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Abstract
Background SELPLG, which encodes P-selectin glycoprotein ligand-1, has emerged 
as a potential oncological target. A comprehensive understanding of its expression 
patterns across various cancer types and stages is crucial for elucidating its prognostic, 
therapeutic, and immunological roles.

Methods We conducted an extensive bioinformatics analysis using multiple 
computational tools. TIMER2 was employed to quantify SELPLG mRNA expression in 
both tumor and normal tissues across diverse cancer types. Expression differences 
were further analyzed across clinical TNM stages and T stages. To investigate SELPLG 
expression at cellular and subcellular levels, we integrated genetic localization 
and single-cell sequencing data. A pan-cancer mutational landscape analysis was 
performed using Sangerbox 3.0. The prognostic significance of SELPLG expression was 
assessed using Cox proportional hazards regression models. Gene set enrichment 
analysis (GSEA) identified SELPLG-associated signaling pathways, while correlation 
analyses examined its relationship with immune cell infiltration.

Results SELPLG was significantly upregulated in multiple tumor types, including 
breast (BRCA), cholangiocarcinoma (CHOL), esophageal (ESCA), head and neck 
(HNSC), kidney chromophobe (KICH), kidney renal papillary carcinoma (KIRP), stomach 
(STAD), and thyroid (THCA) cancers. Conversely, it was downregulated in lung 
adenocarcinoma (LUAD), colon (COAD), lung squamous cell carcinoma (LUSC), and 
bladder (BLCA) cancers. Differential expression analyses reinforced these findings across 
various cancer types and stages. Genetic localization studies revealed predominant 
SELPLG expression in lymphoid and myeloid cells, while single-cell sequencing data 
indicated enrichment in immune cell populations. The mutational landscape analysis 
identified frequent missense mutations across cancers. Prognostic analyses confirmed 
significant associations between SELPLG expression and patient outcomes. GSEA 
indicated SELPLG’s involvement in immune-related pathways, and correlation analyses 
established a positive association between SELPLG expression and immunomodulatory 
factors.

Conclusions This comprehensive study supports SELPLG as a promising prognostic, 
therapeutic, and immunological biomarker in cancer. Our findings underscore its role 
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1 Introduction
Cancer remains a major global health burden, with both incidence and mortality rates 
continuing to rise. In recent years, immunotherapy has revolutionized cancer treatment 
by shifting the therapeutic paradigm away from traditional approaches such as chemo-
therapy, radiotherapy, and surgery. Among these, immune checkpoint blockade (ICB), 
particularly the inhibition of PD-1/PD-L1, has emerged as a powerful strategy that 
enhances CD8⁺ T cell-mediated cytotoxicity against tumors. However, a substantial pro-
portion of patients do not respond to current immunotherapies, highlighting the urgent 
need to identify novel immune-related therapeutic targets [1].

P-selectin glycoprotein ligand-1 (PSGL-1), encoded by the SELPLG gene, has gar-
nered interest for its roles in tumorigenesis and immune regulation. PSGL-1 is highly 
expressed in various cancer cell lines, including small cell lung cancer (SCLC), alveolar 
carcinoma, multiple myeloma (MM), and metastatic prostate cancer [2]. Through inter-
actions with its ligands, P-selectin and E-selectin, PSGL-1 facilitates tumor metastasis 
[3]. In murine MM model, PSGL-1 promotes bone marrow homing and proliferation 
via P-selectin-mediated adhesion, while SELPLG knockout suppresses tumor growth. 
Similar pro-metastatic roles have been reported in bone-metastatic prostate and lung 
cancer [4–6]. In non-small cell lung cancer (NSCLC), PSGL-1 interacted with activated 
platelet P-selectin enhances metastatic potential [6, 7]. Clinically, elevated PSGL-1 cor-
relates with advanced MM stages. Beyond metastasis, PSGL-1 has been implicated in 
therapy resistance. In MM, it activates ERK1/2 signaling and MYC expression through 
macrophage interaction, leading to increased proliferation and drug resistance [8]. Nota-
bly, dual blockade of PSGL-1 and P-selectin enhances bortezomib sensitivity in preclini-
cal models [9]. In acute myeloid leukemia (AML), PSGL-1 promotes chemoresistance 
via E-selectin and SELPLG deletion enhances chemotherapy efficacy [10]. These find-
ings collectively support a critical role for PSGL-1 in cancer progression, metastasis, and 
chemoresistance.

In addition to its tumor-intrinsic functions, PSGL-1 exhibits immunosuppressive role. 
SELPLG−/− mice develop spontaneous autoimmune disorders affecting the skin, lungs, 
and kidneys [11], and in lupus-prone mice, its deficiency induces glomerulonephritis, 
scleroderma, ulcerative colitis, and experimental autoimmune encephalomyelitis [12–
14]. In the tumor microenvironment, PSGL-1 is upregulated on migrating T cells, where 
it dampens TCR signaling, inhibits IL-2 survival pathways, and promotes exhaustion 
[15]. SELPLG−/− mice exhibit stronger effector T cell responses and improved control 
of chronic infections and melanoma [16]. In B16 melanoma models, PSGL-1 block-
ade enhanced CD4⁺ and CD8⁺ T cell infiltration and cytotoxicity, reduced regulatory 
T cells (Tregs), and delayed tumor progression. PSGL-1 also influences other immune 
cell subsets. In the thymus, SELPLG deficiency results in reduced Treg development, 
while in dendritic cells (DCs), PSGL-1 engagement promotes immunosuppressive phe-
notypes that facilitate Treg induction and suppress effector T cell proliferation [17–19]. 

in tumor progression, immune response modulation, and potential as a therapeutic 
target.
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SELPLG−/− DCs exhibited enhanced immunogenicity, whereas PSGL-1 signaling in 
human monocyte-derived DCs promotes tolerance.

Despite mounting evidence of its oncogenic and immunoregulatory functions, a com-
prehensive pan-cancer characterization of SELPLG remains lacking. To address this 
gap, we conducted a systematic investigation to profile SELPLG expression, prognostic 
significance, immune associations, and potential as a therapeutic target across multiple 
cancer types.

2 Methods
2.1 Data collection and preprocessing

The TCGA Pan-Cancer dataset (PANCAN, N = 10,535 samples, G = 60,499 genes) was 
downloaded from the UCSC Xena Browser (https://xenabrowser.net/), provides  u n i f 
o r m l y normalized RNA-seq data. To ensure robust analysis, we excluded cancer types 
with fewer than three samples in any of the sample categories (Solid Tissue Normal, Pri-
mary Tumor, or Primary Blood Derived Cancer). Subsequently, we retrieved the expres-
sion data for the SELPLG gene across multiple samples. SELPLG expression data were 
filtered from solid tissue normal, peripheral blood, and primary tumor samples, and 
transformed using log2(x + 0.001). We accessed the Human Protein Atlas (HPA) to exam-
ine SELPLG protein expression across cancers, enabling insight into its tumor-specific 
profiles. Somatic mutations were analyzed using the Catalogue of Somatic Mutations in 
Cancer (COSMIC v96). Mutation hotspots and functional impacts were annotated using 
the maftools R package.

2.2 Pan-cancer mutational landscape of SELPLG

The Simple Nucleotide Variation dataset at level 4 was obtained from TCGA samples 
processed via MuTect2 software through the GDC (https://portal.gdc.cancer.gov/) [20]. 
Mutation data of the samples was integrated, and protein structural domain informa-
tion was acquired from the R software package maftools [21]. To ensure high-confidence 
calls, mutations with a variant allele frequency (VAF) < 5% or read depth < 10 were fil-
tered out. Mutation landscapes were visualized using maftools, and recurrent muta-
tions were cross-referenced with COSMIC annotations to prioritize clinically relevant 
variants. The STAD mutation dataset includes 414 samples with detected mutations, of 
which 365 samples (88.2%) are visualized. The COAD mutation dataset consists of 288 
samples with detected mutations, of which 275 samples (95.5%) are visualized. Gene 
mutation frequencies within each sample group were evaluated.

2.3 Survival analysis of SELPLG

We utilized a high-quality TCGA prognostic dataset from a previously published Cell 
study [22]. Samples with follow-up times less than 30 days were excluded, and a logarith-
mic transformation of log2(x + 0.001) was applied to each expression value. Cancer types 
with fewer than 10 samples were removed, resulting in expression data and overall sur-
vival data for 39 cohorts (TCGA-GBM, TCGA-GBMLGG, TCGA-LGG, TCGA-CESC, 
TCGA-LUAD, TCGA-LAML, TCGA-BRCA, TCGA-ESCA, TCGA-STES, TCGA-
SARC, TCGA-KIRP, TCGA-KIPAN, TCGA-PRAD, TCGA-STAD, TCGA-HNSC, 
TCGA-KIRC, TCGA-COAD, TCGA-COADREAD, TCGA-LUSC, TCGA-THYM, 
TCGA-LIHC, TCGA-THCA, TCGA-MESO, TCGA-READ, TCGA-SKCM-M, 
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TCGA-SKCM, TCGA-OV, TCGA-TGCT, TCGA-PAAD, TCGA-UCEC, TCGA-PCPG, 
TCGA-SKCM-P, TCGA-UVM, TCGA-UCS, TCGA-BLCA, TCGA-ACC, TCGA-KICH, 
TCGA-CHOL, TCGA-DLBC).

The R package maxstat was used to determine the optimal SELPLG cutoff (1.9749), 
ensuring a minimum group size greater than 25% and maximum group sample size 
below 75%. Kaplan-Meier survival curves were generated using survfit, and the log-rank 
test was applied to evaluate significance.

2.4 Gene set enrichment analysis (GSEA) of SELPLG

To explore the biological pathways and processes associated with SELPLG expression, we 
performed Gene Set Enrichment Analysis (GSEA) using the Molecular Signatures Data-
base (MSigDB) hallmark sets. The analysis included hallmark gene sets, Gene Ontology 
(GO) terms, and KEGG pathways. GSEA was conducted on pan-cancer cohorts to iden-
tify pathways significantly enriched in high versus low SELPLG expression groups. The 
results were visualized using enrichment plots and heatmaps to illustrate the correla-
tion between SELPLG expression and immune-related pathways. We utilized the TCGA 
cohort to identify genes associated with SELPLG and conducted correlation analysis. 
Hallmark gene sets from the Molecular Signatures Database (MSigDB v7.5.1) were used. 
GSEA was performed using default parameters (1,000 permutations). Pathways with 
FDR < 0.25 and |NES| > 1.5 were deemed significant. Genes ranked by Pearson correla-
tion coefficient with SELPLG expression (P < 0.05). Enrichment plots and heatmaps were 
generated using the BEST tool (https://rookieutopia.com/).

2.5 Quantification of immune cell infiltration on SELPLG expression levels

Immune cell infiltration scores were obtained from TIMER2.0  (   h t t p : / / t i m e r . c i s t r o m e . 
o r g /     ) and a published TCGA immune deconvolution study. Patients were stratified by 
median SELPLG expression to compare infiltration levels between groups.

2.6 Analysis of SELPLG correlation with Immunomodulatory genes

Additionally, SELPLG expression was correlated with 60 immunomodulatory genes from 
key immune checkpoint pathways [23]. After filtering out samples from Primary Blood 
Derived Cancer - Peripheral Blood and Primary Tumor, excluding normal samples, we 
applied a logarithmic transformation of log2(x + 0.001) to each expression value. Follow-
ing this, we calculated the Pearson correlation between SELPLG and marker genes from 
five immune pathways.

2.7 Statistical analysis

Statistical analysis was performed using ggplot2 (v3.3.2) in the R program v4.0.3. Statis-
tical significance between groups was determined using a two-tailed Student’s t-test or 
one-way ANOVA. A significance level of P < 0.05 was considered statistically significant.

3 Results
3.1 Expression of SELPLG across cancer types and stages

The role of SELPLG in cancer was analyzed using pan-cancer samples from TCGA data-
base. The research design and workflow diagram used in this study is shown in Fig. 1. 
SELPLG RNA expression across various tumor and normal tissues was assessed using 
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TIMER2. The analysis revealed significant upregulation of SELPLG in eight tumor types 
(BRCA, CHOL, ESCA, HNSC, KIPC, KIRP, STAD, and THCA), whereas notable down-
regulation was observed in LUAD, COAD, LUSC, and BLCA (Fig.  2A). Differential 
expression between tumor and normal samples was further analyzed using the Wilcoxon 
rank-sum and signed-rank tests in R. Significantly elevated expression was found in 
ten tumor types (BRCA, ESCA, STES, KIRP, KIPAN, STAD, HNSC, KIRC, THCA, and 
CHOL), while downregulation was observed in LUAD, COAD, COADREAD, LUSC, 
and BLCA (Fig. 2B). To evaluate SELPLG expression across clinical TNM stages, pair-
wise comparisons were performed using the unpaired Student’s t-test and ANOVA. Sig-
nificant stage-related differences were detected in STES, KIPAN, STAD, THYM, THCA, 
PAAD, BLCA, and KICH (Fig. 2C). Similarly, significant variation across T stages was 
observed in LUAD, STES, KIPAN, STAD, PRAD, HNSC, BLCA, and KICH (Fig. 2D).

3.2 Genetic localization and single-cell expression of SELPLG

SELPLG RNA expression across various cell types was profiled using data from the 
Human Protein Atlas (HPA). The gene was found to be largely absent in tumor cells, but 
selectively expressed in lymphoid and myeloid lineages (Fig. 3A). Subcellular localization 
analysis demonstrated that SELPLG was primarily localized within vesicles in HEL, JUR-
KAT, and U2OS cell lines, with additional localization in the nucleus, microtubules, and 
endoplasmic reticulum (Fig. 3B–C). Elevated SELPLG expression was also detected in 
NSCLC and colorectal cancer tissues (Fig. 3D). Single-cell sequencing further confirmed 
strong enrichment of SELPLG in immune cell subsets, especially dendritic cells, mono-
cytes, NK cells, T cells, and macrophages (Fig. 3E–F).

Fig. 1 Workflow diagram of the study design
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3.3 Association between SELPLG expression and mutational landscape

The expression profile and mutational landscape of SELPLG across various cancer types 
were analyzed using Sangerbox 3.0 (http://sangerbox.com/home.html). Missense  m u t a t i 
o n s were the predominant type across most cancer types (Fig. 4A). To explore mutation 
patterns in relation to SELPLG expression, samples were stratified into high- and low-
expression groups in STAD and COAD. In STAD, frequent mutations included TTN, 
TP53, LRP1B, and SYNE1, predominantly of the missense type (Fig. 4B). In contrast, in 
COAD showed frequent mutations in APC, TTN, and MUC16, with a high proportion 
of nonsense mutations in APC (Fig. 4C). Correlation analysis between SELPLG expres-
sion and tumor mutational burden (TMB) revealed cancer-specific trends. A negative 

Fig. 2 The expression patterns of SELPLG across different cancer types and clinical stages based on analyses con-
ducted using TIMER2 and other computational tools. A Expression analysis of SELPLG across various cancers with or 
without paracancer generated from TIMER (https://cistrome.shinyapps.io/timer/). B Expression analysis of SELPLG 
across various cancers with or without paracancer generated from other analyses. C Analysis of SELPLG expression 
across TNM stage samples. D Differential expression analysis of SELPLG across clinical T stage samples
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Fig. 4 Comprehensive analysis of the mutational landscape associated with SELPLG across different cancer types. 
A Pan-cancer analysis of SELPLG gene mutation types in various types of cancers. The mutation types and mutant 
genes of the high- and low-expression groups of SELPLG in STAD (B) and COAD (C) were analyzed. D Correlation 
of SELPLG expression with TMB

 

Fig. 3 Comprehensive analysis of SELPLG expression and subcellular localization across various cell types and 
conditions. ASELPLG expression profiles in diverse tumor cell lines, as derived from The Human Protein Atlas. This 
panel displays differential expression levels across multiple tumor-derived cell lines. B Schematic representation 
of SELPLG subcellular localization, highlighting its predominant distribution within key cellular compartments. C 
Immunofluorescence staining of SELPLG localization in HEL, JURKAT, and U2OS cell lines. Images obtained from 
The Human Protein Atlas illustrate specific subcellular structures where SELPLG is detected. D Relative SELPLG ex-
pression across various cell types, including endothelial cells, smooth muscle cells, fibroblasts, and macrophages. 
E Comparative enrichment of SELPLG expression among core cell populations, indicating the cell types with the 
highest and lowest levels of expression. F Single-cell RNA sequencing analysis of SELPLG expression across immune 
cell subsets. Expression variability is shown across T cells, plasma cells, and other immune cell types
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correlation was observed in CHOL and LAML, while UCEC, COAD, and SARC showed 
a significant positive correlation (Fig. 4D). These findings suggest that SELPLG may play 
a differential role in shaping the mutational landscape of tumors and could serve as a 
potential biomarker for predicting TMB levels in distinct cancer types.

3.4 The prognostic significance of SELPLG expression across cancer types

The prognostic value of SELPLG across cancers was assessed using the Cox proportional 
hazards model with log-rank tests. High SELPLG expression was associated with poorer 
overall survival (OS) in LAML, KIPAN, and UVM, whereas low expression predicted 
worse outcomes in CESC, SARC, HNSC, and SKCM (including metastasis subgroup) 
(Fig. 5A). In disease-specific survival (DSS) analysis, high SELPLG expression correlated 
with poorer prognosis in GBMLGG, LGG, KIPAN, TGCT, and UVM. Conversely, low 
expression was associated with unfavorable outcomes in CESC, HNSC, THCA, and 
SKCM (Fig. 5B). For disease-free interval (DFI), low SELPLG expression predicted worse 
outcomes in LIHC and BLCA (Fig.  5C). In progression-free interval (PFI), high SEL-
PLG expression was linked to poor prognosis in GBMLGG, LGG, KIPAN, and PRAD, 

Fig. 5 Univariate Cox regression analyses assessing the prognostic impact of SELPLG expression across different 
types of cancer. A The association between SELPLG expression levels and overall survival (OS) rates across various 
cancer types using the Cox regression model. B The univariate Cox regression analyses evaluating SELPLG in terms 
of disease-specific survival (DSS) rates across 33 types of cancer in the TCGA database. C The outcomes of univari-
ate Cox regression analyses examining SELPLG in relation to disease-free interval (DFI) rates in diverse cancer types. 
D The results of univariate Cox regression analyses assessing SELPLG for progression-free interval (PFI) rates across 
various cancer types
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whereas low expression indicated unfavorable outcomes in CESC, HNSC, LIHC, SKCM, 
and CHOL (Fig. 5D). Similar results were obtained from the Kaplan-Meier Plotter analy-
sis (Fig. S1).

3.5 SELPLG-associated signaling pathways identified by gene set enrichment analysis 

(GSEA)

Gene Set Enrichment Analysis (GSEA) was conducted using the BEST (rookieutopia.
com) platform to identify biological processes associated with SELPLG. This analy-
sis encompassed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes 
(KEGG), and Hallmark gene sets, providing a comprehensive assessment of SELPLG-
related pathways [24]. GO analysis revealed enrichment in immune-related processes, 
including T cell activation, adaptive immune response, antigen processing and presen-
tation via MHC class II, and leukocyte proliferation (Fig. 6A). KEGG pathway analysis 
identified associations with immune pathways such as antigen processing and presenta-
tion, natural killer (NK) cell-mediated cytotoxicity, chemokine signaling, T cell recep-
tor signaling, and B cell receptor signaling (Fig.  6B, D). Hallmark pathway analysis 
highlighted the involvement of SELPLG in key immune and inflammatory processes, 
including inflammatory response, IL-6/JAK-STAT3 signaling, interferon-gamma 
response, IL-2/STAT5 signaling, and TNF-α signaling via NF-κB (Fig. 6C). Additionally, 

Fig. 6 Gene Set Enrichment Analysis (GSEA) of hallmark pathways associated with SELPLG expression in pan-
cancer cohorts. A Gene ontology (GO) enrichment analysis of SELPLG with immune-related functions. This panel 
displays the results of GO enrichment analysis, highlighting the biological processes, molecular functions, and 
cellular components associated with SELPLG expression, particularly focusing on immune-related functions. The 
analysis was performed using the GSEA method on pan-cancer data. B, D Correlations of SELPLG with immune-
related pathways revealed by KEGG pathway analysis. These panels illustrate the significant immune-related 
pathways correlated with SELPLG expression, as identified through KEGG pathway analysis. C Hallmark pathway 
enrichment analysis of SELPLG’s involvement in immune-related processes. The analysis was conducted using the 
GSEA method, and the results are visualized to show the normalized enrichment scores (NES) and false discovery 
rates (FDR) for each pathway
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over-representation analysis (ORA) consistently supported these findings (Fig. S2–S3), 
reinforcing the pivotal role of SELPLG in immune regulation and inflammatory signal-
ing. Collectively, these data underscore the potential involvement of SELPLG in immune 
modulation and inflammatory signaling pathways.

4 Immune cell infiltration analyses
To examine immune cell infiltration, six algorithms within TIMER2 were used. SEL-
PLG expression showed positive correlations with CD8+ T cells, CD4+ T cells, B cells, 
macrophages, and Tregs, and negative correlations with myeloid-derived suppressor 
cells (MDSCs) (Fig.  7A–F). CIBERSORT further confirmed these trends, highlighting 
positive associations with Tregs, CD8+ T cells, and both M1 and M2 macrophages, and 

Fig. 7 Association between SELPLG expression and immune cell infiltration levels across TCGA tumors based on 
TIMER2.0 and CIBERSORT analyses. A The correlation between SELPLG and infiltration level of CD8+ T cells using 
TIMER2 database. B The correlation between SELPLG and infiltration level of B cells using TIMER2 database. C The 
correlation between SELPLG and infiltration level of CD4+ T cells using TIMER2 database. D The correlation between 
SELPLG and infiltration level of Macrophage using TIMER2 database. E The correlation between SELPLG and infiltra-
tion level of MDSC using TIMER2 database. F The correlation between SELPLG and infiltration level of Tregs using 
TIMER2 database. G The correlation between SELPLG and infiltration level of indicated immune cells using data 
from CIBERSOFT database. *p < 0.05; **p < 0.01; ***p < 0.001
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negative correlations with resting NK cells and memory B cells (Fig.  7G). It is impor-
tant to note that the observed associations between SELPLG expression and immune cell 
infiltration—particularly involving Tregs and macrophages—are based on correlative 
data and do not imply direct causality. Although the findings indicate a potential role 
for SELPLG in modulating immune responses, definitive mechanistic evidence remains 
lacking. Additional experimental validation is necessary to clarify whether SELPLG 
directly influences immune cell infiltration or simply reflects the existing immunologi-
cal landscape of the tumor microenvironment (TME). Immune cell infiltration patterns 
varied across tumor types, with minor inconsistencies observed among computational 
algorithms used for deconvolution. Nonetheless, overarching trends were consistent, 
reinforcing SELPLG’s potential involvement in shaping immune dynamics within the 
TME.

4.1 Correlation between SELPLG expression and Immunomodulatory genes in pan-cancer

To investigate the potential role of SELPLG in immunoregulation, pan-cancer cor-
relation analyses were performed. SELPLG expression was positively associated with 
most immunomodulatory genes across cancer types, including chemokines, receptors, 
and MHC molecules (Fig.  8A–B). Chemokines and their receptors play a fundamen-
tal role in immune cell migration and inflammatory responses. The observed positive 

Fig. 8 The correlations between SELPLG expression and 122 immunomodulators, including chemokines, chemo-
kine receptors, MHC molecules, immunoinhibitors, and immunostimulators. A Heatmap representation of SELPLG 
correlations with chemokine and MHC genes. B Heatmap representation of SELPLG correlations with chemokine 
receptor genes. CSELPLG’s correlations with immunoinhibitor genes are depicted in a heatmap, underscoring its 
interactions with key regulators of immune response modulation. D Heatmap representation of SELPLG correla-
tions with immunostimulator genes
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correlation between SELPLG and genes encoding these molecules suggests that SELPLG 
may enhance immune cell trafficking and positioning, thereby improving immune sur-
veillance and response efficiency (Fig. 8A). Similarly, MHC molecules are essential for 
antigen presentation and T cell activation. The positive correlation between SELPLG and 
MHC-related genes suggests that SELPLG may contribute to the upregulation of MHC 
expression and function, thereby enhancing the immune system’s ability to detect and 
eliminate tumor cells (Fig. 8B).

Immunoinhibitory and immunostimulatory molecules are key regulators of immune 
homeostasis. Notably, SELPLG exhibited positive correlations with a majority of immune 
checkpoints, including both inhibitory and stimulatory molecules, across various tumor 
types (Fig. 8C–D), highlighting SELPLG’s role in regulating tumor immunity. These find-
ings suggest that targeting SELPLG may modulate immune responses and potentially 
affect tumor progression (Fig. 8C–D).

In summary, SELPLG is intricately linked to immune processes in the tumor microen-
vironment and may represent a promising target for immunotherapeutic intervention. 
Modulating its expression could either enhance antitumor immunity or dampen exces-
sive inflammation, depending on the clinical context.

5 Discussion
In this study, we conducted a comprehensive pan-cancer analysis of P-selectin glyco-
protein ligand-1 (PSGL-1, encoded by SELPLG), uncovering its multifaceted roles in 
oncogenesis, prognosis, and tumor immunity. By integrating multi-omics datasets and 
advanced bioinformatics approaches, we identified SELPLG as a context-dependent bio-
marker and potential immunotherapeutic target across various cancer types.

Our results demonstrated that SELPLG is significantly upregulated in several carcino-
mas, such as breast, cholangiocarcinoma, and head and neck cancers, suggesting a role 
in promoting tumor progression. In contrast, downregulation in lung adenocarcinoma, 
colon adenocarcinoma, and bladder carcinoma suggests possible tumor-suppressive 
functions in these contexts. These heterogeneous expression patterns highlight the com-
plexity of SELPLG’s role across different tumor types and reinforce the importance of 
personalized therapeutic strategies. Notably, lower SELPLG expression was associated 
with poorer prognosis in sarcoma (TCGA-SARC), indicating a potentially protective 
role in mesenchymal-origin tumors. This contrast with its adverse prognostic associa-
tions in certain carcinomas underscores the gene’s context-specific behavior. Correla-
tions with immune-related pathways and increased infiltration of regulatory T cells and 
macrophages further support its involvement in modulating the tumor immune micro-
environment. Beyond epithelial tumors, SELPLG may also contribute to metastasis in 
mesenchymal-origin tumors such as osteosarcoma. As a key adhesion molecule, SEL-
PLG facilitates tumor cell interactions with vascular endothelium, potentially aiding 
extravasation and metastatic colonization. Osteosarcoma is particularly prone to pulmo-
nary metastasis, and recent studies have highlighted the molecular and cellular mecha-
nisms underlying this process. For instance, a single-cell study revealed that CXCL14 
secreted by stem-like osteosarcoma cells activates fibroblasts via the integrin α11β1 axis 
to establish a lung metastatic niche, promoting tumor invasion and immune suppres-
sion [25]. Concurrently, SELPLG’s known role in immune cell trafficking and modulation 
may synergize with such stromal changes to support metastatic outgrowth. Moreover, 
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a precision nanomedicine strategy for osteosarcoma therapy demonstrated that repro-
gramming the immune microenvironment can enhance CD8⁺ T cell infiltration [26], 
consistent with the observed correlation between SELPLG and immune infiltration. 
Together, these results suggest that SELPLG may influence both immune dynamics and 
metastatic potential via adhesion and stromal signaling mechanisms.

In addition, SELPLG’s mutational landscape revealed frequent missense mutations 
across multiple tumor types, which may affect its function and contribute to tumor pro-
gression. These mutations could serve as potential biomarkers or therapeutic targets in 
genetically defined patient subsets. Expression of SELPLG was positively associated with 
key immune populations-including CD8+ T cells, Tregs, and macrophages-and with 
immune-regulatory pathways such as antigen presentation, T cell activation, and cyto-
kine signaling, indicating a broader role in shaping the tumor immune microenviron-
ment. Although these findings suggest an immunomodulatory role, causality requires 
further experimental validation.

Recent studies have identified PSGL-1 (encoded by SELPLG) as an emerging immune 
checkpoint molecule. Antibody-mediated blockade has been shown to restore CD8+ T 
cell function and inhibit tumor progression. In line with this, SELPLG expression was 
enriched in lymphoid and myeloid lineages, particularly macrophages. CIBERSORT 
analysis further indicated positive correlation with both M1 and M2 tumor-associated 
macrophages (TAMs), suggesting a role in modulating immune cell polarization within 
the tumor microenvironment [27–29]. Given the established immunosuppressive role 
of M2 TAMs—mediated by cytokines such as IL-10 and TGF-β [30], the association 
between SELPLG and macrophage infiltration may reflect a potential immunosuppres-
sive axis [27, 31]. Notably, PSGL-1 blockade has been reported to reduce M2 markers 
and promote macrophage repolarization [32], although further validation in solid tumors 
is still needed. Beyond macrophages, PSGL-1 influences T cell exhaustion and tolerance. 
SELPLG-deficient mice display enhanced effector T cell responses are observed, accom-
panied by autoimmune features, reflecting its dual function in immune regulation and 
homeostasis [33]. In dendritic cells, PSGL-1 signaling promotes tolerogenic phenotypes 
and Treg differentiation [17], while interaction with VISTA under acidic conditions con-
tributes to T cell suppression [34, 35]. These diverse interactions underscore SELPLG’s 
involvement in immune evasion, though its signaling remains incompletely understood 
due to the absence of canonical intracellular motifs [36]. These results suggest that 
SELPLG may contribute to immune modulation within the TME, but further research 
is needed to clarify whether it actively regulates immune responses or simply reflects 
immune activity [15].

In summary, the pan-cancer analysis highlights SELPLG as a context-dependent bio-
marker associated with immune cell infiltration and immunomodulatory signaling 
within the tumor microenvironment. Its correlations with immune checkpoints and 
effector cell populations suggest potential roles in immune evasion and tumor pro-
gression. While these associations provide a foundation for understanding SELPLG’s 
immunological relevance, additional experimental studies are essential to elucidate its 
mechanistic function and therapeutic applicability. A deeper investigation of its expres-
sion, mutations, and functional signaling may ultimately inform the development of 
SELPLG-targeted strategies in cancer immunotherapy.
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