
RESEARCH ARTICLE Open Access

jCompoundMapper: An open source Java library
and command-line tool for chemical fingerprints
Georg Hinselmann*, Lars Rosenbaum, Andreas Jahn, Nikolas Fechner, Andreas Zell

Abstract

Background: The decomposition of a chemical graph is a convenient approach to encode information of the
corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called
fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library
for exactly defined molecular decompositions, with a strong focus on the application of these features in machine
learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and
pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the
fingerprints into several formats.

Results: We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source
Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search
fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g.
Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom
fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of
paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line
executable binary. We measured the conversion speed and number of features for each encoding and described the
composition of the features in detail. The quality of the encodings was tested using the default parametrizations in
combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the
fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine.
The results were promising and could often compete with literature results. On the large Ames benchmark, for
example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity
fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using
state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable
or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors
published in the paper of Sutherland et al.

Conclusions: jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and
exporting options for open source data mining toolkits. The quality of the data mining results, the conversion
speed, the LPGL software license, the command-line interface, and the exporters should be useful for many
applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms,
similarity searching, and similarity-based data mining.

Background
The decomposition of a chemical graph into a list of
features is a convenient way to assess the similarity
between chemical compounds by comparing the result-
ing lists of features. Such representations are also called

chemical fingerprints [1]. These encodings are important
for data mining applications like similarity-based
machine learning approaches or similarity searches [2].
The goal of this work is to introduce an open source

molecular fingerprinting library for data mining purposes
which provides exact definitions of its fingerprinting
algorithms. The algorithms can be parametrized with
various options to adapt the encodings, for example, by

* Correspondence: georg.hinselmann@uni-tuebingen.de
University of Tübingen, Center for Bioinformatics Tübingen (ZBIT), Sand 1,
72076 Tübingen, Germany

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

© 2011 Hinselmann et al; licensee Chemistry Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

mailto:georg.hinselmann@uni-tuebingen.de
http://creativecommons.org/licenses/by/2.0

applying a custom labeling function or by altering the
search depth parameter. Additionally, the library can be
used as a basis for new implementations. It is based on
the Chemistry Development Kit [3], which also provides
several fingerprints in its API. However, there are several
differences. The first aim of jCompoundMapper is to
focus on the exact definition of its encodings, which is
crucial to describe the features in data mining experi-
ments. The second aim is to provide the functionality to
export the fingerprints or pairwise similarity matrices to
formats of popular machine learning toolboxes. A label
or property of an input compound to be trained by a
machine learning algorithm can be included.
Most fingerprint algorithms rely on either the geo-

metrical or the topological distance between the atoms
of a structure. The topological information is stored in
the all-shortest path matrix, which encodes the mini-
mum topological distance between two atoms (ver-
tices) by the shortest path using the bonds (edges).
Organic compounds are usually weakly connected
because the number of covalent bonds (vertex degree)
of an organic molecule is limited. In contrast, the geo-
metry of a structure can be interpreted as a fully con-
nected graph. The complexity of both approaches can
reduced by limiting the search depth for topological
fingerprints or by introducing a distance cut-off for
geometrical fingerprints.
jCompoundMapper offers a variety of topological (e.

g. radial atom environments [4], extended connectivity
fingerprints [5], depth-first search fingerprints [6], or
auto-correlation vectors [7]) and geometrical (e.g. two-
point and three-point encodings [8,9] or geometrical
atom environments [10]) fingerprints. If applicable, it
allows for a parameterization of an encoding, such as
the search depth, the distance cut-off, the geometrical
scaling factor, the atom typing scheme, or the hash
space.
After the feature generation step, the list of features

can be mapped to a vectorial format. One possibility is
to encode a set of features as a hashed fingerprint.
Here, a unique identifier of a feature is used to initia-
lize a pseudo random number generator which pro-
duces numbers in [,]0 h ∈ + , where h is the maximum
size of the hash space. Thus, the dimensionality of the
original feature space can be considerably reduced. For
example, the Fingal fingerprint [11], uses the cyclic
redundancy check algorithm to generate seeds for the
hashing of chemical graph patterns. For an introduc-
tion into hashed fingerprints, please refer to the review
by Brown [1]. Another strategy reserves fixed bit posi-
tions in a vector for specific feature types, like patterns
obtained at a certain parameter (such as depth or dis-
tance) with a limited number of possible combinations.

The definition of the CATS2D [7] vector is an example
for this approach.
jCompoundMapper supports native formats of

common open source machine learning libraries. The
exporters can be used to write feature maps to comma-
separated format, LIBSVM [12] format (sparse and
matrix), and WEKA ARFF [13]. Therefore, various data
mining libraries can be directly applied on the output
files. Furthermore, the library provides efficient data
structures to compare sets of features in the case that
the computation of a similarity matrix is required.
The quality of the encodings was compared on QSAR

and toxicity benchmark problems in the results section.
First, we conducted experiments using the support vec-
tor regression of LIBSVM on the well-known Sutherland
QSAR benchmark set [14]. Second, we used a large
Ames toxicity classification benchmark [15] and LIB-
LINEAR [16] to evaluate the performance using binary
hashed sparse fingerprints. On the Sutherland data sets,
the averaged squared correlation of the all-shortest-path
and the atom triplet fingerprint was at least 5% better
on ACHE than the best encoding given by Sutherland
et al. On BZR and DHFR, the all-shortest path finger-
print achieved a squared correlation of 0.57 and 0.76
respectively. The performance was comparable on two
data sets. On the remaining three data sets, the best
encoding was more than 5% worse than the results of
the best encoding published by Sutherland et al. On the
Ames toxicity data set, the implementation of the
extended connectivity fingerprint achieved an AUC
ROC performance of 0.87, which is comparable to the
performance by a non-linear support vector machine
trained on state-of-the-art descriptors. Nevertheless, the
goal was not an exhaustive comparison but to show that
the implementations are able to obtain similar results
when compared against literature results. jCompound-
Mapper features a command-line interface but can also
be used as a Java API. It depends solely on open source
libraries and is licensed under the LPGL. The source
code and an executable is available at Sourceforge.
The library originated from various implementations

of literature fingerprints and descriptors used in com-
parison studies. The encodings were employed either
as part of a new approach or as a reference method
[17-21].
To sum up, jCompoundMapper is an open source

library for the encoding of chemical graphs as finger-
prints. It can be used from the command-line interface
or as a Java API. Hence, a further use in applications,
like in KNIME http://www.knime.org nodes, is possible.
The overall performance of the fingerprints in machine
learning experiments indicates that structured-based
models of reasonable quality can be obtained.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 2 of 14

http://www.knime.org

Methods
Prerequisites
Notation
The binned geometrical distance matrix Gij encodes the
spatial distances between two heavy atoms. The topolo-
gical distance matrix Tij encodes the shortest topological
distance between atoms i and j. The labeling function

l a ai i() ^→ types an atom according to a specific label-
ing scheme. The maximum distance allowed between
two atoms (geometrical or topological) d defines a dis-
tance cut-off for features, all features with gij > d or tij >
d are omitted. A labeled path p is a sequence of atoms
connected by bonds p a b a b b ad d= … −(, , , , , ,)^ ^ ^

0 0 1 1 1
,

where bond bi connects âi with âi+1. pij denotes a path
connecting the ith atom with the jth atom. The depth d
for topological patterns is the maximum number of
bonds allowed for connecting the first atom with the
last atom. Analogously to the definition of topological
paths, a geometrical pattern must consist of different
atoms, i.e. for two atoms ai, aj it holds that i ≠ j. Finally,
a ⊕ b is defined as the concatenation of alphanumerical
string symbols separated by an unique delimiter. In the
following, we assume a hydrogen-depleted molecular
graph C with n atoms.
An encoding algorithm F has the form

F C X f f fm() , , ,→ = …{ }1 2 (1)

where an encoding algorithm F maps some compound
C to a set of features X. m depends, with the exception
of fixed-vector fingerprints, on C. A feature f has an
unique id ∈ and a string representation f.nom. f.id
does not necessarily depend on f.nom. However, in most
cases it is convenient to use a hash code of the string
representation of a feature.
Fundamental Matrices
The geometrical distance matrix Gij is computed as the
matrix of binned Euclidean distances in Ångstrom
between the three-dimensional coordinates of all atom
coordinates ai.c Îℝ3, multiplied by a scaling factor s Î
ℝ+. The scaling factor s influences the resolution of the
geometry and should be chosen according to the size of
the compounds. The entry i, j (gij) in the matrix is cal-
culated as follows

g a c a c sij i j= − ⋅|(. .) |. (2)

The computation time for the geometrical distance
matrix is quadratic. The binning of the real-valued geo-
metrical distance is important to produce discrete fea-
tures fx, fy, which can be compared by the Dirac function

(,) .
,

,
f f

f f
x y

x y :
if

else
=

=⎧
⎨
⎩

1

0
(3)

The topological distance matrix is defined as Tij. The
element i, j contains the shortest path between the ith
and the jth atom (tij). tij is computed by the Floyd-
Warshall algorithm. Therefore, the computation time
for the matrix is O(n3).
Feature Extraction
The molecular similarity is based on the numerical iden-
tifiers fx.id of a feature x. Two features are regarded as
equal if fx.id = fy.id. In all implementations the features
of a compound C are distinguishable by recurrence,
which means that we include a feature if the id of a fea-
ture is different from the previously extracted features.
If a feature with the same id is generated again, the
count for the feature is incremented. All atom pair
encodings are extracted by regarding the upper half of
the distance matrix only. For each atom pair, the string
representation is generated in both reading directions.
Only the version with the greater hash code is included
in the final set of descriptors.
The modified depth-first search applied in this library

generates all possible paths originating from a root
atom. Therefore, the feature space can be approximated
by an m-ary tree and is therefore O(nmd), where n is
the number of heavy atoms and m the number of chil-
dren in an m-ary tree, d is the depth of the tree. In
organic compounds, every atom has at most 4 neighbors
(m = 4 - 1 because one of the neighboring bonds has
already been visited). Thus, the hypothetical worst case
has a complexity of O(n3d) at a search depth of d. If we
assume an average branching factor a, which is slightly
above 1 for organic compounds [6], the depth-first
search has a complexity of O(nad). The average branch-
ing factor depends on the average degree of a vertex,
which is about 2 in organic molecules. We define
DFS(ai, d) as the set of all possible paths originating
from a root atom ai with a depth up to d.
For some of the definitions, we defined a can function

that maps a set of features to a single canonical pattern.
In an implementation this function can be realized by
first sorting the patterns, which is possible if a natural
order can be defined on the features. Then, the list of
sorted patterns can be merged to a single canonical
representation.
Atom Types and Pharmacophore Types
jCompoundMapper applies the standard atom types and
ring detection algorithms implemented in the CDK.
There are various typing schemes for small drug-like
compounds described in the literature. In the current
version, jCompoundMapper features the following typ-

ing schemes as labeling function l a ai i() ^→ :

1. Element symbol (e.g. C, O, N, ...)
2. CDK atom types (e.g. C.sp2, O.minus, N.amine, ...)

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 3 of 14

3. Element plus the number of neighboring heavy
atoms (e.g. C.2, O.1, N.2, ...)
4. Element plus ring type plus the number of neigh-
boring heavy atoms (e.g. C.r.2, C.a.2, O.1, N.2, ...)
where r is an arbitrary ring, and a is an aromatic
system. If ai is not contained in a ring, no ring type
is set. The precedence is a >r.
5. Daylight-Invariants (plus optional ring flag) have
the following properties, separated by a dot: Atomic
number, number of heavy atom neighbors, valency
minus the number of connected hydrogens, atomic
mass, atomic charge, number of connected hydro-
gens, and a flag if the atom is member of at least one
ring. (e.g. 6.2.3.12.0.1.1 for a carbon in a benzole ring)

The following listing of potential pharmacophore
points (PPPs) was published by Renner et al. [7] for the
CATS autocorrelation descriptors. If PPP atom types are
needed, this list is parsed and matched with the struc-
ture using the CDK SMARTS matcher or specially
implemented graph searches.

1. Hydrogen-bond donor (D): [#6H] oxygen atom of
an OH-group; [#7 H,#7H2] nitrogen atom of an NH
or NH2 group
2. Hydrogen-bond acceptor (A): oxygen atom [#6];
[#7H0] nitrogen atom not adjacent to a hydrogen
atom
3. Positive (P): [*+] atom with a positive charge;
[#7H2] nitrogen atom of an NH2 group
4. Negative (N): [*-] atom with a negative charge;
[C&$(C(= O)#8H1), P&$(P(= O)O), S&$(S(= O)O)]
carbon, sulfur or phosphorus atom of a COOH,
SOOH, or POOH group (SMARTS replaced by a
direct graph search)
5. Lipophilic (L): [Cl, Br, I] chlorine, bromine, or
iodine atom; [S;D2;$(S(C)(C))] sulfur; atom adjacent
to exactly two carbon atoms; sulfur atom adjacent to
only carbon atoms (SMARTS replaced by a direct
graph search)

Encodings
Topological Fingerprints
All encodings described in the following section rely on
the d parameter which constrains the maximum topolo-
gical distance allowed between two atoms ai, aj in a
feature.
All-Path Encoding (DFS) All-path encodings are paths
generated by a graph traversal with a modified depth-
first search as proposed by Ralaivola et al. [6]. The linear
fragments are obtained by iterating over all atoms in a
molecular graph and performing an exhaustive search
up to a predefined depth d. To generate an unique
representation for each path, a temporary path object is

generated and mapped to two alphanumerical string
representations by generating the original and reverse
string representation of the corresponding path object.
The version with the higher lexicographical order is
stored.

F C DFS a d
i

n

i() (,)^= (4)

All-Shortest Path Encoding (ASP) The ASP encoding
equals the DFS encoding with the exception that only
the paths from an atom are stored that have shortest
distances from the root atom to the last atom contained
in the path, which leads to a sparser representation.
During the depth-first search, all paths are removed
from the temporary set of depth-first search paths that
do not fulfill this constraint. To incorporate this infor-
mation the Tij matrix is required. Let |pij| be the length
(number of bonds between the ith and the jth atom in a
path) of a path between atoms i, j, then the set of fea-
tures F encoding a compound C is

F C DFS a d p ti ij ij

i

n

() (,),| | .^= ={ } (5)

Thus, the all-shortest path encoding is a subset of the
paths contained in the DFS fingerprint. It is similar to
topological atom pair approaches [8] with the exception
that all-shortest paths between two atoms are explicitly
stored. Borgwardt et al. proposed a graph kernel based
on the set of all-shortest paths [22], however, only the
vertex pairs and their shortest-path distances were
included in this work. The explicit generation of paths
is necessary because the Floyd-Warshall algorithm com-
putes only the shortest distances between two vertices.
Topological Atom Pairs (AP2D) This encoding con-
tains atom types and the shortest path distance informa-
tion between all pairs of atoms. It can be directly
extracted from Tij by converting the pattern

ˆ ˆa t ai ij j⊕ ⊕ where i ≠ j to a string feature. The fea-

tures are canonicalized by generating the patterns from
both reading directions and storing the version with the
higher lexicographical order.

F C a t ai

i j

n

ij j() ^ ^

,

= ⊕ ⊕ (6)

For 2-point patterns this can be easily conducted by
regarding the upper half of the distance matrix Tij only
(i.e. i > j). O(n2) is needed for the generation of features
and O(n3) for the computation of Tij.
Thus, the total computation time is cubic.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 4 of 14

Topological Atom Triplets (AT2D) This encoding
extends the AP2D encoding by a further atom. The
set of patterns consists of atom triplets and the topolo-
gical distance to the next atom in the feature

ˆ ˆ ˆa t a t a ti ij j jk k ki⊕ ⊕ ⊕ ⊕ ⊕ where i ≠ j ≠ k and tij, tjk,

tki ≤ d. The total computation time for the features is
cubic because all possible combinations of heavy atoms
ai, aj, ak have to be considered in the worst case.

F C a t a t a ti

i j k

n

ij j jk k ki() ^ ^ ^

, ,

= ⊕ ⊕ ⊕ ⊕ ⊕ (7)

Topological Autocorrelation Keys (CATS2D) The
CATS2D descriptors encode the pairwise topological
relationships of PPP patterns in a molecular graph by a
vector of fixed size. The approach was described by
Schneider et al. [23], a list of PPP patterns was pre-
sented by Renner et al. [7]. The PPPs are defined in the
subsection (“Atom Types and Pharmacophore Types”).
The combination of all points leads to 15 possible pairs.
The pairs are mapped to a key with a fixed dimensional-
ity. The position of a feature in the key is determined by
the index for the corresponding pattern pair of PPPs
plus the topological distance. For example, this means
the bit 76 in the CATS vector with d = 9 belongs to the
PPP pair DN, and contains the number of pairs with
distance 6. In the original publication of the topological
CATS descriptors, d = 9 was used as the distance cut-
off for the topological search, resulting in a vector with
150 dimensions. In our implementation, the search
depth can be adjusted by altering the d parameter. The
resulting vector has (d + 1) · 15 dimensions. The com-
plete list of possible PPP pairs in the vector (block index
in parentheses) is: AA (0), AD (1), AL (2), AN (3), AP
(4); DD (5); DL (6); DN (7); DP (8); LL (9), LN (10), LP
(11), NN (12), NP (13), PP (14). Let F (C) = X be a
decomposition into all valid PPP pairs. Then, the
CATS2D vector is

 x x Xd
d pp pD

∈ =·
() () ()15

2
 where offset + (8)

where offset(p) returns the predefined start index for
the pattern p, d2D(p) returns the topological distance
between two atoms in the PPP pair, and �p(X) counts
the number of occurrences of a pattern p in X.
Pharmacophore Pair and Triplet Encodings
(PHAP2PT2D, PHAP3PT2D) The PHAP2PT2D encod-
ing is computed similarly to the AP2D. However,
instead of atom types, the information of all PPPs of an
atom is used to generate the fingerprint. Thus, we have
to iterate over all PPPs of an atom. Analogously, the
PHAP3PT2D encoding is computed, which uses three

points. To keep the notation simple, let Pi denote the
set of valid PPPs for the ith atom. Then, the set of valid
2-point pharmacophores is

F C P t P ti

i j

n

ij j ji()
,

= ⊕ ⊕ ⊕ (9)

and the set of valid 3-point pharmacophores is defined
as

F C P t P t P ti

i j k

n

ij j jk k ki()
, ,

= ⊕ ⊕ ⊕ ⊕ ⊕ (10)

where tij, tjk, tki ≤ d. Actually, there are three addi-
tional inner loops over all valid pharmacophore points
at atoms i, j, k. The complexity of these inner loops is
theoretically 53 because the cardinality of the set of
PPPs is 5. However, this complexity is further reduced
because the meaning of some PPP definitions is contra-
dicting for some combinations, such as “atom is posi-
tively charged” and “atom is negatively charged”. The
overall complexity is O(n3) because of the constant com-
putation time of the inner loops.
SHED Key (SHED) The SHED Keys are closely related
to the pharmacophore atom pair based encodings, with
the following major differences: First, the number of
dimensions is fixed, second the entries do not describe a
count but the entropy of the respective atom pair
descriptor [24]. The implementation differs slightly from
the original implementation because it utilizes the PPP
definitions as described by Renner et al. [7]. The distri-
bution is analyzed for all possible combinations of PPPs.
From that distribution of pairwise features the Shannon
entropy is calculated as the descriptor in the corre-
sponding PPP pair dimension of the SHED Key. The
Shannon entropy of a PPP pair PPPi is defined as

x x H p pl li i

l

d

i b i where PPP (PPP) PPP()= = −
=
∑() log ()()

1

(11)

where PPPi(l) denotes the ith PPP pair that is sepa-
rated by a topological distance l. If pattern i was not
found, the value of the ith dimension is set to 0. The
distribution of a PPP pair is calculated by regarding the
different distances 1, 2, ...,l, ..., d. The resulting vector
has 15 real-valued entries.
Extended Connectivity Fingerprints (ECFP) We imple-
mented a variant of the ECFP as described by Rogers
and Hahn [5]. Each ECFP feature represents a circular
substructure around a center atom. The algorithm starts
with the initial atom identifier of the center atom and
grows a circular substructure around this atom

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 5 of 14

throughout a defined number of iterations (search
depth). For each round, the current extended version of
the feature is added to the final set of features. In con-
trast to other radial fingerprints, the bonding informa-
tion is included. Therefore, a feature can be extracted,
for example, as canonical SMILES.
The current implementation of the ECFP in jCom-

poundMapper differs slightly from the original imple-
mentation. In the original algorithm, the identifiers of
the alpha atoms of a center atom are used to calculate
an updated identifier for the center atom. The algorithm
only includes the alpha atoms of a center atom in each
iteration and thus the connectivity information is com-
pletely discarded between the layers. However, the iden-
tifier of a center atom implicitly contains information
from further and further away of the center atom in
each iteration because the atom identifiers of the pre-
vious iteration are used. We explicitly model the grow-
ing substructure by using the initial atom identifiers in
each iteration and keeping the connectivity information
between the layers. After an iteration, new possible
attachment points for a specific circular substructure are
kept in memory and those attachment points are
extended in the next iteration.
Topological Molprint-like fingerprints (RAD2D) This
encoding was proposed by Bender et al. [4,25] and
describes the radial environment by the atoms with the
topological distance 1, 2, ..., l, ..., d rather than the full
paths containing bonds. A shell s(ai)l in our implemen-
tation contains the canonically sorted set of topological
neighbors of atom ai at a distance tij = l. Additionally,
we include the concatenation of all shells ≤ 1, 2, ..., l, ...,
d as additional features. Therefore, a resulting set of fea-
tures contains n · d features.

F C can s a
di

n

i d() ()^= () (12)

Local Path Environments (LSTAR) This fingerprint is a
radial fingerprint similar to RAD2D. The major differ-
ence is that all paths up to depth d are stored in a shell.
First, the tree of all paths originating from an atom ai is
generated. Then, all paths of a certain length are
assigned to a shell s(ai)d containing the paths originating
from root atom ai of length d. This is equal to a canoni-
cal representation of DFS(ai, d) in a single canonical fea-
ture. The paths in a shell are sorted in lexicographical
order to be comparable. The resulting fingerprint con-
tains all shells ≤ 1, 2, ..., l, ..., d. The major difference to
the Molprint-like fingerprints is that the bond informa-
tion is still included.

F C can DFS a di

di

n

() (,)^= () (13)

Geometrical Fingerprints
All geometrical encodings support the d parameter
which defines the distance cut-off between two atoms.
Another important parameter is the scaling factor s, as
described at the beginning of this section.
Geometrical Atom Pairs and Atom Triplets (AP3D,
AT3D) These encodings are implemented similarly as
their topological pendants AP2D and AT2D. The only
difference is that Gij is used for the distance informa-
tion. Thus, the geometrical two-point atom pair encod-
ing (AP2D) is defined as

F C a g ai

i j

n

ij j() ^ ^

,

= ⊕ ⊕ (14)

where i ≠ j and gij ≤ d.
For the three-point relationships AT3D, we have

F C a g a g a gi

i j k

n

ij j ik k ki() ^ ^ ^

, ,

= ⊕ ⊕ ⊕ ⊕ ⊕ (15)

where i ≠ j ≠ k and gij, gjk, gki ≤ d.
This is a standard encoding implemented in several

toolkits; a kernel based on such patterns was published
by Mahé et al [9].
Geometrical CATS fingerprints (CATS3D) Our imple-
mentation differs from the description of the original
CATS3D [7], which uses the Molecular Operating
Environment (MOE, Chemical Computing Group,
http://www.chemcomp.com/) patterns to depict surface
features of a molecule. The version implemented in
jCompoundMapper uses the PPP definitions which were
also used in the implementation of the CATS2D vector.
Again, let F(C) = X be the set of all valid PPP pairs and
φp(X) a function which counts a pattern p Î X. Then
the CATS3D vector is

x x Xd

p d ppD
∈ =+ ·

() ()15
3

 where offset() (16)

where d3D(p) returns the geometrical distance of the
two atoms, which equals gij between any atoms i, j con-
tained in a feature.
Geometrical pharmacophore fingerprints (PHAP2PT3
D, PHAP3PT3D) These fingerprints are derived from
their topological variants PHAP2PT2D and PHAP3PT2D
by replacing the Tij matrix by Gij. Let Pi denote the set of
valid PPP for the ith atom then Pi ⊕ gij ⊕ Pj is a valid
two-point pharmacophores and Pi ⊕ gij ⊕ Pj ⊕ gjk ⊕ Pk
⊕ gki is a valid three-point pharmacophore, where gij, gjk,
gki ≤ d.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 6 of 14

http://www.chemcomp.com/

The set of valid 2-point pharmacophores is defined as

F C P g Pi

i j

n

ij j()
,

= ⊕ ⊕ (17)

and the set of valid 3-point pharmacophores is defined
as

F C P g P g P gi

i j k

n

ij j ik k ki() .
, ,

= ⊕ ⊕ ⊕ ⊕ ⊕ (18)

Again, Pi denotes the set of valid PPPs for the ith
atom.
Geometrical Molprint-like fingerprints (RAD3D)
These encodings are the geometrical pendant of the
topological RAD2D encoding. Similar to the RAD2D
encoding, the atoms with gij = l at a binned geometrical
distance are added to a shell descriptor. For each value
in 1, 2, ..., l, ..., d a pattern containing all shells up to
distance l in a canonical order is created. Therefore, the
encoding contains n · d entries.

F C can s ai d

di

n

() ()^= () (19)

Example of encodings
Comparison Table 1 gives a direct tabular comparison
of the features extracted by the encodings together with
their count or value. The features are generated from
the compound presented in Figure 1.

Implementation
Third-party libraries
The underlying chemical expert system is the Chemistry
Development Kit (CDK) [3,26] in its current develop-
ment version 1.35. It provides the basic functionality for
parsing, typing, and graph algorithms for molecular
data. For the command-line interface we employed the
Apache Commons command-line parser 1.2 http://com-
mons.apache.org/cli/. The access via the API or the bin-
ary using the command-line interface enables the user
to utilize the library for batch processing. The language
level is Java 1.6.

Additional functionality
Import and Export of Data
The valid input format is MDL SD format with attached
hydrogens for the command-line tool. The CDK mole-
cule objects can be processed using the API.
There are exporters for various formats of popular

machine learning toolboxes. The ARFF format is the
native WEKA [13] format, the support vector machine

libraries LIBSVM and LIBLINEAR are supported by
their sparse hashed format and precomputed matrix for-
mat. Alternatively, there are several comma-separated
formats which support hashed or string features, which
can be imported into toolboxes like R or MATLAB.
jCompoundMapper includes a buffered random access

reader for parsing the input files. Thus, it can read files
of the maximum size supported by the Java runtime
environment. The memory requirements are low if the
encodings are exported sequentially (such as the sparse
LIBSVM format) because only a single encoding has to
be stored at a time. If the computation of a similarity
matrix is required, all encodings are kept in memory to
ensure a fast computation of similarities. For this reason,
a matrix computation requires additional memory for
large data sets.
The label or class for learning tasks is read from the

SD property and is integrated into the specific output
format. As for the ARFF format, a nominal or numeric
class label is created, depending on the distribution of
labels in the input format. The user may overwrite the
default threshold for the number of classes (currently,
this is set to five).
Hashing
All decomposition algorithms F(C) return the full list of
features (the encoding). A feature f has an integer iden-
tifier f.id Î{0, 1, 232} which allows the efficient use in
hash based collections. Therefore, it is possible to oper-
ate on the full set of descriptors and to generate hashed
fingerprints. Hashing is useful to generate binary vectors
of a fixed size. The hash function H

H F C h () → 2

is used to project the set of features to a binary vector
of the dimension h. The size depends on the expected
number of features (see Table 1). H generates the
hashed bit of a pattern depending on the numerical
seed f.id assigned to each feature. In most cases, the
seed equals a hash code of the string representation.
The hashing step is also useful to obtain nominal fea-
tures for fast comparisons. A nominal feature is a fea-
ture f with a finite set of possible values like f Î{red,
green, blue} or, convenient for chemical graphs, f Î{pat-
tern included, pattern not included}.
Similarity Matrices
jCompoundMapper offers a FeatureMap data struc-
ture, which stores the features in a wrapped hash map.
Different metrics are defined on this data structure,
such as MinMax and Tanimoto [27]. Thus, it is possible
to compute distance matrices within seconds on an
average desktop computer. Now, we assume two map-
pings F(CA) = A and F(CB) = B. Further, let φp(X)
count the number of occurrences of pattern p ÎX.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 7 of 14

http://commons.apache.org/cli/
http://commons.apache.org/cli/

The MinMax similarity is defined as

MinMax()A B

p A p B

p A p B

p X

p X

, :

min((), ())

min (), ()
.=

()
∈

∈

∑
∑

The Tanimoto similarity can be used instead if only
the occurrence of a pattern is taken into account

Tanimoto(,) :
| |
| |

.A B
A B

A B
= ∩

∪

The feature maps permit to compute similarity
matrices with jCompoundMapper on the full set of fea-
tures of a compound C, without introducing noise by
hashing. Nevertheless, it is also possible to generate
hashed binary fingerprint objects of any of the
encodings.

Table 1 Examples of Encodings

Encoding Eq.a c paramb Pattern produced by f

DFS 4 0 C.2-N.3-C.3:1, C.3-C.2-N.3:1, C.3-N.3-C.3:1, C.3-N.3:1, C.2-C.3-N.3:1, C.3-C.3-N.3:1, ...

ASP 5 1 N.3-C.3 = O.1:1, C.1-C.3-N.3:1, C.2-N.3:1, C.2-N.3-C.3:1, C.3-C.2-N.3:1, C.3-N.3:1, ...

AP2D 6 2 N.3-1-C.2:1, N.3-1-C.3:1, N.3-2-C.2:1, N.3-2-C.1:1, N.3-2-C.3:1, O.1-2-N.3:1

AT2D 7 3 C.2-2-N.3-1-C.3-1:1, N.3-2-C.2-2-C.2-1:1, N.3-2-C.2-2-C.3-2:1, ...

CATS2D 8 6 0:5, 2:2, 3:4, ...

PHAP2POINT2D 9 8 A-2-A:1, L-2-A:1, N-2-A:1

PHAP3POINT2D 10 9 A-2-A-2-L-2:1, A-2-A-2-L-2:1, ...

SHED 11 14 AA:2.8, AL:3.596, AN:2.872, ...

ECFP - 12 [*]N([*])C(= O)C:1, [*] = C([*])N(C[*])C([*])[*]:1, [*]N([*])[*]:1, ...

RAD2D 12 15 0[N]1[C C C]:1, 0[N]1[C C C]2[C C C C O]:1

LSTAR 13 13 [N.3-C.2, N.3-C.3, N.3-C.3]:1, [N.3-C.2-C.3, N.3-C.3-C.1, N.3-C.3-C.2, N.3-C.3-C.3, N.3-C.3 = O.1]:1

AP3D 14 4 N.3-1-C.2:1, N.3-1-C.3:1, N.3-2-C.1:1, N.3-2-C.2:1, N.3-2-C.3:1, O.1-2-N.3:1

AT3D 15 5 C.3-1-O.1-2-N.3-1:1, O.1-2-C.1-2-N.3-2:1, C.2-2-C.2-2-N.3-1:1, ...

CATS3D 16 7 0:5, 2:2, 3:4, ...

PHAP2POINT3D 17 10 A-2-A:1, L-2-A:1, N-2-A:1

PHAP3POINT3D 18 11 A-2-A-2-L-2:1, A-2-L-2-A-2:1, L-2-A-2-A-2:1

RAD3D 19 16 0[N.3]1[C.2 C.3 C.3]2[C.1 C.2 C.3 C.3 O.1]:1, 0[N.3]1[C.2 C.3 C.3]:1

Examples and numeric values (counts, or, in the case of SHED, entropies) for the string representations for the different encodings of Oxaceprol (Figure 1) with
d = 2, default element atom typing and delimiter symbol “-”. The patterns are extracted around the nitrogen atom. For some of the encodings, only a subset of
the features is shown.
aEquation number bParameter for command-line interface.

Figure 1 Topology and Geometry of Oxaceprol. The geometry and topology of Oxaceprol. Pharmacophore types shown in the 3 D structure
are 1 = [L], 3 = [A - [#7H0]], 6 = [D - [OH], A - [O]],8 = [L], 9 = [A - [O]],10 = [N], 11 = [A - [O]], 12 = [D - [OH], A - [O]]. The geometry and
topology of this compound is the basis for the exemplary fingerprints shown in Table 1. Note that multiple PPPs can be assigned to an atom: In
this case atoms 6 and 12 have two valid PPPs.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 8 of 14

Results and Discussion
Computation Times Benchmarks
Table 2 presents the performance of the different
encodings as implemented in jCompoundMapper. The
computation time for the atom-based approaches varies
from the atom pair encodings which can be computed
with 332-339 molecules per second to the depth- first
search based encodings which have a performance of
68-136 molecules per second. The encodings relying on
the typing using the PPP SMARTS definitions are signif-
icantly slower with about 7-8 processed molecules per
second. The conversion time includes reading, typing,
and feature map creation. As benchmark data set, we
chose the publicly available ChemDB random back-
ground data set published in the virtual screening study
by Nasr et al. [28]. This data set comprises 175,000 ran-
dom compounds from ChemDB [29].

Machine Learning Performance
A major application of molecular encodings are struc-
ture-based machine learning and data mining methods.
The aim of such applications is either the prediction of
molecular properties or the ranking of compounds
according to a trained model. In the following experi-
ments, we wanted to assess the quality of the encodings
implemented in jCompoundMapper for several estab-
lished regression and classification benchmark problems.
The encodings were used with the default parameters as
given in Table 2. The compounds were prepared using

CORINA [30] for initial coordinates and were refined
using Schrödinger MacroModel [31] with the OPLS
2005 force field.
QSAR Regression Problems with LIBSVM
LIBSVM [12] is a library for support vector machines.
For the experiments on the regression benchmarks, we
decided to train �-support vector regression on the
benchmark compilation of eight pIC50 QSAR problems
published by Sutherland et al. [14]. The Gram matrices
were precomputed by the MinMax similarity, which is
also a valid kernel function. We conducted these experi-
ments to find out whether there are significant differ-
ences between the performances of the different
encodings.
We evaluated the nested cross-validation performance

of the different encodings and compared the outcome of
the experiments against results from the literature. The
parameters C and � of the support vector machine were
selected in a nested cross-validation. In the experiments,
a 10-fold cross-validation was repeated 20 times using
an initial seed value. Therefore, the values represent the
mean and the standard deviation, computed over 200
models. Based on these statistics, the corrected
resampled t-test of Bouckaert and Frank [32] can be
applied. The results are summarized in Table 3. With
the exception of THERM and THR, the performance of
the best encodings was at least comparable to the mean
squared error values for a sophisticated graph kernel
given by Fechner et al. [33] on the same benchmarks.

Table 2 Conversion Time

Encoding paramb molecules/s mean f.a max f.a median f.a complex. Mem.c

DFS d = 8, a = EN 68.6 396 3,554 362 O(nad)

ASP d = 8, a = EN 112.1 216 1,198 204 O(nad)

AP2D d = 8, a = EN 339.8 95 256 96 O(n2)

AT2D d = 5, a = EN 91.6 1,848 7,922 1,811 O(n3)

CATS2D d = 9, a = PPP 6.9 150 150 150 O(1)

PHAP2PT2D d = 8, a = PPP 6.8 35 132 34 O(p2)

PHAP3PT2D d = 5, a = PPP 6.7 300 1,664 277 O(p3)

SHED d = 8, a = PPP 8.0 15 15 15 O(1)

ECFP d = 4, a = DIR 181.0 77 349 77 O(nad)

RAD2D d = 3, a = EN 232.5 55 192 55 O(nd)

LSTAR d = 6, a = EN 136.6 144 884 143 O(nd)

AP3D d = 10, a = EN 332.5 112 336 113 O(n2)

AT3D d = 6, a = EN 71.4 3,450 27,774 3,188 O(n3)

CATS3D d = 9, a = PPP 6.6 150 150 150 O(1)

PHAP2PT3D d = 10, a = PPP 7.2 41 189 40 O(p2)

PHAP3PT3D d = 6, a = PPP 7.1 660 5,844 601 O(p3)

RAD3D d = 4, a = EN 227.1 85 611 85 O(nd)

Computation time on a random ChemDB [29] background data set consisting of about 175,000 compounds. This includes reading, typing, and generation of the
feature map objects. Empirical computation time was obtained on a dual core AMD Opteron(tm) Processor 280, 2.4 GHz, 2 GByte RAM, Java Runtime
Environment 1.6, Linux kernel 2.6.18, using a single core.
aunique features, EN: element neighbor, PPP: possible pharmacophore points, DIR: Daylight Invariants plus ring flag bstandard parameters of the implemented
encodings cd: search depth, p: number of possible pharmacophore points.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 9 of 14

An analogue setup was used to compute nested leave-
one-out cross-validation results to compare the predic-
tive performance of the support vector machine in com-
bination with the jCompoundMapper encodings to
literature results. Again, we optimized the parameters C
and � (we used a 10-fold cross-validation repeated 2
times to select the best parameter combination in the
inner loop) and trained a model for each of the n leave-
one-out sets and predicted the external sample for each
model.
Table 4 and 5 summarize the results of the nested

leave-one out cross-validation according to the mean
squared error and Pearson’s correlation coefficient.
Sutherland et al. used several descriptor-based
approaches to model the activity of the benchmark set
(presented in Table 4 and 5) using partial least squares
(PLS) [14]. Compared against the results (squared corre-
lation coefficient) given for the best descriptor approach
presented in this study, the jCompoundMapper encod-
ings are competitive. The findings are summarized in
Table 6 which shows a similar performance in two
cases, a better performance in three cases, and a worse
performance in three cases.
Classification of Toxic Compounds with LIBLINEAR
Another increasingly important task is to build models
on large data sets of chemicals. A machine that can
cope with such a setup is LIBLINEAR [16], a linear
large-scale support vector machine. The large Ames
data set was published by Hansen et al. [15] and con-
tains 6512 compounds and their measured toxicity in an
Ames test. We skipped the encodings based on the PPP

typer because several compounds do not have any phar-
macophore point according to the PPP definition. The
results were obtained by tuning the C parameter in log2
Î {-8, -7, ..., 2} within a 2-fold cross-validation on the
training set and evaluating the model performance on
five defined splits as described in [15].
Table 7 shows the AUC ROC results for the large

Ames toxicity benchmark set. The ECFP and LSTAR
encodings achieved the best results, comparable to the
results of several supervised classifiers presented by
Hansen et al. [15] using dragonX [34] descriptors.
Hansen et al. applied k-nearest neighbor, support vec-
tor machines with a radial basis function, Gaussian
processes, and random decision forests to build models
on dragonX descriptors for this problem. The
approaches were evaluated on the same defined splits.
The performance of LIBLINEAR with the best encod-
ings is comparable to the best approaches Gaussian
processes and support vector machines. Even the worst
performing encodings (AP2D, AP3D, and DFS) were
competitive to the k-nearest neighbor classifier on dra-
gonX descriptors.

Java API and Command-line Interface
Java API Usage Example
The core of the library is a Java API. The API enables to
process chemical information from an abstract level,
similar to a workflow tool. The example given in
Appendix 1 reads an MDL SD file, converts the com-
pounds to feature maps and calculates all pairwise
similarities.

Table 3 Nested Cross-validation MSE Performance on the Sutherland Data Sets

Encoding ACE ACHE BZR COX2 DHFR GPB THERM THR

DFS 1.73 ± 0:74 0.66 ± 0.28 0.61 ± 0.31 1.13 ± 0.30 0.57 ± 0.21 0.66 ± 0.54 2.10 ± 1.31 0.60 ± 0.38

ASP 1.70 ± 0.72 0.62 ± 0.26 0.53 ± 0.27 1.11 ± 0.30 0.58 ± 0.21 0.63 ± 0.48 2.09 ± 1.32 0.59 ± 0.38

AP2D 1.50 ± 0.70 0.85 ± 0.37 0.70 ± 0.37 1.03 ± 0.30 0.73 ± 0.29 0.61 ± 0.45 2.19 ± 1.20 0.50 ± 0.31

AT2D 1.57 ± 0.69 0.74 ± 0.34 0.69 ± 0.35 0.97 ± 0.27 0.66 ± 0.30 0.60 ± 0.47 1.97 ± 1.20 0.49 ± 0.32

CATS2D 1.76 ± 0.72 0.93 ± 0.33 0.89 ± 0.45 1.35 ± 0.43 0.69 ± 0.19 0.64 ± 0.45 2.28 ± 1.14 0.52 ± 0.32

PHAP2PT2D 1.77 ± 0.71 0.96 ± 0.33 0.91 ± 0.45 1.38 ± 0.44 0.72 ± 0.20 0.65 ± 0.48 2.18 ± 1.10 0.53 ± 0.31

PHAP3PT2D 1.81 ± 0.69 0.96 ± 0.33 0.82 ± 0.39 1.23 ± 0.41 0.67 ± 0.21 0.56 ± 0.49 1.89 ± 1.16 0.57 ± 0.37

SHED 2.08 ± 0.76 1.05 ± 0.50 1.09 ± 0.46 1.64 ± 0.48 1.49 ± 0.35 0.70 ± 0.33 2.71 ± 1.54 0.49 ± 0.28

ECFP 1.80 ± 0.77 0.72 ± 0.29 0.66 ± 0.32 1.01 ± 0.28 0.57 ± 0.20 0.68 ± 0.55 2.19 ± 1.36 0.51 ± 0.33

RAD2D 1.87 ± 0.75 0.77 ± 0.33 0.79 ± 0.37 1.08 ± 0.30 0.71 ± 0.27 0.72 ± 0.59 2.20 ± 1.33 0.50 ± 0.35

LSTAR 1.97 ± 0.79 0.72 ± 0.29 0.69 ± 0.30 1.04 ± 0.27 0.62 ± 0.19 0.76 ± 0.61 2.31 ± 1.39 0.50 ± 0.31

AP3D 1.60 ± 0.69 0.69 ± 0.32 0.59 ± 0.32 0.93 ± 0.27 0.67 ± 0.23 0.67 ± 0.51 2.73 ± 1.35 0.57 ± 0.33

AT3D 1.77 ± 0.68 0.64 ± 0.28 0.67 ± 0.36 0.99 ± 0.28 0.57 ± 0.18 0.74 ± 0.60 2.75 ± 1.37 0.60 ± 0.28

CATS3D 1.75 ± 0.70 0.90 ± 0.38 0.81 ± 0.36 1.31 ± 0.41 0.73 ± 0.20 0.79 ± 0.49 2.47 ± 1.32 0.62 ± 0.32

PHAP2PT3D 1.75 ± 0.70 0.87 ± 0.36 0.81 ± 0.40 1.32 ± 0.41 0.73 ± 0.20 0.83 ± 0.54 2.53 ± 1.30 0.65 ± 0.33

PHAP3PT3D 1.99 ± 0.77 0.82 ± 0.29 0.81 ± 0.36 1.14 ± 0.37 0.59 ± 0.17 0.86 ± 0.69 2.84 ± 1.46 0.69 ± 0.30

RAD3D 2.17 ± 0.78 0.78 ± 0.31 0.73 ± 0.35 1.10 ± 0.30 0.57 ± 0.17 0.82 ± 0.69 2.79 ± 1.37 0.58 ± 0.31

Overview of � support vector MSE regression performance on the Sutherland data set using the MinMax kernel function. The performance was evaluated using a
nested 10-fold cross-validation repeated 20 times. Bold values indicate the best encodings according to the number of signicant better comparisons (p ≤ 0.05)
against the other encodings. The p-values were determined by the corrected resampled t-test [32].

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 10 of 14

Command-Line Interface Example
The following section gives an example of using the bin-
ary executable version of jCompoundMapper. As a case
in point, this version can be used in shell scripts. Calling
the command-line tool using -h gives an overview of
possible parameters (see Figure 2).
Using the defaults (or via -ff 0), jCompoundMapper

generates a hashed LIBSVM output format using the
depth-first search encoding with element plus neighbor
count atom types.
In the following, we process the training and the

known test set from the environmental toxicity chal-
lenge http://www.cadaster.eu/node/65) which were

Table 4 Nested Leave-one-out MSE Performance on
Sutherland Data Sets

Encoding ACE ACHE BZR COX2 DHFR GPB THERM THR

DFS 1.93 0.61 0.61 1.09 0.57 0.66 2.08 0.55

ASP 1.93 0.56 0.54 1.07 0.56 0.63 2.08 0.53

AP2D 1.59 0.79 0.68 1.04 0.72 0.64 2.06 0.45

AT2D 1.68 0.69 0.67 0.92 0.69 0.65 1.92 0.45

CATS2D 1.83 0.83 0.96 1.34 0.65 0.62 2.20 0.45

PHAP2PT2D 1.88 0.92 0.98 1.37 0.67 0.62 2.10 0.46

PHAP3PT2D 1.83 0.91 0.85 1.20 0.66 0.58 2.04 0.50

SHED 2.11 1.00 1.13 1.71 1.41 0.72 2.94 0.43

ECFP 2.01 0.66 0.66 0.96 0.57 0.65 2.17 0.47

RAD2D 1.99 0.73 0.79 1.03 0.72 0.67 2.18 0.43

LSTAR 2.29 0.66 0.68 1.00 0.60 0.71 2.31 0.46

AP3D 1.88 0.64 0.59 0.90 0.67 0.70 2.61 0.54

AT3D 2.04 0.60 0.65 0.97 0.58 0.71 2.70 0.59

CATS3D 1.91 0.85 0.84 1.26 0.70 0.74 2.62 0.58

PHAP2PT3D 1.92 0.81 0.85 1.30 0.70 0.76 2.72 0.62

PHAP3PT3D 2.40 0.73 0.81 1.11 0.59 0.82 2.82 0.67

RAD3 2.43 0.73 0.73 1.04 0.57 0.75 2.75 0.55

Overview of � support vector regression performance on the Sutherland data
set using the MinMax kernel function. The performance was evaluated using a
nested leave-one-out cross-validation with a parameter optimization using 10-
fold cross-validation repeated 2 times. Bold values indicate performances not
worse than 10% of the best performing encoding.

Table 5 Nested Leave-one-out Correlation Performance
on Sutherland Data Sets

Encoding ACE ACHE BZR COX2 DHFR GPB THERM THR

DFS 0.79 0.78 0.71 0.68 0.86 0.69 0.70 0.68

ASP 0.79 0.80 0.75 0.69 0.87 0.71 0.70 0.69

AP2D 0.83 0.70 0.67 0.71 0.82 0.71 0.70 0.75

AT2D 0.82 0.74 0.67 0.74 0.83 0.70 0.73 0.75

CATS2D 0.81 0.68 0.49 0.60 0.84 0.72 0.68 0.75

PHAP2PT2D 0.80 0.64 0.48 0.59 0.83 0.72 0.70 0.74

PHAP3PT2D 0.80 0.64 0.56 0.65 0.84 0.73 0.71 0.71

SHED 0.78 0.61 0.34 0.46 0.61 0.66 0.57 0.76

ECFP 0.78 0.76 0.68 0.73 0.86 0.70 0.68 0.74

RAD2D 0.78 0.73 0.59 0.70 0.82 0.68 0.68 0.76

LSTAR 0.75 0.77 0.68 0.72 0.86 0.66 0.66 0.74

AP3D 0.80 0.77 0.72 0.74 0.83 0.67 0.60 0.68

AT3D 0.78 0.80 0.68 0.72 0.86 0.66 0.58 0.65

CATS3D 0.79 0.67 0.57 0.63 0.83 0.64 0.60 0.66

PHAP2PT3D 0.79 0.69 0.56 0.62 0.83 0.63 0.58 0.62

PHAP3PT3D 0.73 0.73 0.58 0.68 0.86 0.59 0.55 0.58

RAD3 0.73 0.73 0.63 0.70 0.86 0.63 0.57 0.69

Overview of � support vector regression Pearson’s correlation coefficient
performance on the Sutherland data set using the MinMax kernel function.
The performance was evaluated using a nested leave-one-out cross-validation
with a parameter optimization using 10-fold cross-validation repeated 2 times.
Bold values indicate performances not worse than 5% of the best performing
encoding.

Table 7 Comparison with Literature Results on the Ames
Toxicity Benchmark

Encoding AUC ROCa

ECFP 0.87 ± 0.01

LSTAR 0.86 ± 0.01

SVM-dragonXb 0:86 ± 0.01

RAD2D 0.85 ± 0.02

RAD3D 0.85 ± 0.01

ASP 0.85 ± 0.02

GP-dragonXb 0.84 ± 0.01

AT2D 0.83 ± 0.01

RF-dragonXb 0.83 ± 0.01

AT3D 0.81 ± 0.01

kNN-dragonXb 0.79 ± 0.01

DFS 0.78 ± 0.01

AP2D 0.78 ± 0.03

AP3D 0.76 ± 0.02

Benchmarks for the large Ames toxicity benchmark using LIBLINEAR (nested
5-fold cross-validation on defined splits). The features were hashed to 214 bit
sparse binary fingerprints.
aArea under the ROC curve bReference classifier from the study of Hansen
et al. using dragonX 1.2, SVM: support vector machine, GP: Gaussian
processes, RF: random decision forest, kNN: k-nearest neighbor.

Table 6 Comparison with Literature Results on
Sutherland Data Sets

Data set Best Encoding Qloo
2 Sutherland Qloo

2

ACE AP2D 0.69 HQSAR 0.72

ACHE ASP, AT3D 0.57 CoMSIA 0.49

BZR ASP 0.56 CoMSIA 0.45

COX2 AT2D 0.55 CoMSIA 0.57

DHFR ASP 0.76 CoMSIA 0.69

GPB PHAP3PT2D 0.53 HQSAR 0.66

THERM AT3D 0.53 2.5D 0.66

THR RAD2 D, RAD3D 0.58 CoMSIA 0.72

Comparison to the best squared correlation coefficients given by Sutherland
et al. (PLS on various descriptors), bold font indicate a result which is at least
5% better.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 11 of 14

http://www.cadaster.eu/node/65

converted to MDL SD format. The label (MDL prop-
erty) to be learned is log(IGC50-1). Using these settings,
the structures of the training set were mapped to hashed
fingerprints with the default settings.
java -jar jCMapperCLI.jar -f challenge_

train.sdf -l “log(IGC50-1)”
After the computation, an overall statistic is plotted

showing e.g. the average number of features in the fin-
gerprints. In the next step, we map the test file to the
same representation. Bits in the test file were set in
exactly the same positions in the vector because the ran-
dom numbers are generated by using the seed value
defined by the features.
java -jar jCMapperCLI.jar -f challenge_-

test_known.sdf -l “log(IGC50-1)”
In the next step, a cross-validation is conducted by

using the precompiled binary distribution of LIBSVM
that can be downloaded from the LIBSVM homepage.
The parameters are set as follows: -t 0 sets the linear
kernel (dot product), -s 3 sets Î regression, and -c 2
sets the error weight to 2. The file for training was pro-
duced in the previous step.
svmtrain -t 0 -s 3 -v 10 -c 2 challenge_-

train.DFS.LIBSVM_SPARSE
LIBSVM produces no model in cross-validation mode.

However, the LIBSVM cross-validations statistics
showed that the model has an MSE of 0.32 and an Q2

of 0.71, indicating a reasonable parametrization.
Cross Validation Mean squared error =

0.324891

Cross Validation Squared correlation
coefficient = 0.712412
Finally, the model is trained by omitting the cross-

validation flag -v.
svmtrain -t 0 -s 3 -c 2 challenge_train.

DFS.LIBSVM_SPARSE
This step produces a separate model file, which can be

used to predict the external test set that was generated
during the second step. This is conducted by calling
svmpredict.
svmpredict challenge_test_known.DFS.

LIBSVM_SPARSE challenge_train.DFS.
LIBSVM_SPARSE.model result
The results are printed by LIBSVM highlighting that

the performance on the external test set is MSE = 0.29
and R2 = 0.74. The result on the known test of the
environmental toxicity prediction challenge would be in
the top ranks of the competition. The prediction values
can be obtained by opening the LIBSVM output file
result in an editor.
Mean squared error = 0.291011 (regression)
Squared correlation coefficient =

0.742283 (regression)

Conclusions
jCompoundMapper is an open source library for mole-
cular fingerprinting with a focus on machine learning
and data mining applications. A command-line interface
exists for the user who is not familiar with program-
ming, which allows a simple usage from the shell or the

Figure 2 Command-line Interface. The binary can be accessed via a command-line interface, which allows for scripting.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 12 of 14

application in scripts. The architecture provides the
functionality to derive fingerprints from existing ones or
to integrate own encodings. In contrast to closed source
fingerprinting toolkits, a scientist knows exactly how the
fingerprint is computed (like the labeling function, dis-
tance cut-offs) and can even inspect the source code of
the generation routine. We compared the performance
using linear and non-linear support vector machines on
standard machine learning benchmarks in the research
field. The results show that the machine learning perfor-
mance using the encodings with default parameters is
already close to more sophisticated state-of-the-art
descriptors. The binary version provides a command-
line interface allowing for the generation of models
from the shell with open source software such as
LIBSVM or WEKA in reasonable time on average desk-
top computers. The library itself uses only functionality
of open source software licensed under the LGPL.
Therefore, the library can be used in any project compa-
tible with the CDK. Further projects with the library,
such as a KNIME node wrapping jCompoundMapper,
are planned.

Availability
The following files are available for download from
http://jcompoundmapper.sourceforge.net/

1. External library, which can be integrated as Java
jar library file
2. External library, including sources
3. Binary command-line tool (requires a Java run-
time environment) and a short tutorial with a pre-
pared data set

Appendix
Appendix 1 - Usage of the API
Example of using the API: Read molecules, map the com-
pounds to encodings, and compute a similarity matrix.
1 // read sd file
2 RandomAccessMDLReader reader = new Ran-

domAccessMDLReader(new File (” molecules .
sdf “));
3
4 // convert all compounds in the data set

to feature maps
5 final ArrayList <FeatureMap> feature-

Maps = new ArrayList <FeatureMap >();
6 final FingerPrinter finger printer =

new Encoding2DAllShortestPaths () ;
7 for (int i = 0; i < reader. getSize ();

i++) {
8 ArrayList <IFeature > rawFeatures =

finger printer . getFingerprint (reader.
getMol (i));

9 featureMaps . add (new FeatureMap
(rawFeatures)) ;
10 }
11
12 //compute all pairwise distances by

feature maps
13 final int dim = featureMaps . size () ;

double [] [] matrix = new double [dim]
[dim] ;
14 IDistanceMeasure similarity = new Dis-

tanceTanimoto () ;
15 for (int i = 0; i < dim; i++) {
16 for (int j = i ; j < dim ; j++) {
17 matrix [i] [j] = similarity .

getSimilarity (featureMaps . get (i),
featureMaps . get (j));
18 }
19 }

Authors’ contributions
GH wrote most of the code and the manuscript. LR implemented the
Molprint-like fingerprints and the extended connectivity fingerprint, helped
to design the library, and participated in writing the manuscript. AJ
implemented an initial version of the pharmacophore typer and the CATS2D
descriptors. NF tested some of the encodings in experiments and helped to
develop the atom typing schemes. AZ supervised the study and participated
in the discussion of the results. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 7 October 2010 Accepted: 10 January 2011
Published: 10 January 2011

References
1. Brown N: Chemoinformatics - An Introduction for Computer Scientists.

ACM Comput Surv 2009, 41:8:1-8:38.
2. Willett P, Barnard JM, Downs GM: Chemical Similarity Searching. J Chem

Inf Comput Sci 1998, 38(6):983-996.
3. Steinbeck C, Han Y, Kuhn S, Horlacher O, Luttmann E, Willighagen E:

The Chemistry Development Kit (CDK): an open-source Java library
for Chemo- and Bioinformatics. J Chem Inf Comput Sci 2003,
43(2):493-500.

4. Bender A, Mussa HY, Glen RC, Reiling S: Similarity Searching of Chemical
Databases Using Atom Environment Descriptors (MOLPRINT 2D):
Evaluation of Performance. J Chem Inf Comput Sci 2004, 44(5):1708-1718.

5. Rogers D, Hahn M: Extended-connectivity fingerprints. J Chem Inf Model
2010, 50(5):742-754.

6. Ralaivola L, Swamidass SJ, Saigo H, Baldi P: Graph kernels for chemical
informatics. Neural Networks 2005, 18(8):1093-1110.

7. Renner S, Fechner U, Schneider G: Alignment-free Pharmacophore
Patterns - A Correlation Vector Approach. In Pharmacophores and
Pharmacophore Searches, Pharmacophores and Pharmacophore Searches.
Edited by: Langer T, Hoffmann R. Weinheim: Wiley-VCH; 2006:49-79.

8. Carhart RE, Smith DH, Venkataraghavan R: Atom Pairs as Features in
Structure-Activity Studies: Definition and Applications. J Chem Inf Comput
Sci 1985, 25:64-73.

9. Mahé P, Ralaivola L, Stoven V, Vert JP: The Pharmacophore Kernel for
Virtual Screening with Support Vector Machines. J Chem Inf Model 2006,
46(5):2003-2014.

10. Bender A, Mussa HY, Gill GS, Glen RC: Molecular Surface Point
Environments for Virtual Screening and the Elucidation of Binding
Patterns (MOLPRINT 3D). J Med Chem 2004, 47(26):6569-6583.

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 13 of 14

http://jcompoundmapper.sourceforge.net/
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12653513?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15446830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15446830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15446830?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20426451?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16157471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16157471?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16995731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16995731?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588092?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15588092?dopt=Abstract

11. Brown N, McKay B, Gasteiger J: Fingal: A Novel Approach to Geometric
Fingerprinting and a Comparative Study of Its Application to 3D-QSAR
Modelling. QSAR Comb Sci 2005, 24:480-484.

12. Chang CC, Lin CJ: LIBSVM: A Library for Support Vector Machines 2001
[http://www.csie.ntu.edu.tw/~cjlin/libsvm].

13. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH: The
WEKA Data Mining Software: An Update. SIGKDD Explorations 2009,
11:10-18.

14. Sutherland JJ, O’Brien LA, Weaver DF: A Comparison of Methods for
Modeling Quantitative Structure-Activity Relationships. J Med Chem 2004,
47(22):5541-5554.

15. Hansen K, Mika S, Schroeter T, Sutter A, ter Laak A, Steger-Hartmann T,
Heinrich N, Müller KR: Benchmark Data Set for in Silico Prediction of
Ames Mutagenicity. J Chem Inf Model 2009, 49(9):2077-2081.

16. Fan RE, Chang KW, Hsieh CJ, Wang XR, Lin CJ: LIBLINEAR: A Library for
Large Linear Classification. J Mach Learn Res 2008, 9:1871-1874.

17. Fechner N, Jahn A, Hinselmann G, Zell A: Estimation of the applicability
domain of kernel-based machine learning models for virtual screening.
J Cheminf 2010, 2:2.

18. Hinselmann G, Fechner N, Jahn A, Eckert M, Zell A: Graph kernels for
chemical compounds using topological and three-dimensional local
atom pair environments. Neurocomputing 2010, 74:219-229.

19. Hinselmann G, Jahn A, Fechner N, Zell A: Chronic Rat Toxicity Prediction
of Chemical Compounds Using Kernel Machines. In Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics: 7th
European Conference (EvoBio 2009). Volume 5483. Tübingen, Germany:
Springer; 2009:25-36.

20. Jahn A, Hinselmann G, Fechner N, Zell A: Optimal Assignment Methods
for Ligand-Based Virtual Screening. J Cheminf 2009, 1:14.

21. Jahn A, Hinselmann G, Fechner N, Henneges C, Zell A: Probabilistic
Modeling of Conformational Space for 3D Machine Learning
Approaches. Molecular Informatics 2010, 29(5):441-455.

22. Borgwardt KM, Ong CS, Schönauer S, Vishwanathan SVN, Smola AJ,
Kriegel HP: Protein function prediction via graph kernels. Bioinformatics
2005, 21:47-56.

23. Schneider G, Neidhart W, Giller T, Schmid G: Scaffold-Hopping by
Topological Pharmacophore Search: A Contribution to Virtual Screening.
Angew Chem., Int Ed 1999, 38(19):2894-2896.

24. Gregori-Puigjané E, Mestres J: SHED: Shannon Entropy Descriptors from
Topological Feature Distributions. J Chem Inf Model 2006, 46(4):1615-1622.

25. Bender A, Mussa HY, Glen RC: Screening for Dihydrofolate Reductase
Inhibitors Using MOLPRINT 2D, a Fast Fragment-Based Method
Employing the Naive Bayesian Classifier: Limitations of the Descriptor
and the Importance of Balanced Chemistry in Training and Test Sets.
J Biomol Screen 2005, 10(7):658-666.

26. Steinbeck C, Hoppe C, Kuhn S, Floris M, Guha R, Willighagen E: Recent
developments of the chemistry development kit (CDK) - an open-source
java library for chemo- and bioinformatics. Curr Pharm Des 2006,
12(17):2111-2120.

27. Swamidass SJ, Chen J, Bruand J, Phung P, Ralaivola L, Baldi P: Kernels for
small molecules and the prediction of mutagenicity, toxicity and anti-
cancer activity. Bioinformatics 2005, 21:359-368.

28. Nasr R, Swamidass SJ, Baldi P: Large scale study of multiple-molecule
queries. J Cheminf 2009, 1:7.

29. Chen J, Swamidass SJ, Dou Y, Baldi P: ChemDB: a public database of small
molecules and related chemoinformatics resources. Bioinformatics 2005,
21:4133-4139.

30. Gasteiger J, Rudolph C, Sadowski J: Automatic Generation of 3D-Atomic
Coordinates for Organic Molecules. Tetrahedron Comput Methodol 1992,
3:537-547.

31. Schrödinger LLC: Schrödinger MacroModel 9.6 Schrödinger, LLC, New York,
NY; 2008.

32. Bouckaert RR, Frank E: Evaluating the Replicability of Significance Tests
for Comparing Learning Algorithms. In Advances in Knowledge Discovery
and Data Mining - Proceedings of 8th Pacific-Asia Conference, PAKDD 2004.
Volume 3056. Edited by: Dai H, Srikant R, Zhang C. Springer; 2004:3-12.

33. Fechner N, Jahn A, Hinselmann G, Zell A: Atomic Local Neighborhood
Flexibility Incorporation into a Structured Similarity Measure for QSAR.
J Chem Inf Model 2009, 49(3):549-560.

34. Talete srl, Milano, Italy: dragonX 1.4 for Linux (Molecular Descriptor
Calculation Software) [http://www.talete.mi.it/].

doi:10.1186/1758-2946-3-3
Cite this article as: Hinselmann et al.: jCompoundMapper: An open
source Java library and command-line tool for chemical fingerprints.
Journal of Cheminformatics 2011 3:3.

Open access provides opportunities to our
colleagues in other parts of the globe, by allowing

anyone to view the content free of charge.

Publish with ChemistryCentral and every
scientist can read your work free of charge

W. Jeffery Hurst, The Hershey Company.

available free of charge to the entire scientific community
peer reviewed and published immediately upon acceptance
cited in PubMed and archived on PubMed Central
yours you keep the copyright

Submit your manuscript here:
http://www.chemistrycentral.com/manuscript/

Hinselmann et al. Journal of Cheminformatics 2011, 3:3
http://www.jcheminf.com/content/3/1/3

Page 14 of 14

http://�www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.ncbi.nlm.nih.gov/pubmed/15481990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15481990?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19702240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19702240?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16859293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16859293?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16170051?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16796559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16796559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16796559?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16174682?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19434895?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19434895?dopt=Abstract
http://www.talete.mi.it/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Prerequisites
	Notation
	Fundamental Matrices
	Feature Extraction
	Atom Types and Pharmacophore Types

	Encodings
	Topological Fingerprints
	Geometrical Fingerprints
	Example of encodings

	Implementation
	Third-party libraries
	Additional functionality
	Import and Export of Data
	Hashing
	Similarity Matrices

	Results and Discussion
	Computation Times Benchmarks
	Machine Learning Performance
	QSAR Regression Problems with LIBSVM
	Classification of Toxic Compounds with LIBLINEAR

	Java API and Command-line Interface
	Java API Usage Example
	Command-Line Interface Example

	Conclusions
	Availability
	Appendix
	Appendix 1 - Usage of the API

	Authors' contributions
	Competing interests
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

