
hydroxy-3,7,4′-trimethoxyavone and IL-6 is shown in Fig. 8C.
The residues of Cys89 and Gly92 form stable hydrogen bond
interactions with the carbonyl group in 5-hydroxy-3,7,4′-trime-
thoxyavone and the hydroxyl group on the benzene ring,
respectively. Fig. 11D shows the binding pattern between
nudiopenes M and IL-6, forming a hydrogen bond to the
carbonyl group with the Ser93 residue in IL-6.

Taken together, these docking results provide evidence that
the active compound of CN can bind stably to the active pocket
of the receptor protein, forming a stable binding conformation.
3.4. Experimental verication in vitro

3.4.1. THF inhibits the production of pro-inammatory
cytokines. CCK-8 assay was performed aer treatment with
different concentrations of THF to determine the effect on the
viability of BV2 microglia. Fig. 12B shows that none of the THF
concentrations in the range of 12.5–50 mM affected the viability
of BV2 microglia (P > 0.05). Therefore, the concentration range
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 9 Heat map of the 10 pharmacological models predicted for the test group of ingredients.
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of 12.5–50 mM was used in subsequent experiments. In addi-
tion, to determine the combined toxicity of LPS and THF on BV2
microglia, we added LPS (1 mg mL−1) on top of the previous one
to determine cell viability (Fig. 12C). There was no signicant
effect on cell viability (P > 0.05). To determine the effect of THF
on LPS-induced activation of BV2 cells, the morphological
changes of BV2 cells were observed in a bright eld, and it was
found that the cells in the normal group growing well and BV2
cells were in a quiescent state, with semi-adherent round or
spindle-shaped cells and smaller cytosol. Aer LPS intervention
for modeling, most BV2 cells tended to a pro-inammatory
amoeboid morphology; in contrast, some cells reverted to
a round or spindle shape aer pretreatment with THF (50 mM)
(Fig. 12A). To investigate the potential modulatory effect of THF
on pro-inammatory responses, BV2 microglia were treated as
described above. Aer LPS treatment, NO levels were signi-
cantly increased, whereas pretreatment with THF (50 mM)
signicantly reduced LPS-induced production of these pro-
inammatory cytokines in the extracellular medium (Fig. 12D).

3.4.2. THF up-regulates expression of M2 stage-related
genes. We hypothesized that THF may exert its anti-
inammatory effects by promoting the M2 polarization state
as well as by altering the M1 polarization of BV2microglia. First,
we examined the inhibition of inammatory factors IL-6 and
TNF-a by THF in LPS-induced BV2 cells by ELISA kits (Fig. 13A
and B). Aer that, we investigated the changes in the expression
levels of M1 and M2 status marker genes in LPS-induced BV2
© 2022 The Author(s). Published by the Royal Society of Chemistry
cells aer THF pretreatment. In LPS-stimulated BV2 cells, THF
pretreatment signicantly suppressed the mRNA expression
levels of M1 status-related genes (Fig. 13C–E). Meanwhile, THF
pretreatment increased the mRNA expression levels of M2-
related genes (Fig. 13F–H). These results suggest that THF
may be able to shi the phenotype of LPS-stimulated microglia
from M1 polarization to M2 polarization.
4. Discussion

Neuroinammation is a reaction involving all cells in the
Central Nervous System (CNS), contains neurons, glial cells,
etc., and specically refers to inammation occurring in brain
tissue. When pathogens invade brain tissue, they activate
various genes and proteins to produce proinammatory factors
and cytotoxic factors, for example, inducible Nitric Oxide Syn-
thase (iNOS), interleukin-1b (IL-1b), interleukin-6 (IL-6), tumor
necrosis factor-a (TNF-a), cyclooxygenase-1 (Cox-1) and
cyclooxygenase-2 (COX-2).43–46 When these cytokines are over-
produced, the toxicity expands, causing nerve cell damage and
death, leading to long-term neurodegeneration. In recent
decades, there have been many studies on neuroinammation
and some results have been achieved. But no better drugs or
measures have been developed. In recent years, the potential
neuroprotective effects of the main active components of herbal
extracts in various neurological disorders have been extensively
investigated.47,48 Numerous studies have shown that CN is one
RSC Adv., 2022, 12, 31124–31141 | 31135



Fig. 10 Pharmacophore matching of 4 potential IL-6 inhibitory active components. (A) Pharmacophore 10 with ent 3,4-eco-16-hydroxy-12,15-
epoxy-4(18), 8(17),12,14-labdatetraen-3-oic acid (Call.2), (B) pharmacophore 10 with nudiflflopenes C (Call.1), (C) pharmacophore 10 with 5-
hydroxy-3,7,4′-trimethoxyflavone (Call.24), (D) pharmacophore 10 with nudiflflopenes M (Call.17).
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of the herbal medicines with anti-inammatory, neuro-
protective, antithrombotic, analgesic, and antioxidant activi-
ties.49,50 In this study, we screened the key active ingredients and
targets of CN anti-NI by network pharmacology. Through liter-
ature search and ADMET screening, 26 compounds were
conrmed to have good blood–brain barrier permeability and
intestinal absorption, which further provided a basis for the
theoretical drug-like ability of the drugs. Then, the optimal 3D-
QSAR pharmacophore model for predicting key active ingredi-
ents was developed, four highly active compounds were
successfully screened, and the standard structural features
shared by the active molecules in the treatment of neuro-
inammation were further analyzed. Finally, we established
a model of LPS-induced neuroinammation in BV2 microglia
to further explore the potential mechanism of action of CN
anti-NI.

Combined with network pharmacology analysis, we revealed
that CN acts on multiple targets through multiple signaling
pathways, mainly IL-6, TNF, AKT1, and TP53, which may play
a key role in the occurrence and development of neuro-
inammation. Promoting inammatory cytokines, the likes of
IL-1b, TNF-a, and IL-6, have multiple functions in neuro-
degeneration and protection. It has been previously demon-
strated that IL-6 and TNF-a are overexpressed in activated
microglia and lead to neurodegeneration.51 Each of these acute
31136 | RSC Adv., 2022, 12, 31124–31141
phase response proteins is contributing to the progression as
well as to the resolution of both acute and chronic inamma-
tion.52 IL-6 is a polymorphic cytokine produced mainly by
microglia and astrocytes in various brain regions. It protects the
function of the central nervous system by promoting the
survival and regeneration of neurons. Besides IL-6 secretion,
astrocytes positively regulate microglia at multiple levels during
inammatory damage and recovery.53 AKT, also known as PKB
(protein kinase B), is a serine/threonine kinase that comes in
three subtypes. Different AKT subtypes have different effects on
nerve cell inammation, and AKT1 is the most widely expressed
subtype in the brain.54 Studies have shown that Akt1 deciency
promotes the classical activation of macrophages and enhances
phagocytosis.55 P53 has long been considered a key transcrip-
tion factor.56 TP53 induced glycolysis and apoptosis regulator
(TIGAR) is an important p53 target, it has a critical role in the
balancing between glycolysis and redox.57 TIGAR is broadly
located in neurons and has a critical role in the CNS. These
discoveries are consistent with our results that IL-6, TNF, AKT1,
and TPT3 are extremely vital andmay be engaged in the CN anti-
NI process.

To explain the functions and related pathways of 277 protein
targets, further, GO enrichment analysis and KEGG pathway
enrichment analysis were performed. The GO results showed
that the target genes were mainly concentrated in membrane
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 11 Molecular docking of the CN–NI active compound to the receptor protein. Gray represents the original ligand of the crystal structure.
Red represents CN–NI compounds. (A) Ent 3,4-seco-16-hydroxy-12,15-epoxy-4(18),8(17),12,14-labdatetraen-3-oic acid with IL-6, (B) nudifl-
flopenes C with IL-6, (C) 5-hydroxy-3,7,4′-trimethoxyflavone with IL-6, (D) nudiflflopenes M with IL-6.
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microregions and biological functions such as protein tyrosine
kinase activity and monooxygenase activity. KEGG data showed
that the MAPK signaling pathway is the most abundant number
of genes among NI-related signaling pathways and is the most
critical signaling pathway in NI treatment. IL-6, as a key node in
the MAPK signaling pathway, is involved in the process of NI
occurrence and development. MAPK signaling pathway is an
important cell signaling pathway that plays an important role in
mediating various processes such as cell proliferation,
apoptosis, necrosis, and inammation. MAPK signaling
pathway consists of extracellular signal-regulated protein
kinase (ERK), Jun-N-terminal Kinase (JNK), and P38. MAPK is
© 2022 The Author(s). Published by the Royal Society of Chemistry
considered to be an important signaling pathway in the
inammatory process mimicked by LPS. It has been shown that
the p38MAPK protein is a key target of this signaling pathway.58

It has been shown that the p38MAPK receptor initiates the
release of inammatory cytokines (IL-6, TNF-a and NO), so
inhibition of P38MAPK phosphorylation inhibits the release of
inammatory cytokines and other cytotoxic factors from
microglia and reduces neuroinammation.59 These ndings are
consistent with our view that the MAPK signaling pathway is the
most important CN–NI signaling pathway and may be involved
in the anti-NI mechanism of CN.
RSC Adv., 2022, 12, 31124–31141 | 31137



Fig. 12 Effect of THF on the viability and activation state of BV2 microglia and the inhibitory effect of NO. (A) Changes in cell morphology under
different treatments. (B) Effect of different concentrations of THF on cell viability. (C) Effect of different concentrations of THF and LPS (1 mgmL−1)
on cell viability. (D) THF inhibits NO production in LPS-stimulated BV2 microglia.
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In addition, the best pharmacophore model for CN anti-NI
could be found from the 3D-QSAR pharmacophore model
results, which consisted of an aromatic ring group, two hydro-
phobic groups, and a hydrogen bond acceptor group. Mean-
while, the avonoid component 5-hydroxy-3,7,4′-
trimethoxyavone (THF) was screened for its good anti-
inammatory activity. Therefore, we further analyzed the rela-
tionship between the two from the perspective of the structure–
activity relationship. Studies have shown that the hydrophobic
groups of avonoids play an important role in the anti-
inammatory properties. In these compounds, hydrophobic
substituents, such as amyl, alkyl chains, and oxygen-containing
heterocyclic parts, usually enhance the anti-inammatory
activity of avonoids.60 O-methylation is commonly used in
the synthesis of plant and microbial secondary metabolites, by
which the methyl group replaces the hydroxyl group of the
receptor compound to increase the hydrophobicity of the latter
molecule thereby enhancing the activity.61,62 Tewtrakul et al.
investigated the inhibitory activity of compounds isolated from
the rhizomes of Kaempferia parviora Wall on nitric oxide (NO)
production. The results showed that 5-hydroxy-3,7,3′,4′-tetra-
methoxy avonoid expressed the highest NO inhibitory activity
with an IC50 of 16.1 mM, followed by 5-hydroxy-7,4′-dimethox-
yavin (IC50 = 24.5 mM) and 5-hydroxy-3,1,7′-trimethoxy avo-
noids (IC50 = 30.6 mM), while the other compounds exhibited
moderate to weak inhibitory activity. In addition, the anti-
inammatory activity exhibited by avonoids is partly related
to their inherent antioxidant capacity.63 The scavenging ability
31138 | RSC Adv., 2022, 12, 31124–31141
of avonoids is due to the presence of a double bond between
carbon 2 and carbon 3 in the C ring of the avonoid backbone.
The C-ring 2 and 3 double bonds in the parent nucleus structure
of natural avonoids may be important in inhibiting microglia
activation, and the strength of their inhibitory effect depends
on the type of substitution of the molecule. Methylation of 3-
hydroxyl groups also exhibits a higher inhibitory effect on NO
production, e.g., rhamnolins < lzalpinin, ombuine < ayanin.64

These studies further support our prediction by the 3D-QSAR
pharmacophore model.

Based on the 3D-QSAR results, we performed molecular
docking to further validate the predicted results. The docking
results showed that ent 3,4-seco-16-hydroxy-12,15-epoxy-
4(18),8(17),12,14-labdatetraen-3-oic acid, nudiopenes C, 5-
hydroxy-3,7,4′-trimethoxyavone and nudiopenes M bound
well to IL-6, respectively, with 5-hydroxy-3,7,4′-trimethoxy-
avone having the highest docking score with IL-6, indicating
the most stable binding. Based on the results of the above
analysis, we constructed a model of LPS-induced neuro-
inammation in BV2 microglia for in vitro experimental evalu-
ation. Experimental validation showed that THF, an important
active component of CN, effectively inhibited the inammatory
response of BV2 microglia, suppressed the expression of TNF-
a and IL-6 mRNA, and shied the phenotype of LPS-stimulated
BV2 cells from M1 to M2 polarization, thereby treating neuro-
inammation. However, the present study has several limita-
tions according to the corresponding guidelines.65 First, we
constructed pharmacological models based on common
© 2022 The Author(s). Published by the Royal Society of Chemistry



Fig. 13 Impact of THF on LPS-induced inflammatory cytokines in BV2microglia. (A) TNF-alevels in BV2microglia. (B) IL-6 levels in BV2microglia.
(C–E) THF attenuates the expression of M1 status-related genes in BV2 microglia. (F–H) THF upregulates the expression of M2 status-related
genes in BV2 microglia.
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characteristics of the molecules to nd possible lead molecules.
However, screening for compounds with clear activity values
remains our endeavor. Therefore, the study about searching
more pharmacophore features by 26 active ligand small mole-
cules is still imperfect and needs to be further developed.
However, in future studies, we will construct a receptor
structure-based pharmacological model (SBP) to maximize the
use of known receptor structures and drug receptor information
to effectively overcome the de-criticalization of existing drug
design tools and accelerate the prediction and development of
new drugs faster.
5. Conclusions

In conclusion, this study provides a systematic and intuitive over-
view of the possible molecular mechanisms and signaling path-
ways of how CN exerts its anti-NI effects. Meanwhile, a 3D-QSAR
pharmacophore model based on molecular common features
was constructed to predict 5-hydroxy-3,7,4′-trimethoxyavone
(THF) as a good candidate for the treatment of NI. Consistent with
the prediction results, the experimental results also demonstrated
that the prediction based on the network pharmacology approach
and pharmacophore model was accurate and credible, and the
relationship between them was further analyzed from the
perspective of the structure–activity relationship.
© 2022 The Author(s). Published by the Royal Society of Chemistry
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