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Abstract: We demonstrated previously that extracellular vesicles (EVs) released from mesenchymal
stem cells (MSCs) play a critical role in angiogenesis. Here, we examine whether this pro-angiogenic
efficacy is enhanced in EVs derived from MSCs overexpressing GATA-4 (MSCGATA−4). Methods
and Results. EVs were isolated from MSCGATA-4 (EVGATA-4) and control MSCs transduced with
an empty vector (EVnull). EVs from both cell types were of the same size and displayed similar
molecular markers. Compared with EVnull, EVGATA-4 increased both a tube-like structure formation
and spheroid-based sprouting of human umbilical vein endothelial cells (HUVECs). The EVGATA-4

increased the numbers of CD31-positive cells and hemoglobin content inside Matrigel plugs sub-
cutaneously transplanted into mice for 2 weeks. Moreover, EVGATA-4 encapsulated higher levels
of let-7 family miRs compared to EVnull. The transfer of exosomal let-7 miRs into HUVECs was
recorded with an accompanied down-regulation of thrombospondin-1 (THBS1) expression, a major
endogenous angiogenesis inhibitor. The loss-and-gain of function studies of let-7 miRs showed that
let-7f knockdown significantly decreased EVGATA-4-mediated vascularization inside Matrigel plugs.
In contrast, let-7f overexpression promoted HUVEC migration and tube formation. Conclusion.
Our results indicate that EVs derived from genetically modified MSCs with GATA-4 overexpression
had increased pro-angiogenic capacity due to the delivery of let-7 miRs that targeted THBS1 in
endothelial cells.

Keywords: extracellular vesicles; mesenchymal stem cells; GATA-4; angiogenesis; let-7

1. Introduction

Therapeutic angiogenesis has been recognized as a very important strategy for treating
ischemic diseases such as peripheral and coronary vascular disease, cerebral infarction,
and critical limb ischemia. Mesenchymal stem cells (MSCs) are widely used in research
and pre-clinical tests to treat ischemic diseases [1,2]. Indeed, results obtained from both
in vitro and in vivo experiments confirm that MSCs can enhance new blood vessel for-
mation [2–4]. Many studies, including ours, show that MSCs secrete paracrine factors,
including extracellular vesicles (EVs), that orchestrate interactions within the cellular milieu
to promote angiogenesis [3,5–10]. EVs are characterized as exosomes, microvesicles, and
apoptotic bodies, according to the nomenclature established by the International Society for
Extracellular Vesicles [11]. EVs, especially exosomes, are considered to play a critical role
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in cardiac regeneration and protection [12–15] since they can recapitulate the regenerative
and functional effects produced by their parent cells [9,16,17].

EVs are bi-lipid-layered vesicles containing proteins, mRNAs, and microRNAs (miRs)
and can transfer their contents to the recipient cells to modulate the function of these
cells [18–20]. miRs are small, evolutionarily conserved, well-characterized endogenous
noncoding RNA molecules that can negatively regulate gene expression by targeting spe-
cific mRNAs, leading to degradation or translational repression [21]. Recent reports indicate
that several miRs can promote angiogenesis [22–25]. The content of EVs can be altered
by preconditioning parent cells. Pro-angiogenic exosomal miRs increase substantially
following hypoxic/ischemic preconditioning [26,27]. More importantly, EVs derived from
preconditioned stem cells have a high potential for increasing vascular density, reducing
cardiomyocyte (CM) apoptosis and myocardial fibrosis [27], and increasing recruitment of
cardiac progenitor cells to the infarcted heart [28]. EVs collected from stem cells transfected
with specific miRs produce greater beneficial effects in protecting CM and regenerating
infarcted myocardium [29,30].

GATA-4 is a zinc finger transcription factor that promotes myocardial regeneration [31].
GATA-4 is also considered as an anti-apoptotic factor implicated in regulating cell growth,
differentiation, and survival. An inducible loss of GATA-4 severely depressed ventricular
function accompanied by reduced CM replication and impaired coronary angiogenesis [32].
The peri-infarct intra-myocardial delivery of GATA-4 prevented adverse post-infarction re-
modeling through myocardial angiogenesis, anti-apoptosis, and stem cell recruitment [33].
Our previous studies suggest that the transduction of MSCs with GATA-4 (MSCGATA-4)
significantly promoted MSC-mediated ischemic myocardium salvage, which appeared not
only due to increased MSC survival [34] and trans-differentiation [35] but also due to the
protection of native CM and the promotion of angiogenesis through the enhanced paracrine
effects of MSCs [5]. EVs derived from MSCGATA−4 (EVGATA-4) are more effective at protect-
ing CM from ischemic injury than EVs from empty vector-transfected MSC (EVnull) [18]. It
is unclear whether EVGATA−4 promotes angiogenesis during the regeneration of ischemic
myocardium. Given that miRs are encapsulated in MSC-derived EVs and that EVs can be
regulated by the modification of their parent cells, we hypothesize that EVGATA−4 promotes
angiogenesis via delivering pro-angiogenic miRs to recipient cells.

2. Materials and Methods
2.1. Animals

C57BL/6 mice were purchased from Charles River Laboratories. The experimental
protocols are approved by The Animal Care Committee of the University of Cincinnati
Institutional Animal Care and Use Committee. All animal experiments were conducted in
accordance with the National Institutes of Health guide for the care and use of laboratory
animals (NIH publication No. 85-23, Revised 1996). Mice were housed under specific
pathogen-free laboratory conditions with optimal temperature, humidity, and photoperiods
(12L: 12D).

2.2. Generate Stable MSCs with GATA-4 Overexpression

MSC cell line C3H10T1/2 cells were purchased from ATCC (Manassas, VA, USA).
MSCs were cultured with Dulbecco’s modified Eagle medium/Ham’s Nutrient Mixture
F12 (DMEM/F12)(Hyclone, Logan, UT, USA) supplemented with 10% fetal bovine serum
(FBS) at 37 ◦C in humidified air with 5% CO2 atmosphere. Stable MSCs with GATA-4
overexpression were generated using a pMSCV retroviral expression system (Clontech,
Mountain View, CA, USA) carrying the GATA-4 gene open reading fragment and the GFP
protein gene, and they were selected by puromycin, as we have done previously [18,34].
The control cells (MSCnull) were transduced using the same retroviral system with the GFP
protein gene fragment only.
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2.3. Isolation and Characterization of EVs

MSCs were first seeded at 3× 106 per 15-cm plate in complete DMEM/F12 medium for
24 h. Then, the completed medium was replaced with 15 mL of serum-free medium. After
24 h, the culture medium was obtained, and EV were collected using ultracentrifugation
method shown as Figure 1. The morphology of EVs was examined under transmission elec-
tron microscope (JEOL JEM-1230) (JEOL, Peabody, MA, USA), as described previously [36].
The size and concentration of EVs was evaluated using dynamic light scattering in a
particle- and molecular-size analyzer (Zetasizer Nano ZS)(Malvern Instruments, Malvern,
UK). The expression of CD9, CD63, HSP70, and calnexin in EVs was quantified using
Western blotting. The amount of protein in EVs was determined using the BCA method
(Thermo Fisher Scientific, Waltham, MA, USA).
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Figure 1. A schematic diagram of the EV collection from cultured MSCs.

2.4. Real-Time PCR

Total RNA was extracted from EVs using mirVanaTM miR isolation kit (Ambion,
Austin, TX, USA) following manufacturer’s protocol. cDNA synthesis and quantitative
PCR were performed using the miScript PCR Starter Kit (Qiagen, Germantown, MD, USA).
In brief, 1 µg total RNA obtained from each preparation was used for the first-stand
cDNA reverse transcription in the 20 µL system. Real-time PCR was performed with
specific primers (Qiagen) using a iQ5 real-time PCR system (Bio-Rad, Hercules, CA, USA),
according to the manufacturer’s instructions. Data were normalized to the results obtained
with primers specific to β-actin and U6, or in the case of EVs by using the synthetic Spike-In
control (Ce-miR-39) as an internal control.

2.5. Western Blotting

Proteins were extracted using nuclear (Pierce) (Rockford, IL, USA) (for GATA-4) and
total protein extraction reagents (Qiagen) according to the manufacturer’s protocol. The
proteins were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis
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(SDS-PAGE) and transferred to 0.45 µm polyvinylidene difluoride membrane (Millipore,
Burlington, MA, USA). The membranes were blocked with 5% skim milk in TBST at room
temperature for 1 h and incubated with primary antibodies of anti-CD9, anti-calnexin
(Abcam, Branford, CT, USA), anti-CD63 (Applied Biological Materials, Richmond, BC,
Canada), anti-HSP70 (Cell Signaling, Danvers, MA, USA), anti-GATA-4 (Santa CruZ,
Santa Cruz, CA, USA), and anti-THBS1 (Sigma-Aldrich, Saint Louis, MO, USA) at 4 ◦C
overnight. After washing three times with TBST, the membranes were probed with HRP-
conjugated secondary antibodies (Cell Signaling), respectively, at room temperature for 1 h
and visualized using ECL Plus kit (GE Healthcare, Cincinnati, OH, USA). The expression
of a specific protein was normalized with histone H3 and β-actin.

2.6. Angiogenesis In Vitro

(1) Tube formation by human umbilical vein endothelial cells (HUVECs) was examined
in a 24-well plate coated with Matrigel™ (BD Biosciences, San Jose, CA, USA). HU-
VECs (3 × 104) were seeded on top of Matrigel™. EVs were added into the medium,
and plates were placed into an incubator. Images were taken by a phase-contrast
microscopy (Olympus, Center Valley, PA, USA) or an Incucyte Imaging System (Es-
sen, Ann Arbor, MI, USA), and the cumulative tube length of the network structure
was measured by randomly selected five microscopic fields using Image J software
(National Institutes of Health, Bethesda, MD, USA).

(2) HUVECs spheroids were generated as described previously [36]. Briefly, GFP+ HUVECs
were trypsinized and collected in endothelial cell growth medium (Cell Applications)
containing 0.2% carboxymethylcellulose (Sigma). HUVECs (500 cells/100 µL/well)
were plated in non-adherent round-bottom 96-well plates (Greiner, Monroe, NC,
USA) for 16 h. The spheroids were then harvested and embedded into Matrigel™
basement membrane matrix (BD Bioscience) in endothelial cell serum free defined
medium (Cell Applications, San Diego, CA, USA). The cumulative sprout length
per spheroid was calculated by measuring from the farthest migrating point to its
tangential line position of each sprout using the segmented lines tool in Image J,
version 1.53k (National Institute of Mental Health, Bethesda, MD, USA).

(3) For the endothelial cell migration test, HUVECs were seeded in 96-well plates at a
density of 2 × 105 cells/well. When HUVECs had become a monolayer, scratches
were generated in the center of the well using a sterile plastic 200 µL micropipette
tip. Images were photographed at 0 and 12 h, and the width of scratch was measured
using Image J software.

2.7. Angiogenesis In Vivo

The blood vessel formation in the transplanted Matrigel™ plug was assayed in mice,
as described previously [23,36]. Briefly, C57BL/6 mice (6~8 weeks old) were anesthetized
with ketamine/xylazine (100/10 mg/kg, IP). Matrigel™ (BD Biosciences) (500 µL), mixed
with EVs and 15 U of heparin (Sigma), was subcutaneously injected along the abdominal
midline. Two weeks later, plugs were excised, embedded in Optimal Cutting Temperature
Compound (OCT), and cut into 7 µm sections. The infiltration of endothelial cells into
Matrigel™ plugs was determined by immunostaining for CD31. All the CD31 positive
cells were quantified as mean pixel density obtained from the image analysis of six ran-
dom microscopic fields using Image J software. In another cohort of animals, the red
blood cells contained inside Matrigel™ plugs were evaluated by determining hemoglobin
content (Drabkin’s reagent kit) (Sigma). Briefly, the Matrigel™ plug was homogenized
in deionized water and centrifuged. The hemoglobin concentration in the supernatant
was determined by the Drabkin assay. The standard curve was generated using Stanbio™
Cyanmethemoglobin Standard (Stanbio Laboratory, Boerne, TX, USA).
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2.8. Immunofluorescence Staining

Immunofluorescence staining for GATA-4 and CD31 was carried out, as described pre-
viously [18]. Briefly, cells or slices of the Matrigel™ plug were fixed with 4% paraformalde-
hyde for 30 min and then blocked with 10% goat serum containing 0.3% Triton X-100 for 1 h.
The primary antibodies of anti-GATA-4 (Santa Cruz) or anti-CD31 (BD Pharmingen™, San
Diego, CA, USA) were incubated at 4 ◦C overnight. Antibody reaction was visualized with
dylight 488- or dylight 594-conjugated secondary antibodies (Molecular Probes, Eugene,
OR, USA). Nuclei were stained with 4′, 6-diamino-2-phenylindole (DAPI). Fluorescence
images were obtained with an Olympus fluorescence microscope (Olympus, Center Valley,
PA, USA).

2.9. Internalization of EVs and Transfer of Let-7f

EVs derived from MSCs overexpressing CD63-GFP (MSCCD63-GFP) were used to track
internalization. Lentivirus carrying CD63-GFP fusion protein (System Biosciences, Palo
Alto, CA, USA) was used to transfect MSCs and get MSCCD63-GFP, according to the manu-
facturer’s instructions. MSCCD63-GFP was cultured in serum-free DMEM medium (Corn-
ing, Corning, NY, USA) for 48 h, and the medium was collected for EV isolation. EVs
(EVCD63-GFP) derived from MSCCD63-GFP were added to HUVECs and cultured for 24 h.
EV internalization was visualized and photographed using an Olympus fluorescence
microscope.

To determine the transfer of exosomal miR, pre-miR precursor (mmu-let-7f) (Am-
bion, Austin, TX, USA) was labeled with Label IT siRNA Tracker Cy3 Kit (Mirusbio,
Madison, WI, USA), according to the manufacturer’s instructions. MSCCD63-GFP were trans-
fected with 10 nM of Cy3-labeled pre-let-7f (MSCCD63-GFP/Cy3-let−7f) using X-tremeGENE
9 DNA Transfection Reagent (Roche Life Science, Indianapolis, IN, USA) for 24 h. The
medium was replaced with fresh serum-free DMEM medium (Corning) and cultured for
another 48 h. EVs were collected from the medium of cultured MSCCD63-GFP/Cy3-let−7f

(EVCD63-GFP/Cy3-let−7f) and added to HUVECs for 24 h. The transfer of Cy3-let-7f was
tracked using an Olympus fluorescence microscope.

2.10. Gain- and Loss-Function of Let-7f

To generate overexpressing let-7f HUVECs, pre-let-7f-copGFP plasmid or scrambled
plasmid (System Biosciences Company, Mountain View, CA, USA) was first mixed with
packaging plasmids and co-transfected into 293Ta cells according to the manufacturer’s
instructions. Then, HUVECs were infected with the high titer lentiviral particles of let-7f
(HUVEClet−7f) or the scrambled control (HUVECScrambled) for 24 h. After infection with the
lentiviral particles, HUVECs positive for GFP fluorescence were selected using puromycin.
Similarly, knockdown of let-7f in MSCGATA−4 was performed by transfecting MSCs with
the high titer lentiviral particles of anti-let-7f (MSCGATA-4 + anti-let−7f) and the scrambled
control (MSCGATA−4 + Scrambled) using anti-let-7f expression plasmid pEZX-AM03 with the
mCherry red fluorescence reporter gene and its scrambled control plasmid (Genecopoeia,
Rockville, MD, USA). MSCs positive for mCherry red fluorescence were selected using
hygromycin.

2.11. Luciferase Assay

TargetScan was used to find the potential let-7 target sites. This shows that the 3′-UTR
of THBS1 contains the conserved let-7 binding site. The miTargetTM dual luciferase reporter
vector (pEZX-MT06) containing the full-length 3′-UTR sequence of the THBS1 and the
control vector for pEZX-MT06 (mutated vector) were purchased from GeneCopoeia. The
HUVECs were seeded in 24-well plates and transfected with THBS1 3′-UTR luciferase
reporter vector or the mutated vector pEZX-MT06 (GeneCopoeia) using X-tremeGENE
9 DNA Transfection Reagent (Roche Life Science) according to manufacturer’s protocol.
Then, EVnull or EVGATA−4 were added into the transfected cell and cultured for 48 h. Cells
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were lysed and collected, and Firefly and Renilla luciferase activities of cell lysate were
measured using a Luc-Pair™ Duo-Luciferase Assay Kit (GeneCopoeia).

2.12. Statistical Analysis

Data are expressed as mean ± SEM unless otherwise indicated. Statistical analyses
were performed by one-way ANOVA or two-tailed Student t-test to measure significant
differences between groups. Results were considered statistically significant when p < 0.05.

3. Results

3.1. Characterization of MSCGATA−4 and EVGATA−4

Both MSCGATA−4 and MSCnull were GFP positive, and GATA-4 staining was stronger
in MSCGATA−4 compared to that in MSCnull (Figure 2A). Quantitative RT-PCR indicated
that the mRNA of GATA-4 was significantly increased in MSCGATA−4, compared to that
in MSCnull (Figure 2B). EVs derived from MSCGATA−4 and MSCnull were morphologically
diverse round-shaped entities under transmission electron microscope (Figure 2C). The
average size of EVGATA−4 (54.7 ± 3.3 nm) determined by dynamic light scattering was
comparable to that of EVnull (53.8± 2.3 nm) (Figure 2D). There was no significant difference
in the expression levels of three specific molecular markers of EVs, CD9, CD63, and HSP70,
between EVnull and EVGATA−4 (Figure 2E). The purification of EVs was determined by
Western blot analysis, and no expression of Calnexin (a cell positive marker) was found in
EVs (Figure 2F).
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Figure 2. MSCGATA−4 construction and EVs identification. (A) Immunofluorescence staining showed
GATA-4 overexpression in MSCGATA−4 nucleus. (B) The mRNA of GATA-4 in MSCs determined by
qRT-PCR, * p < 0.05 vs. MSCnull. (C) The morphology of EVs under transmission electron microscopy.
(D) The size of EVnull and EVGATA−4 was measured using a Zetasizer Nano instrument. (E) Western
blotting of CD9, CD63, and HSP70 in MSCs and EVs. (F) Western blotting of Calnexin in MSCs and
EVs.

3.2. EVGATA−4 Promotes Angiogenesis

To determine the optimal concentration of EVs and duration, EVs (0~36 µg/mL)
and VEGF (18ng/mL) were added into HUVEC culture medium for testing a tube-like
structure formation. The plates were placed into the incubator equipped with an Incucyte
Imaging System. The images were captured every two hours for 36 h. The tube-like
structure formation of HUVECs reached its peak after 16 h. The real-time images of
different treatments are shown in Figure 3A. The effect of EVs on promoting tube-like
structure formation at 18 µg/mL was similar to the cells treated with VEGF at 18 ng/ml.
Therefore, this concentration of EV, i.e., 10 × 109 EV/mL (NTA results: 5.54 × 108 ± 3.25 ×
107/µg protein), was used in the following experiments. The cumulative tube length was
significantly longer (49.29 ± 2.32 mm/5.375 mm2) in HUVECs treated with EVGATA−4 than
those treated with BSA in the same protein amount (CON, 20.88 ± 2.87 mm/5.375mm2),
or with EVnull (35.51 ± 4.11 mm/5.375 mm2) (Figure 3B). Similarly, the sprout length
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per spheroid in HUVECs treated with EVGATA−4 was significantly longer (469.59 ± 94.19
µm/spheroid) than that treated with BSA (85.41 ± 32.04 µm/spheroid), or with EVnull

(221.46 ± 34.40 µm/spheroid) (Figure 3C).
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To further examine whether EVGATA−4 promotes angiogenesis in vivo, Matrigel™
plugs containing EVs were transplanted into mice. Matrigel™ plugs contained EVGATA−4

were observed to have the deepest red gross appearance after transplantation into mice
for 2 weeks (Figure 4A). The hemoglobin content in the plugs containing EVGATA−4

(22.08 ± 6.65 µg/mg plug, n = 9) was significantly higher than the plugs with BSA control
(2.63 ± 1.46 µg/mg plug, n = 8), or EVnull (11.17 ± 4.30 µg/mg plug, n = 9) (Figure 4B).
Neovascularization in Matrigel™ plugs was further visualized by immunofluorescence
staining specific to CD31. As shown in Figure 4C, the cells positively stained for CD31 in
the plugs containing EVGATA−4 had significantly more staining than the plugs containing
BSA control, or EVnull.
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Matrigel™ plugs, which were implanted subcutaneously in mice for 14 days. (B) Hemoglobin content
in the Matrigel™ plugs. (C) Immunofluorescence staining of CD31 in the sections of Matrigel™ plugs
and quantification of the CD31-positive cells. # p < 0.05 vs. CON (BSA); * p < 0.05 vs. EVnull.



Cells 2022, 11, 1573 10 of 18

3.3. EVGATA−4 Transfer Let-7 miRs to HUVECs

The expression of miRs in EVGATA−4 was compared with EVnull using the next-
generation miRNA sequence. There were 44 miR, out of a total of 358 miR, that were
upregulated in EVGATA−4. Among these upregulated miR, let-7 family (including miR-
3596) were the ones with significantly higher levels expressed in EVGATA−4 than in EVnull

(Table 1).

Table 1. The expression of let-7 in EVs.

miRs
Reads

EVGATA-4 EVnull

miR-3596d 145,686 47,721

let-7f 132,442 43,383

miR-3596a 67,251 11,255

let-7a 66,997 11,385

miR-3596b 60,521 19,136

let-7d 55,019 17,397

let-7f-1 32,765 10,810

miR-3596c 20,236 8314

let-7e 19,317 7936

let-7a-1 15,939 2910

let-7a-2 15,429 2587

let-7f-2 10,254 4072

let-7e 4673 2479

Quantitative RT-PCR was used to examine the expression of let-7a, let-7d, let-7e,
and let-7f in EVs. The expression of these let-7 miRs was upregulated by 2- to 3-fold in
EVGATA−4, compared to those in EVnull (Figure 5A). The expression of let-7a, let-7d, let-7e,
and let-7f in HUVECs treated with EVGATA−4 was significantly upregulated, compared to
those treated with EVnull after 16 h (Figure 5B). To demonstrate the internalization of EVs
by HUVECs, EVs collected from MSCs overexpressing CD63 with GFP (EVCD63-GFP) were
added to HUVEC culture. Six hours later, most of HUVECs exhibited green fluorescence
and were strongly positive for CD63 by immunofluorescence staining (Figure 5C). Further-
more, we directly tracked the transfer of let-7f by using EVs collected from MSCCD63-GFP

that had also been transfected with Cy3-labeled pre-let-7f (EVCD63-GFP/Cy3-let−7f). As shown
in Figure 5D, HUVECs treated with EVCD63-GFP/Cy3-let−7f for 24 h not only exhibited the
signals of CD63-GFP but also showed Cy3-let-7f (red).
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Figure 5. EVs mediated the transfer of let-7 miRs. (A) The up-regulation of let-7a, let-7d, let-7e,
and let-7f in EVGATA-4 was evaluated by qRT-PCR. (B) The quantitative analysis of let-7 miRs in
HUVECs treated with EVnull and EVGATA-4. (C) The HUVECs showed strong positivity for CD63
after culture with EVCD63-GFP. (D) Let-7f (red) was strongly expressed in HUVECs cultured with
EVCD63-GFP/CY3-let-7f. * p < 0.05 vs. EVnull.

3.4. Transfer of Let-7f Play a Critical Role in EVGATA−4-Mediated Angiogenesis

To downregulate let-7f in EVs, anti-let-7f was transfected into MSCGATA−4. Let-7f
expression was reduced significantly both in MSCGATA−4 + anti-let−7f and in EVs derived
from these cells (EVGATA−4 + anti-let−7f), compared to the cells transfected with negative
control (MSCGATA−4 + Scrambled) and EVs obtained from control cells (EVGATA−4 + Scrambled),
respectively (Figure 6A). Meanwhile, the expression of let-7f was also significantly reduced
in HUVECs treated with EVGATA−4 + anti-let−7f, compared to that in HUVECs treated with
EVGATA−4 + Scrambled (Figure 6B). The cumulative tube length was significantly decreased in
HUVECs treated with EVGATA−4 + anti-let−7f, compared to those treated with EVGATA−4 + Scrambled

(Figure 6C). In vivo implantation of Matrigel™ plugs in mice for 2 weeks, and vasculature
positively stained for CD31 in the plugs containing EVGATA−4 + anti-let−7f, was also significantly
less than in plugs with EVGATA−4 + Scrambled (Figure 6D).
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Figure 6. EVGATA-4-mediated angiogenesis was related to the expression of let-7. (A) The expression
of let-7f in MSCG4 + anti-let-7f and EVG4 + anti-let-7f, as well as their control. (B) The expression of
let-7f in HUVECs treated with EVG4 + anti-let-7f and EVG4-Scr. (C) Representative images of capillary-
like tube formation and quantitative analysis of the total tube length following EV treatment. (D)
Immunofluorescence staining of CD31 in the sections of Matrigel™ plugs, and the quantification
of the CD31-positive cells. # p < 0.05 vs. MSCG4 + Scr; * p < 0.05 vs. EVG4 + Scr. (EVG4 + Scr =
EVGATA-4 + scrambled; EVG4 + anti-let-7f = EVGATA-4 + anti-let-7f).

The analysis of computational miRs target prediction with microRNA.org and Tar-
getScan revealed that the 3′ UTR of THBS1 contained the conserved let-7 family binding
site (Figure 7A). To investigate whether EVs regulated the expression of THBS1 in HUVECs,
HUVECs were transfected with miTargetTM dual luciferase reporter vector containing the
full-length 3′ UTR sequence of the THBS1 and mutated 3′ UTR of THBS1, respectively.
Then, these cells were treated with EVnull or EVGATA−4 for 48 h. The luciferase activity in
HUVECs transfected with the THBS1-3′ UTR luciferase reporter vector was significantly
inhibited after being treated with EVGATA−4, compared with that in HUVECs treated with
EVnull (Figure 7B). However, the luciferase activity in HUVECs with mutated THBS1-3′

UTR was not affected under different treatments (Figure 7C). Western blotting results
showed that the protein level of THBS1 was significantly reduced in HUVECs treated
with EVGATA−4, compared with that in HUVECs treated with BSA (as a control) or EVnull

(Figure 7D). Consistent with this, the protein level of THBS1 was increased by 1.7-fold
in HUVECs treated with EVGATA−4 + anti-let−7f, compared to that in HUVECs treated with
EVGATA−4 + Scrambled (Figure 7E).
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Figure 7. Exosomal let-7 miRs functionally down-regulated the target gene THBS1 in HUVECs.
(A) An example of complementarity between let-7 miRs and the THBS1 3′UTR. (B,C) Quantitative
data for dual-luciferase reporter assay in HUVECs treated with EVnull or EVGATA-4. (D) The THBS1
protein levels in HUVECs following different treatments determined by Western blotting. (E) The
protein level of THBS1 in HUVECs treated with EVs. # p < 0.05 vs. CON (BSA); * p < 0.05 vs.
EVnull; and @ p < 0.05 vs. EVG4-Scr, respectively. (EVG4 + Scr = EVGATA-4 + Scrambled; EVG4 + anti-let-7f =
EVGATA-4 + anti-let-7f).

Furthermore, the gain of function of let-7f in HUVECs was used to examine the direct
effect of let-7 on angiogenesis. HUVECs were directly infected with lentiviral particles of
let-7f (HUVEClet−7f) or scrambled control (HUVECScrambled) (Figure 8A). The expression
of let-7f was increased by 8.1-fold in HUVEClet−7f, compared to that in HUVECScrambled

(Figure 8B). Western blotting confirmed that let-7f overexpression significantly reduced the
THBS1 protein level in HUVECs (Figure 8C). The elevated expression of let-7f was directly
associated with the function of endothelial cells. The tube-like structure formation and the
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migration of HUVEClet−7f (Figure 8D,E) were significantly promoted, compared to that in
HUVECScrambled.
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ined. We found that: (1) EVGATA−4 significantly increased angiogenesis, as determined in 
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Figure 8. Let-7f overexpression in HUVECs promoted tube-like structure formation and migration.
(A) Representative images of HUVECs with let-7f overexpression (HUVEClet-7f), and their negative
control (HUVECScrambled). (B) The expression of let-7f in HUVECs. (C) The THBS1 protein in
HUVECs transfected with let-7f. (D) Representative images of capillary-like tube formation and
quantitative analysis of the total tube length. (E) Representative images of HUVEC migration and
quantitative analysis. * p < 0.05 vs. HUVECScr. (HScr = HUVECScrambled, Hlet-7f = HUVEClet-7f.)

4. Discussion

In the present study, the pro-angiogenic effect of EVGATA−4 was systematically exam-
ined. We found that: (1) EVGATA−4 significantly increased angiogenesis, as determined in
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tests using a tube-like structure formation and spheroid-based sprouting of HUVECs, as
well as neovascularization in Matrigel™ plugs implanted in mice; (2) EVGATA−4 transferred
let-7 miRs down-regulated the expression of THBS1, an anti-angiogenesis protein in target
cells. These results demonstrated that the transfer of let-7 miRs from EVs into endothelial
cells played a critical role in EVGATA−4-mediated angiogenesis.

Neo-angiogenesis is considered a prerequisite for tissue repair and functional recovery
associated with stem cell therapy. Several laboratories have reported that EVs derived from
MSCs improve cardiac function by increasing capillary density and directly promoting
angiogenesis [37–41]. In this study, we systematically determined whether EVs derived
from MSCs engineered with GATA-4 were more efficacious in promoting angiogenesis,
compared to those derived from MSCs transfected with empty vector. Our results showed
that EVGATA−4 not only promoted tube-like structure formation and spheroid-based sprout-
ing in vitro but also increased blood vessel formation in Matrigel™ plugs in vivo compared
to those derived from control MSCs, which were transfected with an empty vector. Our
results are consistent with previous reports that HUVECs can acquire MSC-derived EVs,
resulting in an enhancement of in vitro proliferation, migration, and tube formation [39,42].

It is well known that EVs released from stem cells are enriched in miRs [43–46] and
can promote angiogenesis via delivering various pro-angiogenesis miRs [47]. Our previous
report [18] indicates that EVs released from GATA-4-engineered stem cells have much
potential to protect cardiomyocytes and regenerate ischemic myocardium by releasing
multiple miRs responsible for the activation of the cell survival and pro-angiogenesis
signaling pathways. We have also demonstrated that exosomal transfer of pro-angiogenic
miRs plays an important role in MSC-mediated angiogenesis and stem-cell-to-endothelial-
cell communication [36]. In the present studies, we compared the expression of let-7
miR family in EVGATA−4 with those in EVnull. Our results are consistent with a previous
report that the expression of these miRs was upregulated in EVs derived from GATA
overexpressing MSCs [48].

We selected let-7f, a member of the let-7 miR family, as an example to determine
the role of the let-7 related signaling pathway in EVGATA−4-mediated angiogenesis us-
ing gain-and loss-of-function approaches. We found that increased let-7 miRs played an
important role in EVGATA−4 mediated angiogenesis. It has been reported that let-7 miRs
enhance angiogenesis through protecting microvascular endothelial cells [49]; preventing
the dysfunction of endothelial progenitor cells [25]; promoting microvascular pericyte
differentiation [24]; and regulating inflammation [50], as well as autophagy and apopto-
sis [51]. Bioinformatics analysis indicated the putative binding sites of let-7 miRs in the
3’ untranslated regions of THBS1 mRNA. Our studies directly demonstrate that THBS1
is one of the potential targets of let-7 miRs and that the pro-angiogenic effects of let-7
miRs might be associated with the down-regulation of THBS1 expression in endothelial
cells. THBS1 is a secreted protein with a variety of biological features, including having a
potent anti-angiogenic activity [52]. It inhibits angiogenesis either through direct effecting
endothelial cell migration, proliferation, survival, and apoptosis [53], through antagonizing
the activity of VEGF [54,55], or possibly by multiple coordinated actions.

In conclusion, our findings revealed that EVs secreted from GATA-4-overexpressing
mesenchymal stem cells promoted angiogenesis via delivering let-7 miRs to endothelial
cells, resulting in THBS1 downregulation. These results suggest that EVGATA−4 could be
a viable therapeutic candidate for the induction of therapeutic angiogenesis in wound
healing and tissue regeneration, following ischemic events.
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