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Abstract

Background: Malignant mesothelioma (MM) is a relatively rare and highly lethal tumor with few treatment options.
Thus, it is important to identify prognostic markers that can help clinicians diagnose mesothelioma earlier and
assess disease activity more accurately. Alternative splicing (AS) events have been recognized as critical signatures
for tumor diagnosis and treatment in multiple cancers, including MM.

Methods: We systematically examined the AS events and clinical information of 83 MM samples from TCGA
database. Univariate Cox regression analysis was used to identify AS events associated with overall survival. LASSO
analyses followed by multivariate Cox regression analyses were conducted to construct the prognostic signatures
and assess the accuracy of these prognostic signatures by receiver operating characteristic (ROC) curve and Kaplan–
Meier survival analyses. The ImmuCellAI and ssGSEA algorithms were used to assess the degrees of immune cell
infiltration in MM samples. The survival-related splicing regulatory network was established based on the correlation
between survival-related AS events and splicing factors (SFs).

Results: A total of 3976 AS events associated with overall survival were identified by univariate Cox regression
analysis, and ES events accounted for the greatest proportion. We constructed prognostic signatures based on
survival-related AS events. The prognostic signatures proved to be an efficient predictor with an area under the
curve (AUC) greater than 0.9. Additionally, the risk score based on 6 key AS events proved to be an independent
prognostic factor, and a nomogram composed of 6 key AS events was established. We found that the risk score
was significantly decreased in patients with the epithelioid subtype. In addition, unsupervised clustering clearly
showed that the risk score was associated with immune cell infiltration. The abundances of cytotoxic T (Tc) cells,
natural killer (NK) cells and T-helper 17 (Th17) cells were higher in the high-risk group, whereas the abundances of
induced regulatory T (iTreg) cells were lower in the high-risk group. Finally, we identified 3 SFs (HSPB1, INTS1 and
LUC7L2) that were significantly associated with MM patient survival and then constructed a regulatory network
between the 3 SFs and survival-related AS to reveal potential regulatory mechanisms in MM.

Conclusion: Our study provided a prognostic signature based on 6 key events, representing a better effective
tumor-specific diagnostic and prognostic marker than the TNM staging system. AS events that are correlated with
the immune system may be potential therapeutic targets for MM.
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Background
Malignant mesothelioma (MM) is a rare and aggressive
kind of cancer that originates in the mesothelial surfaces
of the pleura and other sites [1, 2]. Approximately 3000
new cases and 3000 deaths due to MM occur annually
in the United States, and approximately 80–90% of
mesothelioma cases are connected to asbestos exposure
[3]. MM is a heterogeneous tumor that includes the fol-
lowing three major histologic subtypes: epithelioid, sar-
comatoid and biphasic. The epithelioid subtype is the
most common type of mesothelioma, and it has a better
prognosis than the other subtypes [4]. The median over-
all survival is approximately 1 year in patients with
advanced surgically unresectable mesothelioma, and the
5-year overall survival (OS) is approximately 10% [5].
Although surgical resection is effective in patients with
early-stage disease, most patients are diagnosed at ad-
vanced stages, in which traditional drug regimens are in-
effective, and for these patients, a cure is not possible
[6]. Thus, the early diagnosis of mesothelioma is an im-
portant factor in prognosis and treatment options. Evi-
dence has emerged that the prevalence of MM is
attributable to inherited mutations of susceptibility genes
[7]. However, the molecular mechanisms of MM are still
largely unknown, and the relevance of susceptibility
genes to carcinogenesis also remains mostly unknown.
Alternative splicing is a molecular splicing process by

which exons or noncoding regions are differentially
joined together or skipped to produce different mature
mRNAs from a single gene during transcription [8]. The
majority of human genes undergo alternative splicing to
produce multiple mRNA isoforms, which plays a crucial
role in generating protein diversity and provides an op-
portunity for gene/protein regulation [9], and alternative
splicing also has an essential role in cellular differenti-
ation and organism development [10, 11]. AS events can
be classified into seven types according to the combin-
ational types of splice sites, including alternate donor
(AD), alternate acceptor (AA), alternate terminator
(AT), alternate promoter (AP), mutually exclusive exons
(ME), exon skip (ES), and retained intron (RI) [12]. In
addition to increasing the diversity and functional cap-
acity of a gene during posttranscriptional processing, AS
is often associated with the occurrence of cancer driver
mutations in encoded genes [13]. Recently, high-
throughput sequencing technologies have revealed that
AS is involved in multiple pathologies of cancer [14–16].
Cancer cells generate abnormal proteins with missing,
altered, or inserted domains, resulting in oncogenesis
[14]. Changes in alternative splicing may recapitulate
cancer-related phenotypes by inducing cell proliferation
or avoiding apoptosis [17]. Therefore, AS changes are
recognized as important signatures of tumor progres-
sion, diagnosis and treatment [18, 19]. Currently, the

analysis of tumor AS is a promising step forward in pro-
viding potential sources for diagnostic, prognostic and
therapeutic strategies [20]. However, the relationship be-
tween AS and the prognosis of MM has not been exten-
sively studied.
AS events have recently been identified as a source of

tumor-specific neoantigens and play a critical role in the
formation of the tumor microenvironment [21, 22]. Ac-
cumulating evidence has shown that AS has potential
targets for immunotherapy, but it remains unknown
how AS affects the immune system of MM patients and
whether AS could be a target for immunotherapy. Here,
we performed a genome-wide analysis of AS profiling in
MM, providing an overall view of survival-related AS
events in MM patients. A total of 3976 AS events were
identified as candidate survival-related AS events. We
established prognostic signatures based on survival-
related AS events for MM patients, which were proved
to be an efficient predictor for survival. We further dem-
onstrated that the prognostic signature composed of 6
AS events was associated with the infiltration of immune
cells in MM patients. Finally, a potential regulatory net-
work was constructed to characterize the associations
between splicing factors and AS. Understanding the AS
events that could drive MM is crucial for the successful
development of diagnostic and therapeutic modalities.
Our study may contribute to understanding the mecha-
nisms underlying the progression of MM and may shed
new light on developing potential therapeutic targets in
the future.

Methods
Data acquisition
The mRNA data and clinical information of MM patients
were obtained from TCGA (https://portal.gdc.cancer.gov/,
accessed February 1, 2021), and 87 specimens of primary
MM were included in this study. The percent spliced in
(PSI) values of AS events in MM samples were down-
loaded from TCGA SpliceSeq (https://bioinformatics.
mdanderson.org/TCGASpliceSeq, February April 1, 2021),
a web-based resource that has been widely used to explore
the AS patterns of TCGA tumors [23]. These AS events
can be classified into seven types, including the alternate
donor (AD), alternate acceptor (AA), alternate terminator
(AT), alternate promoter (AP), mutually exclusive exon
(ME), exon skip (ES) and retained intron (RI).

Identification of survival-related AS events and functional
enrichment analysis
To identify survival-related AS events, univariate Cox re-
gression analysis was performed to evaluate the associ-
ation between AS events and the overall survival time of
MM patients. AS events expressing significant p values
< 0.05 were selected as survival-related AS events. UpSet
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plots were used to display the survival-related AS events
based on the seven types of AS events. Moreover, bubble
charts were used to summarize the top 10 AS events.
The parent genes of the survival-related AS events were
subjected to functional enrichment analysis using the
ClusterProfiler R package [24]. Terms with adjusted p-
values < 0.05 were considered significantly enriched.
The top 20 significant terms in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways and Gene
Ontology (GO) categories, including the molecular
function (MF), biological process (BP) and cellular
component (CC) categories, were visualized with bub-
ble diagrams [25–27].

Multivariate prognostic model constructed by LASSO
regression
Least absolute shrinkage and selection operator (LASSO)
regression was performed to minimize overfitting and
identify the most significant survival-related AS events.
After testing for collinearity, stepwise multivariate Cox
regression analysis was performed to calculate the prog-
nostic risk scores for OS prediction based on the seven
types of AS events. A multivariate prognostic model was
constructed based on the PSI value of the AS events.
The risk score was calculated using the following
formula:

Risk score ¼
Xn

i¼1

βi� PSI

where n, βi, and PSI represent the number of survival-
related AS events, the coefficient index of the AS events,
and the PSI value of the AS events, respectively. Accord-
ing to the median risk score, the samples were divided
into a high-risk group and a low-risk group. Kaplan-
Meier survival curves and the log-rank test were used to
analyze the survival rates between the low-risk and high-
risk groups. A receiver operating characteristic (ROC)
curve was constructed, and the area under the curve
(AUC) was calculated using the “survival ROC” package
in R. The expression heatmap, distribution of risk scores
and survival times related to the signature were dis-
played. Finally, to limit overfitting, we used a resampling
technique to estimate model accuracy. The C-index was
the indicator for assaying the performance of the prog-
nostic model, and we calculated the C-index through
bootstrap resampling to estimate model accuracy using
the “dplyr”, “rms”, “survival” and “pec” R packages.

Independence of the prognostic signature
The following clinicopathological parameters from
TCGA database, including asbestos exposure, age, gen-
der, T stage, N stage, M stage and clinical stage were
used for further analysis. Univariate and multivariate

Cox regression analyses were applied to evaluate
whether the AS event-based prognostic risk score was
an independent risk factor for survival.

Analysis of immune cell infiltration level and tumor-
infiltrating immune cells in MM patients
We assessed the enrichment levels of the 29 immune
signatures in each MM sample by the single-sample
gene-set enrichment analysis (ssGSEA) score. These im-
mune signatures for immune cell types were downloaded
from Bindea et al. [28]. According to the enrichment
levels (ssGSEA scores) of the 29 immune signatures, tu-
mors with qualitatively different immune cell infiltration
subtypes were grouped using hierarchical clustering.
Immune Cell Abundance Identifier (ImmuCellAI) was

performed to calculate the relative abundances of 24
types of immune cells from transcriptome data [29].
These immune cells are comprised of B cells, macro-
phages, monocytes, neutrophils, DCs, NK cells and 18 T
cell subtypes (CD4 T cells; CD8 T cells; naïve CD4 T
cells; naïve CD8 T cells; cytotoxic T (Tc) cells; exhausted
T (Tex) cells; type 1 regulatory T (Tr1) cells; natural
regulatory T (nTreg) cells; induced regulatory T (iTreg)
cells; T-helper 1, 2 and 17 (Th1, Th2 and Th17) cells;
follicular T-helper (Tfh) cells; central memory T (Tcm)
cells; effector memory T (Tem) cells; natural killer T
(NKT) cells; mucosal-associated invariant T (MAIT)
cells; and gamma-delta T cells).

SF-AS regulatory network
A list of 119 SFs was acquired from a previous study that
analyzed whole-exome sequencing data across 33 tumor
types [30]. The expression profiles of SF genes were ob-
tained from TCGA database. Subsequent univariate Cox
regression analysis was conducted to identify survival-
associated SFs in the MM samples. To estimate the
correlation between AS events and SFs, a correlation
network between the survival-associated SFs and
survival-related AS events was constructed based on the
Spearman’s test. P values less than 0.05 and Pearson’s
correlation coefficients greater than 0.4 were considered
statistically significant. The potential SF-AS regulatory
network was visualized by Cytoscape software (version
3.7.2).

Statistical analysis and R package
All statistical analyses were conducted using R (version
3.6.3). The intersections and aggregates of different types
of AS events were assessed using the “UpSetR” package.
KEGG and GO analyses were performed using the
“ClusterProfiler” package. Survival analysis was per-
formed using the “survival” and “survivalROC” packages.
LASSO multivariate Cox analysis was performed using
the “glmnet” package. Kaplan–Meier curves and the log-
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rank test were used to evaluate the statistical significance
of the survival rates. The predictive accuracy of the
prognostic signature was determined by ROC curve
analysis.

Results
Analysis of AS events in MM patients
The workflow of the present study is summarized in
Fig. 1.
A total of 87 MM patients from TCGA database were

included in our study. The detailed clinical features of
the patients are summarized in Table S1. Four patients

with less than 30 days of follow-up were excluded. In-
tegrated AS events were comprehensively analyzed
based on their PSI values. We detected 43,433 AS
events in 10,145 parent genes (Fig. 2A). Because AS
events influence gene translation and protein diver-
sity, we selected these AS events to analyze the distri-
butions of the genes involved in these events. These
interactive sets were visualized by the UpSet plot. Ac-
cording to the splicing patterns, these AS events were
divided into seven types. Among the seven patterns of
alternative splicing, exon skipping (ES) events were
the most frequent type (Fig. 2B).

Fig. 1 Experimental design and analyses presented in our work
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Accumulated evidence has reported that ES is the
most common AS type and is associated with muta-
tions leading to mesothelioma [31]. We next screened
the ES-induced mutations from the ExonSkipDB data-
base. Among these ES events, we obtained 103
mutation-associated ES events from 80 genes in MM
(Table S2). KEGG analysis of 80 genes revealed that
“Pathway in cancer”, “Hedgehog signaling pathway”
and “Hippo signaling pathway” were the most signifi-
cant pathways (Fig. 2C). To observe the relationship
between these 80 genes, we mapped these genes to
the STRING database to obtain the interaction of
these genes using a score greater than 0.5 (Fig. 2D).
Among these mutated genes, only BAP1, SETD2,
SETDB1, NF2 and TP53 have been reported in MM
[16]. These ES events associated with gene mutations
may play a critical role during MM development.

Identification of survival-related AS events
To investigate the relationship between AS and progno-
sis, univariate survival analysis between AS events and
the prognosis of MM patients was performed on 43,433
AS events to identify survival-related AS events. A total
of 3976 AS events were identified as candidate survival-
related AS events, involving 2532 parent genes (Fig. 3A).
The distribution of these seven types of AS events and
their intersections were quantitatively analyzed. The top
10 most significant survival-related AS events are shown
using bubble plots in Fig. S1.
As expected, ES events accounted for the greatest pro-

portion among the survival-related AS events (Fig. 3B),
suggesting that ES events are significantly correlated
with prognosis. In addition, we focused on ES events be-
cause they resulted in loss of functional domains or
frame shifting of the open reading frame (ORF), leading

Fig. 2 Overview of AS profiling and MM-specific exon skipped genes. A Number of AS events and parent genes for each AS event type in 83
MM patients. B UpSet plot of interactions among the seven types of AS events. C KEGG pathway analysis of 103 mutation-associated ES events
from 80 genes in MM. The dot size represents the number of enriched genes, and adjusted p values are indicated by the color scale on the side.
D Interaction network of 80 ES genes in MM. AA, alternate acceptor; AD, alternate donor; AP, alternate promoter; AT, alternate terminator; ES,
exon skip; ME, mutually exclusive exon; RI, retained intron
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to a variety of human cancers. Our results identified
1363 survival-related ES events in 1069 ES-related genes.
To explore the gene functions in ES events, the parent
genes of the survival-related ES events were subjected to
GO and KEGG enrichment analyses. KEGG analysis re-
vealed that the enrichment of these genes was related to
multiple pathways, including “Metabolic pathways”,
“MAPK signaling pathway” and “PI3K-Akt signaling
pathway” (Fig. 3C). The top enriched GO terms for bio-
logical processes were “Autophagy”, “Process utilizing
autophagic mechanism” and “RNA splicing”, indicating
the active aberrant splicing patterns of MM. In addition,
“Cell-substrate junction” and “Protein serine/threonine
kinase activity” were also significantly enriched in cellu-
lar component and molecular function (Fig. 3D).

Construction of prognostic AS signatures for each AS
type
To examine the prognostic capacity of the survival-
related AS events, LASSO regression was first performed
to screen the most significant survival-related AS events

from 3976 survival-related AS events. The results of the
LASSO regression analyses are displayed in Fig. S2.
Multivariate Cox regression modeling for independent
prognostic factors was then performed to calculate a risk
score for each patient, and detailed information on the
prognostic signatures based on the seven types of AS
events is shown in Table 1. According to the risk score,
the MM patients were divided into low-risk and high-
risk groups. Kaplan-Meier survival analysis demon-
strated that patients in the low-risk group had a better
prognosis than those in the high-risk group (Fig. 4A).
Time-dependent ROC analyses at 3 years and 5 years
were conducted to validate the prognostic performance
of the prognostic signatures. The AUC values of the
ROC curve of all prognostic signatures were greater than
0.9, demonstrating excellent performance in prognosis
prediction (Fig. 4B). These seven prognostic signatures
with AUCs ≥0.9 were selected for subsequent analysis.
The information of the corresponding AS types of the
candidate AS events as well as the survival time and liv-
ing status ranked by the distribution of the risk score are

Fig. 3 Overview of survival-related AS events and functional enrichment analyses of survival-related ES events genes. A Number of survival-
related AS events and parent genes for each AS type. B UpSet plot showing the interactions among the seven types of survival-related AS events.
C GO analysis of parental genes with survival-associated ES events. D KEGG pathway analysis of parental genes with survival-associated ES events
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Table 1 Multivariate Cox analysis of prognostic AS signatures of each AS type

Gene symbol Spliceseq ID AS type coef HR HR.95 L HR.95H pvalue

PKMYT1 33,330 AA −4.62365 0.009817 0.000149 0.644696 0.030344

POLR2H 67,943 AA 12.70464 329,270.6 42.50452 2.55E+ 09 0.005425

EPN1 52,138 AA −8.32915 0.000241 2.21E-08 2.630785 0.079083

MEIS3 50,645 AA 2.326581 10.24286 2.092053 50.1499 0.004095

SEC16A 88,181 AA 6.467639 643.9617 2.325998 178,283.4 0.024185

XRCC4 72,698 AA −1.38736 0.249733 0.081034 0.769636 0.015695

LTC4S 74,924 AA −43.1454 1.83E-19 1.65E-30 2.02E-08 0.000883

MSS51 12,150 AA −17.2217 3.32E-08 2.55E-14 0.043206 0.016516

SHC1 7856 AA −8.01876 0.000329 2.09E-08 5.189885 0.10394

PTPN7 9405 AA −13.4042 1.51E-06 2.87E-09 0.000792 2.74E-05

MLST8 33,226 AA −12.8429 2.64E-06 1.63E-11 0.42889 0.035881

RPL13 392,312 AD 9.429979 12,456.27 155.7049 996,491.4 2.47E-05

COPB1 14,469 AD 3.238635 25.49888 0.891659 729.1948 0.058366

TATDN1 85,085 AD 5.362926 213.3483 1.339859 33,971.85 0.038167

CPNE1 59,205 AD −4.09642 0.016632 0.000334 0.827904 0.039909

GCFC2 54,161 AD −10.1517 3.90E-05 5.93E-09 0.256718 0.02363

GEMIN6 53,288 AD −10.9105 1.83E-05 8.47E-09 0.039375 0.005338

ATXN2L 35,857 AD 2.993779 19.96097 1.791751 222.3748 0.014927

RPS15A 34,266 AD 11.40439 89,714.7 0.932723 8.63E+ 09 0.051407

STARD10 17,646 AD −24.3236 2.73E-11 2.27E-18 0.000329 0.003453

ECHDC2 90,971 ES −1.24895 0.286807 0.05954 1.381561 0.119465

ERCC1 50,443 ES −7.79417 0.000412 3.53E-07 0.480997 0.030535

COPZ2 120,285 ES 3.396763 29.86727 1.78974 498.4265 0.018017

RBCK1 58,453 ES −17.8953 1.69E-08 7.55E-14 0.003788 0.004413

NDUFA12 23,740 ES −3.30745 0.036609 0.000847 1.582308 0.085221

KANSL3 54,543 ES −7.00065 0.000911 2.05E-05 0.04055 0.0003

CASP10 56,809 ES −2.28213 0.102067 0.0061 1.707783 0.112368

TBC1D7 75,381 ES −5.37593 0.004627 0.000122 0.175366 0.003748

ACOXL 54,941 AT −2.76667 0.062871 0.013075 0.302304 0.000554

ESCO2 83,184 AT −2.59645 0.074538 0.005148 1.079276 0.056908

ARL5A 55,593 AT −31.2748 2.62E-14 3.68E-20 1.86E-08 5.37E-06

EPS15L1 48,158 AT −5.22216 0.005396 0.000119 0.243627 0.007223

SRPK2 81,281 AT −12.2981 4.56E-06 6.00E-11 0.346551 0.031971

C5orf38 71,503 AT −3.80851 0.022181 0.003116 0.157876 0.000143

SLC35G1 12,567 AT −2.08066 0.124848 0.009697 1.607419 0.110508

GOLGA6L4 32,284 RI −6.81726 0.001095 1.56E-06 0.769218 0.041508

AKIP1 14,280 RI 2.88328 17.87281 1.894855 168.5813 0.011797

TRAPPC2 88,516 RI 3.320201 27.66591 1.281781 597.1397 0.034145

MBD3 46,525 RI 14.74354 2,529,512 305.7635 2.09E+ 10 0.001358

TMEM33 69,137 RI −6.68218 0.001253 6.35E-07 2.471107 0.084302

EEF1B2 57,143 RI −6.42918 0.001614 1.51E-06 1.729919 0.070917

CERS5 99,714 ME 1.045024 2.843466 1.051878 7.686538 0.039432

SMPD4 55,291 ME 2.387929 10.89091 0.826019 143.5948 0.069569

THNSL2 54,469 ME −2.99269 0.050153 0.004231 0.594429 0.017678

Lai et al. BMC Cancer          (2021) 21:848 Page 7 of 18



displayed in Fig. 5A. In addition, the C-index of each AS
prognostic signature was greater than 0.7 (Fig. 5B). The
above results suggested that AS-based prognostic signa-
tures with a risk score system may potentially be used as
a novel method for classifying MM patients.

Construction of a prognostic signature based on all AS
types
Finally, the AS events were further limited to 6 key
genes with AS events based on all types of AS events,
and the details of the 6 AS events are shown in Table 2.
We divided MM patients into high-risk and low-risk
groups according to the median risk score (Fig. 6A). The
Kaplan-Meier survival curve showed that patients with
low risk had significantly longer survival times than
those with high risk (Fig. 6B). The AUC values of the 6
AS event risk score models predicting the 3-year and 5-
year survival rates reached 0.941 and 0.997, respectively
(Fig. 6C), representing high prediction accuracy. The 6
AS events were used to construct a nomogram based on
Cox regression (Fig. 6D), which predicted the 1-, 3- and
5-year survival status, supporting the nomogram suit-
ability to predict the survival rate for MM patients. The
calibration curves indicated that the nomogram had
good prediction accuracy (Fig. 6E).
Next, we explored the correlation between the risk score

and histologic subtypes. Patients with epithelial mesotheli-
oma had a better prognosis than patients with other
mesothelioma cell types (Fig. S3A). We observed that the
risk score was significantly decreased in patients with the
epithelioid subtype (Fig. S3B). We further analyzed the
correlation between the risk score and clinical characteris-
tics, including age, sex, T stage, N stage, M stage and clin-
ical stage. There were no significant correlations between
the risk score and these clinical characteristics (Fig. S3C).
To verify the independent prognostic power of these

signatures, clinicopathological parameters, including as-
bestos exposure, age, gender, T stage, N stage, M stage
and clinical stage, were recorded as binary variables.
Both univariable and multivariable Cox proportional
hazards regression models were applied to evaluate the

independent prognostic value of this prognostic model.
The results from the univariate and multivariate Cox re-
gression analyses demonstrated that the risk score sig-
nificantly correlated with the survival of MM patients
(Fig. 6F). These results indicated that the 6 AS event-
based prognostic signature had good accuracy in pre-
dicting the survival of patients with MM.

Risk score and AS events are associated with immune
infiltration level in the tumor microenvironment
Increasing evidence has indicated that AS alterations may
affect immune cell infiltrations in the tumor microenvir-
onment [32, 33]. To explore the association between the
AS event-based risk score and the immune infiltration
level of MM patients, we applied the ssGSEA score to
cluster and classify the immunity status of MM patients.
Patients were divided into high- and low-immune infiltra-
tion subtypes based on the immune score. Our analysis re-
vealed that risk scores were higher in the high-immune
infiltration subtype than in the low-immune infiltration
subtype (Fig. 7A). Unsupervised clustering clearly showed
that most of the high immune infiltration patients
belonged to the high-risk group (Fig. 7B). Furthermore,
the PSI of three AS events, namely, TMC7|34,279|AT,
SRPK2|81,281|AT and SMC6|52,732|ES, increased in the
low immune infiltration subtype, while the PSI of
DUT|30,485|AP decreased in the low immune infiltration
subtype (Fig. 7C), which was consistent with the trend in
the high-risk and low-risk groups (Fig. 7D). We investi-
gated the association between immune infiltration and
histologic subtypes. Our results showed that biphasic
mesothelioma patients displayed high immune infiltration
compared to patients with epithelial mesothelioma (Fig.
S4A). These results demonstrated that the 6 AS event-
based risk scores are negatively associated with the im-
mune infiltration level of MM patients.

Risk scores are correlated with immune cells in the tumor
microenvironment
Because the immune infiltration subtypes only reflected
the overall proportion of immune infiltration and not

Table 1 Multivariate Cox analysis of prognostic AS signatures of each AS type (Continued)

Gene symbol Spliceseq ID AS type coef HR HR.95 L HR.95H pvalue

ZNF140 204,379 ME −5.46035 0.004252 4.34E-05 0.416614 0.019581

RNF121 17,448 ME −1.70312 0.182114 0.050196 0.660716 0.00959

TTC13 10,258 ME 2.143182 8.526528 1.524471 47.68977 0.014687

ZFP64 59,809 AP −1.49769 0.223647 0.040284 1.241632 0.086805

YY1AP1 8098 AP −3.10861 0.044663 0.001998 0.998353 0.049879

DHPS 47,825 AP −23.3753 7.05E-11 1.88E-19 0.026407 0.020299

LIMA1 21,691 AP −2.42334 0.088625 0.008378 0.937537 0.044056

MORF4L2 89,765 AP −3.76226 0.023231 0.000582 0.927201 0.045484
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the infiltration of specific immune cells, we further in-
vestigated the correlation between the risk score and the
infiltration of 24 types of immune cells in the tumor
microenvironment by ImmuCellAI (Fig. 8A). Unexpect-
edly, differential analysis showed that the abundances of
cytotoxic T (Tc) cells, natural killer (NK) cells and T-
helper 17 (Th17) cells were higher in the low-risk group,
whereas the abundances of induced regulatory T (iTreg)
cells were decreased in the low-risk group (Fig. 8B and
Fig. S4B). Survival analysis found that high infiltration

of both Th17 cells and cytotoxic T cells was associated
with good prognosis, which was consistent with the
above results that the low-risk group had better overall
survival (Fig. 8C). Correlation analyses of immune cells
indicated that the numbers of NK cells and cytotoxic T
cells exhibited strong positive correlations, while the
numbers of Th17 cells were negatively correlated with
the numbers of iTreg cells (Fig. 8D). In addition, Th17
cells were enriched in epithelial mesothelioma compared
to biphasic mesothelioma (Fig. S4C). Together, the

Fig. 4 Kaplan-Meier plots and ROC curves of prognostic signatures for each AS type. A Kaplan-Meier survival analysis of OS between the low-risk
group and the high-risk group in MM patients based on survival-related AS events. The red line indicates the high-risk group, whereas the blue
line indicates the low-risk group. B Time-dependent ROC curves to evaluate the predictive performance of each prognostic signature at 3 years
and 5 years
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above results revealed that a low-risk score is correlated
with the infiltration of immune cells, especially effector
T cells, in MM patients.

Survival-related splicing regulatory network
Splicing factors are one of the vital regulatory factors of
AS events. A list of 119 SFs was obtained from a previ-
ous study [30]. Univariate Cox regression analyses of
these 119 SFs based on TCGA data showed that 13 out

of 119 SFs were associated with OS in MM patients
(Table 3). Survival analyses suggested that 3 out of 13
survival-associated SFs possessed the ability to predict
the survival of patients with MM, including HSPB1,
INTS1 and LUC7L2 (Fig. 9A). Correlation analysis was
performed to evaluate the correlation between survival-
associated SF genes and prognosis-related AS events in
each splicing type. In total, 29 downregulated AS events
(green rectangles) and 26 upregulated AS events (yellow

Fig. 5 Assessment of the predictive ability of prognostic signatures. A MM patients were divided into the high-risk and low-risk groups based on
the risk score. Distributions of the risk score, survival time and the expression heatmap of the candidate AS events of the seven significant
prognostic signatures with AUCs > 0.9. B Calculation of the C-index of each AS prognostic signature
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rectangles) were correlated with the 3 survival-associated
SFs in this network (Fig. 9B). Among these 55
prognosis-related AS events, 3 ES events (FHL2–54825-
ES, PABPC4–1895-ES and SETDB1–7522-ES) over-
lapped with 103 mutation-associated ES events in MM
(Fig. S5). Considering the above results, MM-related
genes and AS events play vital roles in MM biology, but
further research is needed. The construction of a correl-
ation network provided evidence for deciphering the
regulatory mechanisms of AS events in MM.

Discussion
Changes in AS events are frequently observed in cancer
and are beginning to be recognized as critical signatures
of tumor development, differentiation and treatment
[14]. MM is an aggressive tumor with high chemoresis-
tance and poor survival [34]. Due to the low incidence
of MM, there has been little progress in the knowledge
of the molecular mechanisms associated with MM. In
the present study, we provided a systematic landscape of
AS events in MM. Based on survival-related AS events,
we constructed prognostic AS signatures that stratified
MM patients into low-risk and high-risk groups with
distinct survival outcomes. Moreover, we investigated
the association among risk score, histologic subtype and
immune system, providing further insights into success-
ful establishment of diagnostic, therapeutic and prognos-
tic systems.
The aberrant splicing of pre-mRNA in tumor cells

contributes to multiple cell functions, such as prolifera-
tion, invasion, metastasis and drug resistance, represent-
ing potential tumor-specific biological markers for
clinical application [35, 36]. Tumor cells have cancer
type-specific and subtype-specific alterations during the
process of splicing, which have prognostic value and
contribute to every hallmark of cancer progression [37].
Kahles and colleagues analyzed more than 8000 tumors
across 32 cancer types and found thousands of alterna-
tive splicing events not detectable in nonmalignant tis-
sues, which likely lead to cancer-specific markers and

neoantigens [38]. Recent studies have focused on investi-
gating the survival prognostic value of AS in cancers.
Numerous studies have conducted SpliceSeq analyses to
generate AS profiles for cancer prognosis monitoring
with scores, including papillary thyroid carcinoma [39],
colorectal cancer [40], non-small cell lung cancer [41],
melanoma [42], hepatocellular carcinoma [43] and kid-
ney cancer [44]. Our study added to the comprehensive
understanding of patients with MM and identified
survival-related AS signatures using high-throughput
data. We systematically examined the prognostic value
of AS events in MM patients. A total of 3976 AS events
were identified as candidate survival-related AS events,
and 2532 parent genes were involved. As mentioned
above, the lost protein features of ES events are import-
ant for evaluating the functional effects of MM-related
genes on tumorigenesis. Among the survival-related ES
genes, NF2, BAP1, PEX5, RAD51, FHL2, XPO6, RHOT1,
MEGF6, PLXNB2, SETD5 and WIZ overlapped with
MM-specific ES genes, which may play a critical role
during MM development. Several previous genomic
studies have reported that gene fusions and splice alter-
ations are recurrent mechanisms leading to inactivation
of NF2 and BAP1 in MM, and the present study pro-
vided additional data interpretation to the results in
these previous studies [16, 45]. Moreover, we identified
several potential biological pathways associated with
survival-related ES genes, such as the MAPK signaling
pathway, which has been found to be the most com-
monly affected biological pathway in MM patients [16]
and in animal models of MM [46].
The relevance of cancer-specific AS events for serving

as prognostic biomarkers and therapeutic targets is gain-
ing recognition [16]. During the last decade, tremendous
efforts have been devoted to integrating genome-wide
prognostic biomarkers to improve the prognosis and
diagnosis of MM [47, 48]. Hmeljak et al. conducted a
comprehensive integrated genomic study of malignant
pleural mesothelioma, showing higher aurora kinase
mRNA expression in the poor prognosis subset [45].

Table 2 Multivariate Cox analysis of prognostic AS signatures based on all AS events

Gene symbol Spliceseq ID AS type coef HR HR.95 L HR.95H pvalue

DUT 30,485 AP 2.54606589 12.7568182 0.85448400 190.449921 0.06489959

TMC7 34,280 AT 3.006121803 20.2088737 1.49090350 273.926902 0.02380556

COPB1 14,469 AD 2.982523553 19.7375626 0.95024497 409.969418 0.05398084

PKMYT1 33,330 AA −3.82534411 0.02181092 0.00062199 0.76482814 0.03505836

TMCO3 26,380 ES −9.32210286 8.94E-05 4.44E-08 0.18013857 0.01632685

PTPLA 10,932 AT 8.234517794 3768.82211 5.20565361 2,728,575.72 0.01424550

RASGRP3 53,188 AP −1.74479491 0.17468080 0.05054900 0.60363971 0.00581895

PLEC 85,514 AP −10.1222147 4.02E-05 3.09E-08 0.05232083 0.00567041

DUT 30,485 AP 2.54606589 12.7568182 0.85448400 190.449921 0.06489959
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Raphael et al. identified alterations in the Hippo, mTOR,
histone methylation, RNA helicase and p53 signaling
pathways in malignant pleural mesothelioma [16]. How-
ever, screening studies related to survival based on the
selection of AS events and the establishment of

prognostic models have not been widely performed in
MM. Importantly, the present study constructed prog-
nostic signatures based on AS events for monitoring the
prognosis of MM patients. Kaplan-Meier analysis
showed that the difference in OS between the low-risk

Fig. 6 Construction of a prognostic model based on all AS events. A MM patients were divided into high-risk and low-risk groups according to
the risk score model. B Kaplan-Meier survival analysis of MM patients in the low-risk and high-risk groups. C Time-dependent ROC curves to
evaluate the predictive performance of the prognostic signature at 3 years and 5 years. D The nomogram was constructed based on AS events of
the prognostic signature. E Calibration curves for predicting the three- and five-year survival probability of MM patients. F Univariate and
multivariable Cox proportional hazards regression models were applied to evaluate the independence of the prognostic signature
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and high-risk patients stratified according to the risk
score was remarkable. Furthermore, time-dependent
ROC curves demonstrated robust and excellent perform-
ance. Our results suggested that AS events have great
potential significance in predicting the prognosis of MM
patients.
Studies have reported that aberrant AS events are in-

volved in a variety of tumor processes, including im-
mune destruction [49, 50]. Neoepitopes derived from
aberrant AS events are recognized by T lymphocytes to
induce antitumor immune responses [51]. Thus, we ana-
lyzed the association between the risk score system
based on 6 AS events and the immune infiltration level
in the immune microenvironment. Although not all 6
AS events had the same trend, both risk score and 4 in 6
sample events were associated with the immune infiltra-
tion level. We discovered the correlation between the
risk score system and the immune infiltration level in
the immune microenvironment and showed that a low-
risk score was significantly associated with upregulated

cytotoxic T (Tc) cells, natural killer (NK) cells and T-
helper 17 (Th17) cells. These effector T cells may be ac-
tivated by neoepitopes derived from aberrant AS events,
which may partially explain the correlation between the
low-risk score and high infiltration of effector T cells in
MM patients. Among the 6 key AS genes, the SMC6
gene has been reported to be involved in DNA repair
and checkpoint responses [52]. The SRPK2 gene has
been reported to be oncogenic, promoting the growth,
migration and tumorigenicity of several malignancies
[53, 54]. Aberrant AS of genes, such as SRPK2 and
SMC6, might be related to the production of new anti-
gens and the induction of immune system activation in
low-risk patients. The results indicated that the infiltra-
tion of immune cells altered by 6 key AS events pro-
vided a potential indicator to assess the immune stage of
MM patients and predict the effect of immunotherapy.
Splicing factors are one of the crucial regulatory fac-

tors of AS events as they affect the binding of exon se-
lection and splicing sites [55]. The spliceosome, which

Fig. 7 Relationship between risk scores and tumor-infiltrating immune cells in the tumor microenvironment. A Distribution of risk scores in the
low- and high-immune infiltration subtypes. B Unsupervised clustering heat map showing the association between the risk score and the
immune infiltration subtype of MM patients. C The PSI of 6 key AS events in two immune infiltration subtypes. D The PSI of 6 key AS events
between the high-risk score group and the low-risk score group
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consists of five small nuclear RNAs, is the location of AS
[56]. Alterations in spliceosomal components that influ-
ence splicing have been described in a variety of cancers
[57]. Altered SFs in MM are considered independent
molecules involved in carcinogenesis [16, 58]. Previous
studies have reported that SF3B1 mutations affect the
splicing of p. Lys700Glu in a mesothelioma cell line [59].
Raphael et al. identified mesothelioma tumors with mis-
sense mutations in SF3B1, which encodes a splice factor
that is involved in branch-point recognition and U2-
snRNP assembly [16]. In the present study, we identified
three SFs that were significantly associated with MM pa-
tient survival, including HSPB1, INTS1 and LUC7L2.
Splicing correlation network analysis revealed interactive
regulated nodes, suggesting the important positions of
these SFs in the SF-AS network. The HSPB1 gene is a
member of the heat shock protein family and is strongly
associated with the growth and survival of MM [60, 61].
A previous study has demonstrated that there is a

Fig. 8 Risk scores are correlated with immune cells in the tumor microenvironment. A Estimation of the relative abundances of the 24 tumor-
infiltrating immune cells by ImmuCellAI. B Comparisons of the abundances of cytotoxic T (Tc) cells, natural killer (NK) cells, T helper 17 (Th17) cells
and induced regulatory T (iTreg) cells between the high-risk and low-risk groups. C Correlation analyses of 24 types of tumor-infiltrating immune
cells in MM patients. D Survival analysis of patients with different infiltration of Th17 cells and cytotoxic T cells

Table 3 Survival- associated splicing factors from univariate Cox
regression analysis

Splicing factor HR HR.95 L HR.95H pvalue

CSN3 1.026871 1.009237 1.044813 0.002697

U2AF2 1.047588 1.010588 1.085943 0.011276

INTS1 1.036617 1.007235 1.066855 0.01423

PRPF8 1.039691 1.006003 1.074507 0.020554

RBM3 1.013026 1.001595 1.024588 0.025405

SRRT 1.053552 1.005442 1.103963 0.028702

CWC25 1.155498 1.014415 1.316202 0.029601

EFTUD2 1.061764 1.00437 1.122438 0.034537

LUC7L2 1.17085 1.005572 1.363294 0.042201

HSPB1 1.680284 1.207518 2.338145 0.00208

SPEN 1.112426 1.002723 1.234132 0.044294

ZNF131 1.393721 1.002499 1.937615 0.048289

RBM7 0.794598 0.631783 0.999372 0.049376
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directed protein interaction between HSPB1 and
SETDB1 [62]. SETDB1 is a survival ES gene that has
been reported to be significantly mutated in MM.
LUC7L2 is a spliceosomal protein that interacts with U1
snRNP to recognize 5′ splice sites [63]. However, the
function of LUC7L2 is not well characterized, and the
majority of the protein is based on its ortholog splicing
factor, LUC7, which is involved in the recruitment and
interaction of SF. The BioGRID (https://thebiogrid.org/)
database indicated that there is a physical interaction be-
tween LUC7L2 and PABPC4. Further studies are needed
to explore the specificity and mechanisms of the HSPB1
gene in MM.
Although our study identified several AS events that

theoretically impact the prognosis of MM, our study still
has some limitations. The present study was based on
bioinformatics methods, and the results were not

confirmed by experiments. In addition, the sample size
in our study was limited, and further internal and exter-
nal validations of the prognostic model are necessary.

Conclusions
In summary, our study established prognostic signatures
based on survival-related AS events, and prognostic sig-
natures based on key AS events may serve as an effective
risk model to predict the survival of MM patients. Fur-
thermore, we investigated the correlation among risk
score, histologic subtype and immune landscape. These
results represented a novel direction for immunothera-
peutic research and provided potential targets for per-
sonalized therapeutic intervention. In addition, the
further identification of prognostic SFs and construction
of the SF-AS network will pave the way for further in-
vestigation of the splicing-related mechanisms in MM.

Fig. 9 Prognostic SFs and the splicing regulation network. A Kaplan-Meier survival curves of significant prognosis-related SFs, including HSPB1,
INTS1 and LUC7L2. B) Construction of the interaction network of survival-related SFs and survival-related AS events. The positive/negative
correlations between the expression of SFs and PSI values for AS events are represented with red/green lines
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