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Abstract: Background: Age-related macular degeneration (AMD) is the most common cause of
progressive and irreversible blindness in developed countries. Although the pathogenesis is not fully
understood, AMD is a multifactorial pathology with an accumulation of inflammatory components
and macrophages and a strong genetic predisposition. Our purpose was to investigate the association
between early AMD and CCL2 (rs1024611, rs4586, rs2857656) and CCR2 (rs1799865) single nucleotide
polymorphisms (SNPs) and CCL2, CCR2 serum levels in a Lithuanian population. Methods: The
study included 310 patients with early AMD and 384 healthy subjects. Genotyping of CCL2 rs1024611,
rs4586, rs2857656, and CCR2 rs1799865 was performed using a real-time polymerase chain reaction
method, while CCL2 and CCR2 chemokines serum concentrations were analyzed using an enzyme-
linked immunosorbent assay. Results: We found that the G allele at CCL2 rs1024611 was more
prevalent in the early AMD group than in controls (29.2% vs. 24.1%, p = 0.032). Similarly, the C
allele in CCL2 rs2857656 is more common in the early AMD group than in controls (29.2% vs. 24.2%,
p = 0.037). Binomial logistic regression revealed that each G allele in rs1024611 was associated with
1.3-fold increased odds of developing early AMD under the additive model (OR = 1.322; 95% CI:
1.032–1.697, p = 0.027) as was each C allele in rs2857656 under the additive model (OR = 1.314; 95%
CI: 1.025–1.684, p = 0.031). Haplotype analysis revealed that the C-A-G haplotype of CCL2 SNPs
was associated with 35% decreased odds of early AMD development. Further analysis showed
elevated CCL2 serum levels in the group with early AMD compared to controls (median (IQR):
1181.6 (522.6) pg/mL vs. 879.9 (494.4) pg/mL, p = 0.013); however, there were no differences between
CCR2 serum levels within groups. Conclusions: We found the associations between minor alleles at
CCL2 rs1024611 and rs2857656, elevated CCL2 serum levels, and early AMD development.

Keywords: AMD; CCL2 (rs1024611, rs4586, rs2857656); CCR2 rs1799865; CCL2 and CCR2 serum level

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of progressive and
irreversible blindness in developed countries [1,2]. Early-stage AMD is more common
than late-stage pathology [3] and includes drusen and retinal pigment epithelium (RPE)
changes [4]. The prevalence of AMD has been reported for various ethnic groups [5–7] and
accounts for 8.7% of all blindness worldwide [8]. As the ageing of society is an inevitable
trend, AMD is expected to affect approximately 300 million people worldwide by 2040 [9].

Although the pathogenesis is not fully understood, AMD is certainly triggered by
advanced age, gender, ethnicity, cigarette smoking, imbalanced diet, oxidative damage,
genetic loci, and local chronic inflammation [4,10–12]. Photoreceptors are gradually af-
fected by abnormal function of the RPE, and imbalance of oxygen and nutrient transport
between the outer retina and vessels; in wet and advanced dry AMD, the permeability
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of choriocapillaris is also increased [13]. Drusen are undigested subretinal deposits com-
posed of proteins, cholesterol, and oxidized lipoproteins, suggesting the role of oxidative
stress in the pathologic process [4]. In addition, these deposits also involve components
of the complement system and immunoglobulins [14]. Chemoattractant-rich drusen can
trigger a low-grade inflammatory response and induce the recruitment of pro-angiogenic
macrophages that can cause an AMD process [15].

The immune status also significantly impacts the AMD process [16]. Inflammatory
cells detected in AMD lesions confirm the immune response aspect [17]. Several com-
binations have been investigated in the context of AMD; however, the most promising
biomarker candidates belong to the complement system, lipid metabolism, and oxida-
tive stress pathway [18,19]. Chemokine (C-C motif) ligand 2 (CCL2) is a member of the
chemokine family responsible for monocyte chemotaxis and is encoded on chromosome 17
(chr.17, q11.2) [20]. CCL2 is produced by various cells, including epithelial cells, endothelial
cells, microglial cells, and fibroblasts [21]. However, the primary origin is monocytes and
macrophages [22]. CCL2, in principle, binds to the C-C chemokine receptor 2 (CCR2)
encoded by the CCR2 gene on chromosome 3 (chr.3, p21.31) [23]. However, other receptors,
including CCR4, can also be involved in signaling cascade activation [24]. CCL2/CCR2
causes a cascade of signaling pathways associated with inflammatory, oncological, and
atherosclerotic diseases [25–28]. Furthermore, CCR2 is a receptor that binds not only CCL2
but also other comparable chemokines CCL7, CCL8, and CCL13. This universality in
chemokine-receptor interaction may lead to a similar or opposite effect depending on a
particular pair [29]. RPE cells also generate CCL2 induced by inflammation, suggesting
that RPE cells can cause macrophage accumulation in the subretinal area and choroidal
tissue from circulating monocytes. This macrophage recruitment leads to increased secre-
tion of pro-inflammatory substances and results in AMD [19], suggesting that inhibition
of the CCL2/CCR2 signaling cascade may play a critical role in macrophage-triggered
photoreceptor degeneration [30].

CCL2 levels and their association with AMD are controversial. Experimental studies
have examined the increase in the secretion of the chemokine CCL2 in human and mouse
RPE cells due to oxidative stress [31]. Other authors also found a significant association
between higher CCL2 chemokine levels and AMD [19,31], while other studies found no
significant change in levels in AMD compared to the control group [32–34].

In addition, AMD relation to CCL2 and CCR2 gene polymorphisms has been evaluated
in clinical investigations with controversial results. Some studies published the association
between CCL2 and CCR2 gene polymorphisms and AMD pathogenesis [19,35,36] and
identified complement cascade genes, cytokines, and chemokine signaling pathways,
including CCL2, as potential novel moderators of AMD [37]. In contrast, other studies have
not confirmed the influence of these genes on AMD development [36,38].

Considering that the chemokine signaling pathway might be involved in the patho-
logical processes leading to AMD pathogenesis, we included three single nucleotide poly-
morphisms (SNPs) in CCL2 gene (rs1024611, rs4586, rs2857656) and one in CCR2 gene
(rs1799865) in our study.

Anand et al. investigated that individuals with both the exonic CCL2 rs4586 and
the CCR2 rs1799865 SNP are at increased risk for AMD progression [19]. However, no
association between the six SNPs in CCR2 and five SNPs in CCL2 and AMD has been
demonstrated in the Caucasian population [38]. Another SNP in CCL2 (rs1024611), located
in the promoter region responsible for the transcription factor binding site and protein
expression, has also been studied by several authors. Sharma and co-authors analyzed
this SNP and claimed that both CCL2 rs1024611 AG and GG genotypes are associated with
AMD [35]. In contrast, other researchers found no significant differences in CCL2 rs1024611
genotypes and allele frequencies between healthy individuals and AMD patients [39].

The final promoter SNP in CCL2 (rs2857656 CC) was associated with a carotid plaque
in African Americans from families with premature coronary artery disease [40]. In contrast,
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there was no significant association between CCL2 rs2857656 and ischaemic stroke in the
Korean population [41].

To our knowledge, the CCL2 rs2857656 gene polymorphism was studied for the first
time in AMD patients. The literature review suggests that the associations between these
genes, chemokine level, and AMD may vary based on different ethnic groups. Therefore,
we selected three SNPs in the CCL2 gene (rs1024611, rs4586, rs2857656) and one in the
CCR2 gene (rs1799865) as possible genetic markers for early AMD. Our research aimed to
determine the serum levels of CCL2 and CCR2 and identify the role of previous genes in
early AMD in the Lithuanian unit.

2. Materials and Methods
2.1. Subjects

The research was conducted in the Department of Ophthalmology of the Lithuanian
University of Health Sciences (LUHS) Hospital, Kaunas Clinics, and the Laboratory of
Ophthalmology of the Neuroscience Institute of LUHS in accordance with the requirements
of the Declaration of Helsinki. The Kaunas Regional Biomedical Research Ethics Committee
approved the study (approval numbers: 9 July 2015 No. BE-2-26 and 26 January 2017 No.
P1-BE-2-26/2015). Written informed consent was obtained from all subjects studied. Our
study included 694 samples from 310 patients with early AMD in at least one eye and
384 healthy subjects without the ophthalmic disease.

2.2. Ophthalmological Evaluation

Complete ophthalmologic examination was performed in all subjects by an experi-
enced ophthalmologist, including slit-lamp biomicroscopy and dilated ophthalmoscopy
with tropicamide 1%. Swept-source optical coherence tomography (SS-OCT) was per-
formed. AMD was classified based on the Age-Related Eye Disease Study (AREDS). An
early AMD diagnosis was defined by multiple tiny drusen or a few intermediate drusen
(63–124 µm in diameter) or changes in RPE (Figure 1). Early AMD was also differentiated
from polypoidal choroidal vasculopathy as it is an exudative maculopathy with subretinal
hemorrhage, pigment epithelial detachment, and neurosensory detachment, more com-
mon in non-white populations. Fluorescein angiograms were performed when necessary.
Exclusion criteria included age less than 50 years, other ophthalmic diseases, and ocular
abnormalities limiting fundus visualization.

2.3. DNA Extraction and Genotyping

The SNPs in our study were previously investigated in other populations for associa-
tion with AMD or vascular disease and were selected because of their conflicting results.
The CCL2 and CCR2 genes were selected for study because the chemokine CCL2 binds to
the surface receptors of CCR2 and triggers chemotaxis of monocytes and basophils.

CCL2 rs1024611, rs4586, rs2857656, and CCR2 rs1799865 were analyzed in the Ophthal-
mology Laboratory at the LUHS Institute of Neuroscience. Deoxyribonucleic acid (DNA)
extraction from white blood cells was performed by silica-membrane technology using a
kit for genomic DNA extraction (GeneJET Genomic DNA Purification Kit, Thermo Fisher
Scientific, Inc., Vilnius, Lithuania) according to the manufacturer’s protocol.

SNPs were determined by the real-time polymerase chain reaction method (RT-PCR).
All SNPs were determined according to the manufacturer’s recommendations using the
Step One Plus RT-PCR Quantification System (Thermo Fisher Scientific, Inc., Singapore)
using TaqMan® genotyping assays (Thermo Fisher Scientific, Inc., Foster City, CA, USA).
Assay IDs: rs1024611, C___2590362_20; rs4586, C__11939405_1; rs2857656, C____348241_10;
rs1799865, C___2610509_30.
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Figure 1. Fundus images and SS-OCT findings of normal (A) and early AMD (B) eyes. Patients
were categorized according to the AREDS classification of AMD as follows: A—stage I, no or a few
small drusen (<63 µm in diameter); B—stage II, multiple tiny drusen or a few intermediate drusen
(63–124 µm in diameter) or changes in RPE. AMD, age-related macular degeneration; RPE, retinal
pigment epithelium; SS-OCT, Swept-source optical coherence tomography.

2.4. Genotyping Quality Control

Genotyping was controlled by selecting 5% of random samples for each SNP for
repeated analysis, which confirmed absolute compliance rate of genotypes and alleles with
the primary results.

2.5. Total Protein Estimation

Serum CCL2 and CCR2 concentrations were measured by enzymatic immunoassay
(ELISA). This assay detects human CCL2 with a minimum detectable level of 2.3 pg/mL
CCL2. Serum samples were diluted with assay buffer at a ratio of 1:5. ELISA was performed
as described in the instructions for the CCL2 ELISA kit (#BMS281, Thermo Fisher Scientific
Inc., Viena, Austria). Human CCR2 assay minimum detectable level—0.156 ng/mL CCR2,
and the maximum 10 ng/mL. Serum samples were diluted with assay buffer at a ratio of 1:5.
ELISA was performed as described in the instructions for the CCR2 ELISA kit (abx570562,
Abbexa LTD, Cambridge, UK).

Absorbance was measured at 450 nm in a microplate reader (Multiskan Fc, Thermo
Fisher Scientific Inc., Shanghai, China). A linear model was used to generate the standard
curve, and the results were obtained after multiplication by the dilution factor (5×).

2.6. Statistical Analysis

Statistical analysis was performed with the SPSS 27 program (IBM SPSS, Armonk,
NY, USA). Results are presented as absolute numbers with percentages in parentheses
and median and interquartile range (IQR). Serum CCL2, CCR2 levels, and age between
study groups were compared using the Mann–Whitney U test. Comparisons of observed
and expected frequencies of polymorphisms (rs1024611, rs4586, rs2857656, rs1799865)
between groups were estimated with Hardy–Weinberg equilibrium using the χ2 test. The
χ2 test was used to compare the distributions of CCL2 rs1024611, rs4586, rs2857656, and
CCR2 rs1799865 SNPs in both groups. The risk of early AMD for the CCL2 rs1024611,
rs4586, rs2857656, and CCR2 rs1799865 polymorphisms was predicted by logistic regression
analysis expressed as an odds ratio (OR) with a 95% confidence interval (95% CI). Haplotype
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analysis was performed to evaluate the associations of haplotypes with early AMD using
the online software SNPStats (https://www.snpstats.net/snpstats/) (accessed on 29 June
2022) [42]. The haplotype block was formed from three CCL2 variants: rs1024611, rs4586,
and rs2857656. Linkage disequilibrium analysis (LD) was assessed using measures D’ and
r2. Associations between haplotypes are presented as ORs, 95% CI, and p values. Statistical
significance was observed when the p value was <0.05.

3. Results

A total of 310 patients diagnosed with early AMD and age and gender-matched
384 healthy subjects were involved in the study (Table 1).

Table 1. Characteristics of the study subjects.

Characteristic Early AMD (n = 310) Control (n = 384) p Value

Gender, n (%) Male 96 (31) 119 (31) 0.995
Female 214 (69) 265 (69)

Age (years),
median (IQR) 76 (12) 75 (9) 0.097

AMD: age-related macular degeneration; IQR: interquartile range. Statistically significant when p value < 0.05.

The distribution of genotypes of four SNPs (rs1024611, rs4586, rs2857656, and rs1799865)
in the early AMD group and the control group showed no statistically significant differ-
ences between the groups. Otherwise, we found that the G allele in CCL2 rs1024611 was
statistically significantly more abundant in the early AMD group than in the control group
(29.2% vs. 24.1%, p = 0.032) (Table 2). Similarly, the C allele in CCL2 rs2857656 is statistically
significantly more common in the early AMD group than in the control group (29.2% vs.
24.2%, p = 0.037) (Table 2).

Table 2. CCL2 (rs4586, rs1024611 and rs2857656) and CCR2 (rs1799865) SNPs in patients with early
AMD and control groups.

Gene/Marker Genotype/Allele Early AMD,
n (%)

Control Group,
n (%) p Value

CCR2
rs1799865

CC 26 (8.4) 26 (6.8)

0.723
0.577

CT 121 (39) 152 (39.6)
TT 163 (52.6) 206 (53.6)
C 173 (27.9) 204 (26.6)
T 447 (72.1) 564 (73.4)

CCL2
rs4586

CC 41 (13.2) 44 (11.5)

0.757
0.589

CT 139 (44.8) 179 (46.6)
TT 130 (41.9) 161 (41.9)
C 221(35.6) 267 (34.8)
T 399 (64.4) 501 (65.2)

CCL2
rs1024611

AA 152 (49) 216 (56.3)

0.078
0.032

AG 135 (43.5) 151 (39.3)
GG 23 (7.4) 17 (4.4)
A 439 (70.8) 583 (75.9)
G 181 (29.2) 185 (24.1)

CCL2
rs2857656

CC 23 (7.4) 17 (4.4)

0.087
0.037

CG 135 (43.5) 152 (39.6)
GG 152 (49) 215 (56)
C 181 (29.2) 186 (24.2)
G 439 (70.8) 582 (75.8)

AMD: age-related macular degeneration. p value < 0.05 indicated in bold is statistically significant.

Binomial logistic regression revealed that each G allele at rs1024611 was associated
with a 1.3-fold increased probability of early AMD development under the additive model

https://www.snpstats.net/snpstats/
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(OR = 1.322; 95% CI: 1.032–1.697, p = 0.027), as was each C allele at rs2857656 under the
additive model (OR = 1.314; 95% CI: 1.025–1.684, p = 0.031) (Table 3).

Table 3. Binomial logistic regression analysis of the CCL2 (rs1024611 and rs2857656) in patients with
early AMD and controls.

SNP Early AMD Model/Allele OR; 95% CI; p Value

rs1024611 Additive
G 1.323; 1.032–1.697; 0.027

rs2857656 Additive
C 1.314; 1.025–1.684; 0.031

AMD: age-related macular degeneration. OR: odds ratio; 95% CI: 95% confidence interval. p value < 0.05 indicated
in bold is statistically significant.

3.1. Haplotype Associations with AMD

We determined strong linkage disequilibrium between the studied CCL2 SNPs
(Table 4).

Table 4. Linkage disequilibrium between studied polymorphisms. Haplotype analysis.

rs4586 (D′; r2) rs1024611 (D′; r2) rs2857656 (D′; r2)

rs4586 (D′; r2) - 0.995; 0.654 0.991; 0.651
rs1024611 (D′; r2) - - 0.996; 0.989
rs2857656 (D′; r2) - - -

Haplotype analysis showed that haplotype T-A-G was most frequent and selected as
a reference, and the C-A-G haplotype was associated with 35% decreased odds of early
AMD development (OR = 0.65; 95% CI: 0.44–0.96, p = 0.031) (Table 5).

Table 5. Haplotype association with the early AMD.

Haplotype rs4586 rs1024611 rs2857656 Frequency
AMD Group

Frequency
Control Group OR (95% CI) p Value

1 T A G 0.64 0.65 1 -

2 C A G 0.066 0.106 0.65
(0.44–0.96) 0.031

AMD: age-related macular degeneration. OR: odds ratio; 95% CI: 95% confidence interval. p value < 0.05 indicated
in bold is statistically significant.

Considering the higher frequency of females in study groups, we also analyzed
haplotype associations in female and male groups separately, but no statistically significant
results were found (data not shown).

3.2. CCL2 Serum Levels

CCL2 serum levels were measured for 39 early AMD patients and 39 control subjects.
Analysis showed elevated CCL2 serum levels in the early AMD group compared to control
subjects (median (IQR): 1181.6 (522.6) pg/mL vs. 879.9 (494.4) pg/mL, p = 0.013) (Figure 2).

CCL2 serum levels were also analyzed by different genotypes of CCL2 and CCR2
polymorphisms, but no associations were found between genotypes and CCL2 serum levels.

3.3. CCR2 Serum Levels

CCR2 serum levels were measured for 39 early AMD patients and 39 control subjects.
Analysis showed lower CCR2 serum levels in the early AMD group compared to control
subjects; unfortunately, these differences did not reach statistical significance (median (IQR):
2.1179 (1.79) ng/mL vs. 2.3465 (1.30) ng/mL, p = 0.094) (Figure 3).
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Figure 2. Serum levels of CCL2 in patients with early AMD and control group. AMD: age-related
macular degeneration; CCL2: chemokine (C-C motif) ligand 2. * Significant values are presented as
median and IQR.

Figure 3. Serum levels of CCR2 in patients with early AMD and control group. AMD: age-related
macular degeneration; CCR2: C-C chemokine receptor type 2. Values are presented as median
and IQR.

CCR2 serum levels were also analyzed by different genotypes of CCL2 and CCR2
polymorphisms, but no associations were found between genotypes and CCR2 serum
levels (data not shown).

4. Discussion

AMD is a disease with multifactorial pathogenesis in which genetic predisposition
also plays an important role. It is suggested that genetic variants in the genes responsible
for the inflammatory response may influence the AMD process by altering the expression
of chemokines.

The recent studies of 310 patients diagnosed with early AMD and 384 healthy controls
may also indicate the importance of inflammation in AMD pathogenesis in the Lithuanian
unit. We selected four SNPs (CCL2 rs1024611, rs4586, rs2857656; CCR2 rs1799865). CCL2
rs2857656 was selected for the first time as a potential genetic risk factor for AMD pathology,
whereas the others have been analyzed in the literature by different authors.

Our study showed that the haplotype of three CCL2 SNPs was associated with a 35%
decreased probability of early AMD development. In contrast, the distribution of genotypes
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of four SNPs (rs1024611, rs4586, rs2857656, and rs1799865) showed no differences between
the groups. In parallel, Despriet’s study of two independent Caucasian populations from
the Netherlands (357 cases and 173 controls) and the United States (368 patients and
368 controls) also showed no association between sequence variants in six CCR2 SNPs and
five CCL2 SNPs and AMD [38]. Similarly, in the Iranian case-control study, which included
233 patients with advanced AMD and 159 healthy controls, the CCL2 rs1024611 SNP was
not associated with AMD [36]. However, Sharma and co-authors published different results
in Indian subjects in which both CCL2 rs1024611 AG and GG variants were associated with
AMD pathogenesis [35]. Anand et al. also indicated that carrying both CCL2 (rs4586) and
CCR2 (rs1799865) was associated with an increased risk of developing AMD in the same
ethnic group [19], suggesting the importance of ethnicity in AMD pathology.

Analysis of CCL2 rs2857656 found that the C allele at the CCL2 promoter rs2857656
was significantly more frequent in early AMD. In addition, each C allele at rs2857656 was
associated with an increased likelihood of early AMD occurrence. We found no study that
examined the association between CCL2 rs2857656 and AMD or other ophthalmic patholo-
gies. However, data claim an association of CCL2 SNP rs2857656 (−362GC) CC genotype
with carotid artery plaques in the African American unit (p = 0.05) [40]. A South Korean
study reached opposite conclusions, showing no association between CCL2 rs2857656 and
ischaemic stroke [41]. Although an association between vascular pathology and AMD is
suspected, the results are still contradictory. Fernandez and coworkers found no associa-
tion between the occurrence of stroke and AMD [43]. Other researchers found a relation
between the development of AMD and an increased risk of myocardial infarction [44].

This study found that the G allele at the CCL2 promoter polymorphism rs1024611 was
more common in early AMD. Our study confirmed findings in the Chinese Han population
of 129 AMD patients and 131 healthy volunteers, as they also found an increased incidence
of AMD with the rs1024611 GG genotype and a significantly higher frequency of the
rs1024611 G allele in AMD patients [45]. In addition, allele frequency analysis in the Indian
population confirmed that the G allele was also more common in AMD patients than in
the control group [35]. These data support the concept that the G allele stimulates the
occurrence of AMD.

Our research tries to draw attention to the CCL2 chemokine and its receptor CCR2 in
early AMD patients. Our analysis revealed higher serum CCL2 chemokine concentrations in
early AMD patients. However, no correlations were found between serum CCL2 levels and
the CCL2 and CCR2 polymorphisms genotypes. Several studies have analyzed chemokine
levels. In a study of an Indian population, Anand et al. found higher serum CCL2 levels
in AMD patients than in healthy individuals [19]. Zor and coworkers also confirmed the
elevated CCL2 serum levels, but they analyzed patients with exudative AMD (eAMD) [46].
However, the findings of other authors were consistent with our results and reported no
significant change in serum levels of this chemokine. Although Lechner and co-authors
found increased CCL2 secretion in peripheral blood mononuclear cells due to oxidative
injury in eAMD patients, there was no increase in serum CCL2 levels in these patients [32].

A study by Grunin et al. does not agree with our study; they explained similar serum
levels of CCL2 in eAMD (286.1 ± 20.7 pg/mL) and control subjects (286.7 ± 51.4 pg/mL;
p = 0.37) [33]. Falk published comparable results without significant change in plasma CCL2
levels [34]. Other authors analyzed the chemokine CCL2 in different ways. In experimental
studies in mice, it was found that the CCR2/CCL2 pathway can be inhibited by suppressed
macrophage infiltration [47]. It has been confirmed that genetically higher serum CCL2
concentration is associated with cardioembolic stroke [48]. Urinary biomarker analysis
revealed a significant association between TGF-α1 and CCL2 levels in early AMD [49].
Examination of aqueous humor also revealed higher CCL2 levels than healthy controls
and the association with advanced AMD (p = 0.03) [50]. Similarly, Jonas and coworkers
published the increase of CCL2 concentration in aqueous humor (p = 0.07) and significant
association with eAMD [51]. These results may highlight the importance of the interaction
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of CCL2 and its receptor in the immune response, leading to monocyte recruitment and
macrophage infiltration in the damaged areas.

Our research revealed insignificantly lower CCR2 serum level in the early AMD group
(2.3465 (1.30) ng/mL vs. 2.1179 (1.79) ng/mL, p = 0.094). Polish scientists determined
plasma CCR2 levels in 100 patients with breast cancer (BC) and controls that involved 35 pa-
tients with benign breast tumors and 35 healthy women, as many cancer cells may express
chemokines and chemokine receptors. Lubowicka et al. found that plasma concentration
of CCR2 in the BC group and all stages of BC were significantly lower when compared
to the healthy controls (in BC groups—0.96 (0.05–8.17), in the total control group—2.30
(0.05–22.60), ng/mL, p < 0.001 in all cases). They also confirmed differences between the
concentration of CCL2 and CCR2 in individuals with benign breast tumors and healthy
controls (p < 0.05) [52].

Although the interest in CCL2-CCR2 signaling was increased in recent years, mostly
due to its relation to solid and metastatic cancers, CCR2 chemokine was not analyzed in
AMD patients despite mediating not only a pro-tumorigenic function but also angiogene-
sis [53].

One of the limitations of our research was a relatively small sample size. Furthermore,
the future target would be the inclusion of immune cell (monocyte/macrophage) analysis,
chemokine concentration, and immune cell quantification in aqueous humor.

5. Conclusions

Immunogenetic factors affect early AMD development in the Lithuanian unit. Our
study highlighted the associations between minor alleles in CCL2 rs1024611 and rs2857656,
elevated serum CCL2 levels, and early AMD development.
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