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Abstract

Summary: Measured kinetic constants are key input data for metabolic models, but they are often

uncertain, inconsistent and incomplete. Parameter balancing translates such data into complete

and consistent parameter sets while accounting for predefined ranges and physical constraints.

Based on Bayesian regression, it determines a most plausible parameter set as well as uncertainty

ranges for all model parameters. Our tools for parameter balancing support standard model and

data formats and enable an easy customization of prior distributions and constraints for biochem-

ical constants. Modellers can balance kinetic constants, thermodynamic data and metabolomic

data to obtain thermodynamically consistent metabolic states that comply with user-defined flux

directions.

Availability and implementation: An online tool for parameter balancing, a stand-alone Python

command line tool, a Python package and a Matlab toolbox (which uses the CPLEX solver) are free-

ly available at www.parameterbalancing.net.

Contact: wolfram.liebermeister@inra.fr

1 Introduction

Kinetic models are important tools for understanding metabolic dy-

namics. A main challenge in model construction is the choice of rate

laws and kinetic parameters, such as Michaelis–Menten constants,

catalytic rate constants or equilibrium constants. Network models

can be populated automatically with kinetic rate laws (Dräger et al.,

2008; Liebermeister and Klipp, 2006a) and parameter values

obtained from repositories, such as BRENDA, SABIO-RK or

eQuilibrator (Flamholz et al., 2012). However, values may be

unreliable due to experimental errors, in-vitro measurements,

measurements in other organisms or differing experimental setups.

When inserted into a model, such measured or calculated

parameters may cause inconsistencies. For example, the

thermodynamic Wegscheider conditions and Haldane relationships

create physical dependencies between different kinetic constants.

Ignoring these dependencies may lead to thermodynamically

incorrect models that describe, effectively, a perpetuum mobile. In

theory, missing parameters can be determined by fitting a model to

metabolomic time-series data. However, parameter fitting can be

numerically hard, parameters may not be identifiable, and in prac-

tice the thermodynamic dependencies between parameters are often

ignored.

Parameter balancing (Lubitz et al., 2010) is a Bayesian parameter

estimation method that addresses these problems. It converts kinetic

and thermodynamic constants, which may be uncertain and incom-

plete, into a consistent set of model parameters. Metabolic network

structure and known thermodynamic constraints define dependen-

cies between all model parameters. To respect these dependencies,

the parameters are considered on logarithmic scale and expressed as

linear functions of a smaller number of independent basic parame-

ters. With data on some parameters, prior distributions, and pre-

sumed parameter ranges, the estimation of these basic parameters

becomes a linear regression problem to be solved in a Bayesian

framework. The result is a multivariate posterior distribution

describing the mean values, uncertainties and correlations of all

model parameters. Aside from obtaining point estimates and
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uncertainty ranges for single parameters, one may sample parameter

sets from the posterior to construct an ensemble of model variants

that agree with all available knowledge and data, and the posterior

may be used as a prior in subsequent rounds of model fitting

(Liebermeister and Klipp, 2006b). Aside from kinetic constants, also

metabolite concentrations, flux directions and thermodynamic

forces can be obtained for estimations of metabolic states.

2 Results and implementation

To make parameter balancing applicable, we provide software tools

as well as Python and Matlab code. Our online interface allows

modellers to balance model parameters with a few mouse clicks

while the Python and Matlab packages can be integrated into model-

ling workflows (Smith et al., 2018; Stanford et al., 2013). Our

implementation supports established standard formats: models are

given in Systems Biology Markup Language format while the generic

table format SBtab (Lubitz et al., 2016) is used for all other data.

Based on a network model and kinetic parameter data, the tool

returns a table with balanced parameter values and their uncertain-

ties as well as a parameterized Systems Biology Markup Language

model with modular rate laws (Liebermeister et al., 2010).

Parameter balancing can be customized by modifying the priors, e.g.

by specifying new mean values, standard deviations and possible

ranges for various types of kinetic constants. Metabolic fluxes can-

not be used directly as input data because typical kinetic rate laws

do not fit into the regression model underlying parameter balancing.

However, if flux directions are known, they can be used to define

the signs of thermodynamic forces, and the resulting metabolic state

will comply with these flux directions. In the Matlab

version, enzyme levels and catalytic constants can be automatically

adjusted to match predefined fluxes; moreover, parameter sets can

be sampled from the posterior distribution, where corrections are

applied if parameters violate predefined bounds. In a model with 50

reactions, the calculation takes less than a second on a 2.7 GHz

CPU. To restrict the numerical effort, model sizes are limited to 250

reactions, and for large models, using the Matlab version of our tool

with CPLEX solver is recommended.

3 Conclusion

Parameter balancing translates metabolic network structures into

dynamic models, using experimental data collected from the litera-

ture. As shown in Figure 1, it allows modellers to find plausible de-

fault parameters for a model (even without any data, and based on

the priors), to balance given kinetic constants, or to determine con-

sistent metabolite concentrations and thermodynamic forces based

on predefined flux directions. In all cases, adding more data

improves the accuracy of the balanced parameters and reduces their

uncertainty ranges.
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Fig. 1. Parameter balancing. (a) Input and output data. (b) Use cases: (1)

Finding realistic kinetic parameters for a given network model without any

measurement data. Parameters are determined from prior distributions,

known dependencies, and upper and lower bounds. (2) Translating incom-

plete kinetic data into balanced model parameters. (3) Predicting realistic

metabolic states (including metabolite levels, equilibrium constants, chemical

potentials and thermodynamic forces) from measured metabolite levels and

equilibrium constants. (4) Combining points (2) and (3) to determine metabol-

ic state, balanced kinetic constants and rate laws simultaneously. (5) To

speed up calculations, parameters can be balanced separately in each reac-

tion. Equilibrium constants and metabolite levels need to be set in advance to

obtain a consistent model. (6) If metabolic fluxes are known, the flux direc-

tions can be used to constrain the possible metabolic states, and enzyme lev-

els can be adjusted to match the predefined fluxes
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