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Noise management associated with input signals in sensor devices arises as one of

the main problems limiting robot control performance. This article introduces a novel

neuromorphic filter model based on a leaky integrate and fire (LIF) neural model cell,

which encodes the primary information from a noisy input signal and delivers an output

signal with a significant noise reduction in practically real-time with energy-efficient

consumption. A new approach for neural decoding based on the neuron-cell spiking

frequency is introduced to recover the primary signal information. The simulations

conducted on the neuromorphic filter demonstrate an outstanding performance of white

noise rejecting while preserving the original noiseless signal with a low information

loss. The proposed filter model is compatible with the CMOS technology design

methodologies for implementing low consumption smart sensors with applications in

various fields such as robotics and the automotive industry demanded by Industry 4.0.
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1. INTRODUCTION

The term neuromorphic, coined by Mead (1990), refers to Very Large Scale of Integration (VLSI)
systems aiming to reproduce biological neuron behaviors. Neuromorphic computing platforms
are relatively simple regarding the number of active elements (transistors) compared to complex
traditional digital units (microprocessors) to replicate brain-like responses. Today, the convergence
of electronics, computing science, and neuroscience offers bountiful inspiration to explore novel
hardware structures, algorithms, and innovative ways to process information more efficiently,
maintaining low levels of energy waste and material use (Schuman et al., 2017). One of the most
remarkable contributions of this inter-discipline convergence is the conception of spiking neurons
(SN), also called the third generation of artificial neurons (Maass, 1997). The main difference
concerning previous generations is the inclusion of temporal information in the computing
process, and this feature offers the possibility to process signals efficiently with variations across
time. Unfortunately, the large-scale modeling of SN units is limited due to the high computational
cost involved in solving numerically the whole set of differential equations representing each SN
unit. Therefore, the design and implementation of these units are more convenient at the silicon
plane and in the analog domain to overpass this vast amount of numerical computation effort.

Traditional analog filters are designed based on scaling specific frequency domain signal
components and attenuating the rest. This approach has been proven effective with noise that
is primarily out of signal frequency range. However, linear filters cannot clear noisy signals
when disturbance affectation is in the same frequency range as primary signal. In this context,
digital filters, especially average filter techniques, take precedence at the cost of resources
expense. For this reason, some filter proposals based on the use of several SNs have been made
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(Orchard et al., 2021; Sharifshazileh et al., 2021). Generally,
integrated circuits hosting neuromorphic implementations
possess an inherent capacity to extract primary features of
given entries since integrals tied to the SN model can be
interpreted as the average value operator on a timewindow. Thus,
neuromorphic systems allow average filtering while retaining the
benefits of analog circuits.

2. METHODS

2.1. Neural Circuit
There are several proposals reported on analog implementations
of neural model circuits (Abbott, 1999; Wijekoon and Dudek,
2008; Zamarreño-Ramos et al., 2011; Wu et al., 2015; Zare et al.,
2021). Throughout the development of this study, the leaky
integrate and fire neuron (IFN) circuit, proposed in Wu et al.
(2015) was used, as seen in Figure 1. However, the proposed
methodology could be easily adapted to work with other neural
circuit models. This proposal is divided into two main parts,
a leaky, current integrator circuit (LI) to emulate the behavior
of a neuron during the period of depolarization and a reset
engine that returns the output voltage of the operational amplifier
(Vmem) to a reference voltage level (VRef ). It also assumes
the generation of a convenient spike shape, compliant with
memristors technology to allow weight adjustment during the
learning phase.

Wu’s neural circuit shown in Figure 1 operates in the
integration and firing mode. At the integration mode, the
OPAMP works as a leaky integrator, over the current, Iin, flowing
at its negative input. At the integration mode, the voltage level at
the output of the OPAMP decreases until it reaches a determined
threshold voltage, Vthr . The comparator circuit compares the
membrane voltage,Vmem, with vthr , to generate a signal activating
the Phase Control block when the descending Vref reaches Vthr .
At this moment, the Phase Control block commands the Spike
Generator block to initiate a spike event with a predefined
waveform and it changes the control signals, αfire to ON state,
while αint to OFF state. These control signals are complementary.
The neural circuit is reconfigured by the current states of αfire

and αint . If αint is ON, the OPAMP works in the integration
mode, if αfire is ON the neuron is in fire mode. During integration
mode the neuron output Vout is set in Vref , at the same time, the
spike generator block must hold a Vref at the positive OPAMP
input, which is buffered at the negative OPAMP input. In the
firing mode, Vout , is connected toVmem, generating a spike event,
feedbacking, Vmem to the negative OPAMP input. At the end of
the firing mode, Cmem is reset to a Vref , potential.

The equivalent model of the LI section is presented in
Equation (1).

dVmem

dt
=

Vp − Vmem(t)

RleakCmem
−

Iin

Cmem
(1)

Where Vp is the voltage objective, while the circuit is in
integration mode Vp corresponds to Vthr .

Wu’s circuit functioning could still be simplified to implement
the proposed methodology, performing a noise signal filtering

process. The simplification consists of establishing constant
delays before switching states and restarting the integration
phase. It imposes a period of neuron inactivity corresponding to
the refractory period, seen in biological brains. This behavior is
modeled as shown below:

if Vmem ≈ Vthr

then Vp← Vref , Rleak ← 1, Iin ← 0

Once the neuron is in the refractory period, it maintains its state
for a predefined period, after which it returns to the previous
(integration) state.

2.2. Tuning Curves
Since spike trains convey information through their timing and
any spike-wave produced by neural circuits models are supposed
to be identical (Gerstner et al., 2016), the membrane’s potential
in neuromorphic circuits can be characterized simply by a list of
events: t0, t1, ..., tn, where 0 ≤ ti ≤ T, with i = 0, 1, 2, ..., n is the
i-th spike time in an observed period T (Dayan and Abbot, 2001).
Figure 2 shows a representation of this list.

A simple way to characterize the response of a neuromorphic
circuit is by counting the number of peak voltages fired during
the presentation of a stimulus (input current). By repeating this
operation for a certain number of different stimuli, it is possible
to estimate a function, f , that describes the relationship between
an input current, Iin, and a frequency of spikes fr (Dayan and
Abbot, 2001; Elliasmith, 2013). In this study, an alternative way to
estimate the neuron frequency is proposed. Since neuromorphic
circuits have no stochastic behavior, it is possible to prove that
the same neuron frequency response will always be obtained for
a given Iin. Therefore, by measuring the time elapsed between the
event of two spikes, p = tn − tn−1 , the frequency is obtained by
using 1

p .

2.3. Mean Value Theorem for Integrals
The time between spikes in the circuit presented in Figure 1

corresponds to the mean value of the input current.
Rearranging elements from Equation (1), we find the

next expression.

Iin =
Vp − Vmem(t)

Rleak
− Cmem

dVmem

dt
, (2)

Equation (2) corresponds to Current Kirchhoff’s Law, producing
a summation of all the currents at input node, Iin = IRLeak+ICmem ,
where IRLeak (t) is the current across RLeak, which behavior is
unknown in advance, thus:

Iin = IRLeak (t)− Cmem
dVmem

dt
. (3)

Now, integrating both sides of Equation (3) with the defined time
intervals limits between neural events (spike occurrences) results
in Equation (4). Internal values of the neuromorphic units are
reset at the end of each neural event,

∫ tn

tn−1
Iindt =

∫ tn

tn−1
IRLeak (t)dt −

∫ Vthr

Vref

CmemdVmem (4)
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FIGURE 1 | Neuromorphic filter architecture, showing a spiking neuron CMOS circuit implementation, see Wu et al. (2015).

FIGURE 2 | Neuron circuit spike response. Since spike waveform is not needed for the filtering process, spike events are registered as a list of times when the neuron

circuit reach threshold voltage. Time elapsed between tn and tn+1 is denoted as p.

Solving integrals on both sides:

Iin(t
n
− tn−1) =

∫ tn

tn−1
IRLeak (t)dt − CmemVmem (5)

Where the value Vmem = Vthr − Vref results at the end of the
integration period. Equation (5) corresponds to the Mean Value
Theorem for integrals (Stewart, 2018). Thus, a constant value of
Iin exists such that applied for the time interval, tn − tn−1, equals
the value of the current IRLeak (t) on the same period. Particularly,
Iin can be seen as themean value of current on the period tn−tn−1

plus a constant value (CmemVmem).

3. PROPOSED METHODOLOGY FOR A
NEURAL FILTER DESIGN

Our proposal consists of using the tuning curve function of the
neuromorphic circuit to estimate the Iin value on Equation (5).
Themethodology proposed to use a neural circuit as a signal filter
is depicted in Figure 3.

The tuning curve for the circuit introduced in Figure 4, is
obtained by sweeping the current Iin of Equation (1) between

a current interval ∈ [0, 300]µA, considering the following
electrical and timing parameters: Cmem = 1µF, Rleak = 10k�,
and a refractory period of 10µs, we proceed to measure the time
elapsed between potential membrane spikes. The below equation
is proposed as a prototype to estimate function f .

f (Iin) = ln(Iin + a)b− c (6)

Parameters a = 1724.8761, b = 21.6051, c = −161.1285, are
determined using nonlinear least squares curve fitting (Virtanen
et al., 2020).

Because Equation (6) is invertible, we can take two produced
spikes and calculate the current in the elapsed period between
spikes. That is to say, f−1 computes the equivalent input current
value in the system (Iin).

f−1(fr) = Iin(fr) = β

[

e
fr−c
b − a

]

(7)

Where:

fr =
1

αp
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FIGURE 3 | Proposed Methodology. First, define the parameters of the neural

circuit. Second, characterize the response to obtain the circuit tuning curve

function, f , and its inverse function. Finally, stimulate the neural circuit with the

noisy input signal and use the time elapsed since the last spike to evaluate the

inverse function f−1. The value computed using f−1 is held until the next event

occurs.

with: p = tn − tn−1. tn is the time of the n-th spike. In order to
maintain values on a more convenient time-scale α = 1 × 104

and β = 1 × 10−6 are added as scale factors. Equation (7) is
evaluated at each spike and the value is held until the next spike
occurs, refer to Figure 5B.

Observe that Equation (7) is a decaying exponential function;
therefore, it is possible to define a circuit that reproduces
this behavior by using the capacitor discharging dynamic
in a commuted capacitor scheme working as follows. At
each spike event, a low impedance branch quickly charges
a capacitor during the refractory period of the SN unit.

Once the refractory period concludes, the charging branch
for the capacitor is open, and discharge becomes through a
branch with fixed impedance such that the current on the
capacitor has a behavior similar to Equation (7), refer to
Figure 5A. Once a new spike event occurs, the current value
of the capacitor is registered and held until the next spike
event.

This scheme based on frequency shows a better performance
than other strategies previously introduced (Dupeyroux et al.,
2021; Guo et al., 2021) since it demonstrates good noise
mitigation capacity employing only one neuron.

4. EXPERIMENTS AND RESULTS

To demonstrate the performance of our proposal, the following
experiment was conducted. First, synthetic white noise is
simulated to ensure a critical noise condition affectation over
the clean signal with a uniform frequency distribution (Grinsted,
2022) (Figure 6). Second, the white noise is added to an arbitrary
signal, refer to Figure 7. Finally, the noisy signal is used as
the input for Equation (1), and the equivalent current output
is computed using Equation (7). The results are shown in
Figure 8.

It is possible to appreciate a significant noise reduction
after the rebuilding operation. Figure 9 shows the Power
Spectral Density of both original and noisy signals, and
preservation of fundamental frequency is observed, thus
we could conclude that the recovered signal is a good
approximation of the original one. Notice that fundamental
frequencies of the original signal are within the frequency range
of noise.

In order to compare this proposal with other approaches,
the same noisy signal was filtered using linear (Chebyshev,
Butterworth Butterworth, 1930, Elliptic) and digital (median
Tukey, 1977) filters (Virtanen et al., 2020). Figure 10 shows the
output responses obtained from these standard filters. Figure 11
shows the error measure of each filter, computed as the difference
between the original and the output of the corresponding
filter. Additional experiments were conducted using Gaussian
Multiplicative Noise and Impulsive Random Noise, results are
shown in Figures 12, 13.

To define a figure of merit for the proposed filter, we measure
the distance between each filter response and the original signal
(noiseless signal). As each filter introduces a different amount
of time delay caused by the filtering process, Euclidean distance
is not an appropriate choice since filtering techniques with a
minimum delay will tend to render better results. Therefore, Fast
Dynamic TimeWrapping (Salvador and Chan, 2007) (FastDTW)
was used as a performance evaluation criterion. Comparisons of
error results applying both Euclidean distance and FastDTW are
shown in Table 1.

5. CONCLUSION

This study introduced the capacity and performance of simulated
spiking neural network circuits to recognize primary signal
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FIGURE 4 | Tuning curve of the used circuit. Marks shows measurements frequencies obtained by sweeping the current Iin of Equation (1) in interval 0− 300µA, with

electrical and timing parameters: Cmem = 1µF, Rleak = 10k�, and a refractory period of 10µs. The orange line shows approximation by 7. * refers to the measured

frequency of spikes. - refers to measurments approximation made by Equation (6).

FIGURE 5 | Signal rebuild scheme. (A) Behavior of Equation (7) evaluated at each step of the simulation. (B) At each spike Equation (7) is evaluated with p equal to

the time elapsed from the last spike, and the value is preserved until the next event is reached. The dotted line marks the time of two spikes.

FIGURE 6 | Synthetic white noise generate for this study. (A) Noise signal added. (B) Fast Fourier Transform of noise. It is possible to observe that the noise has a

frequency uniform distribution between 1Hz and 31.6228× 104 Hz.
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FIGURE 7 | Comparison between the original signal with the noisy signal. For this experiment, the signal was computed evaluating the function sin(1500t2 )cos(50t)
50×106

+200× 10−6. It is important to observe that the signal must be positive at any moment.

FIGURE 8 | Comparison between signal rebuild from spike frequency on neuron output (blue line) and original signal (orange line).
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FIGURE 9 | Power Spectral Density graph of the original signal and filter signal by our proposal. We can observe than primary frequencies are presented with low

degradation.

FIGURE 10 | Comparison of results between different filters. (A) Median filter. (B) 3rd-order Chebyshev type 1 filter with cutoff frequency at 55kHz. (C) 3rd-order

Chebyshev type 2 filter with cutoff frequency at 55kHz. (D) 3rd-order Butterworth filter with cutoff frequency at 55kHz. (E) 3rd-order Elliptic filter with cutoff frequency

at 55kHz. (F) Neural filter proposed.
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FIGURE 11 | Comparison of error between outputs of different filters (additive white noise) and the original signal. The ideal error signal must be 0 at any time. (A)

Median filter. (B) 3rd-order Chebyshev type 1 filter. (C) 3rd-order Chebyshev type 2 filter. (D) 3rd-order Butterworth filter. (E) 3rd-order Elliptic filter. (F) Neural filter

proposed.

FIGURE 12 | Comparison of results between different filters, using a signal affected by Gaussian Multiplicative Noise of 30% . (A) Median filter. (B) 3rd-order

Chebyshev type 1 filter with cutoff frequency at 55kHz. (C) 3rd-order Chebyshev type 2 filter with cutoff frequency at 55kHz. (D) 3rd-order Butterworth filter with cutoff

frequency at 55kHz. (E) 3rd-order Elliptic filter with cutoff frequency at 55kHz. (F) Neural filter proposed.
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FIGURE 13 | Comparison of results between different filters. The signal is affected by impulsive random noise (random pulses of 5µs and 0.1mA were added). (A)

Median filter. (B) 3rd-order Chebyshev type 1 filter with cutoff frequency at 55kHz. (C) 3rd-order Chebyshev type 2 filter with cutoff frequency at 55kHz. (D) 3rd-order

Butterworth filter with cutoff frequency at 55kHz. (E) 3rd-order Elliptic filter with cutoff frequency at 55kHz. (F) Neural filter proposed.

TABLE 1 | Comparison between filter performance with Additive White Noise,

Multiplicative Gaussian Noise, and Impulsive Random Noise.

Filter Euclidean FDTW MSE PSNR*

Additive white noise

Median filter 0.257062 2.66536 4.40539 ×10−09 15.6014

3rd-order Chebyshev

type-1 filter

0.0300501 0.246951 6.02007 ×10−11 34.2452

3rd-order Chebyshev

type-2 filter

0.0575698 0.576117 2.20952 ×10−10 28.5982

3rd-order Butterworth filter 0.0378712 0.342871 9.56154 ×10−11 32.2359

Elliptic filter 0.047365 0.463987 1.49563 ×10−10 30.293

Proposed Neural filter 0.043605 0.187784 1.26760×10−10 31.0114

Multiplicative gaussian noise

Median filter 0.0574893 0.543259 2.20335×10−10 28.6104

3rd-order Chebyshev

type-1 filter

0.0278647 0.153496 5.17626×10−11 34.901

3rd-order Chebyshev

type-2 filter

0.0365451 0.299232 8.90364×10−11 32.5455

3rd-order Butterworth filter 0.0306838 0.206129 6.27664×10−11 34.0639

Elliptic filter 0.0338538 0.260648 7.64055×10−11 33.21

Proposed neural filter 0.0453503 0.170839 1.37110×10−10 30.6705

Impulsive Random Noise

Median filter 0.0653834 0.142627 2.85000×10−10 27.4928

3rd-order Chebyshev

type-1 filter

0.0364574 0.172277 8.86096×10−11 32.5664

3rd-order Chebyshev

type-2 filter

0.0488858 0.20908 1.59321×10−10 30.0185

3rd-order Butterworth filter 0.0468088 0.160894 1.46071×10−10 30.3956

Elliptic filter 0.0486396 0.226337 1.57720×10−10 30.0623

Proposed Neural filter 0.0438345 0.173065 1.28098×10−10 30.9658

Highlighted values represent the best performance according to the used criterion. A lower

value implies better performance (*Higher value is better). The results shown in this table

are the average values obtained from 15 conducted simulations.

information from signals corrupted deliberately with noise. Our
proposal works as the analog mobile mean filter (refer to
Mean Value Theorem for Integrals section) minimizing digital
electronics, thus reducing the required number of transistors.
Our frequency base decoding scheme has proven to have a good
noise rejection, specially added white noise, but maintaining
good performance with other types of noise, bringing artificial
intelligence closer to circuit technology to deliver innovative
solutions to filter white noise with the same frequency domain
as the original signal, with minimal latency and low information
loss. It is also a promising approach to, i.e., the conception
of future innovative lab-on-chip implementations. Increasing
the signal-to-noise ratio rejection ratio, cost efficiency, and
sensitivity, is essential in these devices.
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