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Abstract
Seedpod, the nonedible portion of lotus (Nelumbo nucifera Gaertn.), was reported to 
be rich in polyphenols. The objective of this study was to investigate the major bio-
active polyphenols of the lotus seedpods. The total polyphenol content (TPC) from 
ethanol extract of lotus seedpod (PELS) was found to be 34.23 μg gallic acid equiva-
lents (GAE)/mg extract. Four polyphenolic compounds were identified in the PELS, 
comprised of one flavan‐3‐ol (catechin) and three flavonoids (kaemferol, quercetin 
and hyperoside). In vitro antioxidant and antiproliferative properties of the PELS 
were evaluated. PELS exhibited 89.38%, 99.82%, 68.25%, and 95.82% scavenging 
activities against 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH), superoxide, hydroxyl, and 
2,2ʹazinobis‐3‐ethylbenzothiazoline‐6‐sulfonic acid (ABTS) radicals, respectively, at 
1.6 mg/ml. The Fe3+ reducing power of PELS was 0.605 at 0.32 mg/ml, which is 
comparable to glutathione (GSH). The PELS showed 31.79% metal chelating capac-
ity and 87.79% inhibition of linoleic acid auto‐oxidation at 1.6 mg/ml. PELS showed 
cytotoxicity toward HepG2 and LNcap cell lines in vitro with IC50 values at 44.59 
and 11.50 μg/ml, respectively. The findings of this study provide evidences that the 
inedible lotus seedpod could be a source for natural antioxidants and anticancer 
agents.
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1  | INTRODUC TION

Oxygen is vital for the sustenance of human and other aerobic 
organisms, and its depletion during cell metabolism produces by‐
products such as reactive oxygen species (ROS). The main ROS 
produced by physical and chemical factors contain molecular oxy-
gen (O2), superoxide anion radicals (O2

•−), hydroxyl radicals (•OH), 
peroxyl radicals (RO2

•), and hydrogen peroxide (H2O2). Excessive 
ROS could cause oxidative damage to DNA, proteins, and lipids 
resulting in some chronic diseases. Increasing evidences have 
shown that these ROS are involved in various serious pathological 
conditions including cancer, diabetes, liver injury, and age‐related 
neurodegenerative diseases (Liao et al., 2016; Schieber & Chandel, 
2014).

Vitamins A, C, and E are the most commonly used diet supple-
ment intake of antioxidants to prevent oxidative damage by ROS. 
Vegetables are full of vitamins and other antioxidants such as 
polyphenols which could reduce overproduction of ROS. Studies 
showed that dietary polyphenols as antioxidants can reduce 
the risk of chronic diseases related to ROS or oxidative stress, 
including diabetes mellitus (Wu et al., 2016), Alzheimer's dis-
ease (Tönnies & Trushina, 2017), and cancers (Sosa et al., 2013). 
Health concerns over human safety have increased interest in 
the development and utilization of natural, high potency, and low 
cost food‐derived antioxidants, to replace the current synthetic 
antioxidants.

Nelumbo nucifera Gaertn. is a valuable edible plant cultivated 
in China (Wu et al., 2004). All parts of this plant–roots, fruit, and 
seeds have various edible and medicinal uses in China (Mukherjee, 
Mukherjee, Maji, Rai, & Heinrich, 2009 et al.; Tian et al., 2018; Zhang, 
Cheng, Zhao, & Wang, 2017). In addition, the nonedible seedpod is 
reported to be rich in polyphenols and could be a potential source 
of new drug (Xiao et al., 2012). However, the antioxidant or antipro-
liferation activity of polyphenols from lotus seedpod has not been 
extensively studied. The objective of this study was to investigate 
the polyphenol composition and their antioxidative and antiprolif-
eration activities.

2  | MATERIAL S AND METHODS

2.1 | Materials and chemicals

Lotus seedpod was collected from Hongze Lake in Huai'an City, 
Jiangsu Province. The plant samples were dried at 40°C and 
ground into a fine, homogeneous powder using a combusted mor-
tar and pestle. The DPPH, ferrozine, N‐methylphenazonium me-
thyl sulfate (PMS), nitrotetrazolium blue chloride (NBT), butylated 

hydroxytoluene (BHT), nicotinamide adenine dinucleotide (NADH), 
and ABTS were commercially obtained from Sigma (Sigma).

2.2 | Extraction of polyphenols from lotus seedpod

At room temperature, 5 g of lotus seedpod powder was soaked in 
100 ml ethanol (50%) for 24 hr. The solid residue was filtered and 
further extracted once more under the same conditions. The result-
ant filtrates were combined and concentrated. Water was added to 
the concentrated residue and successively extracted with petroleum 
ether and ethyl acetate. The ethyl acetate fraction was used for LC‐
MS analysis and bioassays.

2.3 | Determination of TPC

The analysis of the TPC in PELS was performed based on the Folin–
Ciocalteu method (Fogarasi, Kun, Tanko, Stefanovits‐Banyai, & 
Hegyesne‐Vecseri, 2015). Firstly, 0.2 ml of PELS (1 mg/ml in metha-
nol) and 1.0 ml of Folin–Ciocalteu's phenol solution were mixed and 
incubated in a glass tube at room temperature for 10 min. 2.5 ml 
of 5% Na2CO3 was then added to the mixture, mixed, and added 
deionized water to make up to 10 ml. After 40 min, the absorbance 
was measured at 765 nm using a UV‐V double beam spectrometer 
(UV‐1700; Shimadzu). TPC was expressed as grams of GAE per 100 
gram of dry weight (g GAE/100g DW). Gallic acid is standard phe-
nolic compound, in which concentration ranges are 0–6.75 μg/ml.

2.4 | Determination of total flavonoid content (TFC)

TFC in PELS was measured according to the previous assay with 
minor changes (Silva, Feliciano, Boas, & Bronze, 2014). In brief, 20 mg 
of PELS was dissolved in 10 ml of 50% aqueous methanol. Then, 
300 μl of PELS solution, 3.4 ml of 30% methanol, 150 μl of 0.5 mol/L 
sodium nitrite, and 150 μl of 0.3 mol/L AlCl3⋅6H2O were added and 
mixed in a 10 ml test tube. After 10 min incubation, 1 ml of 1 M so-
dium hydroxide was added. The TFC was evaluated at 510 nm using a 
spectrophotometer and expressed as grams of rutin equivalents (RE) 
per 100 gram dry weight of extract. Rutin is reference compound, in 
which concentration ranges are 0–100 μg/ml.

2.5 | Identification of polyphenols by HPLC‐DAD‐
ESI‐MS

The methanol solution of PELS (100 μg/ml) was filtered by a 0.22‐μm 
syringe filter and analyzed by HPLC‐DAD‐ESI‐MS (Agilent) equipped 
with a C18 column (4.6 × 250 mm, 5 μm, Shimadzu). The mobile phase 
is acetonitrile (A) and water including 2% formic acid (v/v, B), which 
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was delivered as follows: flow rate: 0.4 ml/min; 0 min, 15% (A); 1 min, 
35% (A); 2 min, 40% (A); 5 min, 75% (A); 15 min, 15% (A); and 20 min, 
15% (A). The spectral data were recorded using a DAD over a scan-
ning wavelength ranging from 200 to 600 nm. An ESI ion source mass 
spectra were recorded in negative mode: fragmentor voltage, 100 V; 
nebulizing pressure, 25 psi; dry gas temperature, 300°C; capillary volt-
age, 2,500 V; and mass range, m/z 100–1000.

2.6 | Evaluation of antioxidant activity

Antioxidant potential of PELS was, respectively, determined by 
DPPH radical, superoxide anion radical, hydroxyl radical, ABTS·+, 
metal chelating, and ferric reducing ability. The lipid peroxidation of 
PELS was also investigated. These results were compared with BHT, 
and the procedures are briefly explained as under.

2.6.1 | DPPH radical scavenging activity

Antioxidant potential of PELS was investigated using the DPPH radi-
cal scavenging assay published by Shimada, Fujikawa, Yahara, and 
Nakamura, (1992). 50 μl of undiluted sample solution was mixed with 
0.2 ml of DPPH standard solution (24 mg/L, prepared by ethanol) in the 
96‐well plates. After 30 min incubation, the absorbance was measured 
immediately at 517 nm using a spectrophotometer. The scavenging ac-
tivity of PELS sample solution was calculated by applying the formula:

2.6.2 | Scavenging activity on superoxide 
anion radical
The superoxide anion radical was generated using the PMS‐NADH‐
NBT system previously described by Singh and Rajini (2004) with 
some modification. At room temperature, PELS (0.25–2.0 mg), 
NADH (73 μM), phosphate buffer (20 mM, pH 7.4), NBT (50 μM), and 
PMS (15 μM) were mixed and incubated for 5 min. The absorbances 
of the resultant reaction mixture were measured at 560 nm. The 
percentage inhibition of superoxide anion radical generation was 
calculated as follows:

2.6.3 | Scavenging activity on hydroxyl radical
The scavenging activity of PELS against the hydroxyl radical was 
investigated by an assay procedure published by Rodrigues et al. 
(Rodrigues et al., 2016), with some modification. Different concen-
trations of the test sample or reference compound were mixed with 
FeCl3 (100 μM), ethylenediaminetetraacetic acid (EDTA) (100 μM), 
2‐deoxy‐2‐ribose (2.8 mM), KH2PO4‐KOH buffer (20 mM, pH 7.4), 
H2O2 (1.0 mM), and ascorbic acid (100 μM). The final volume of the 
mixtures was made up to 1 ml and then incubated for 1 hr at 37°C. 

1 ml 2.8% trichloroacetic acid (TCA) and 1 ml 1% aqueous thiobar-
bituric acid (TBA) were added to 0.5 ml of the reaction mixture and 
incubated at 90°C for 15 min. The absorbance of the resultant reac-
tion mixtures was measured at 532 nm after cooling. Results were 
expressed as percentage of inhibition, relative to a control sample.

2.6.4 | ABTS assay

The scavenging activity of the PELS against ABTS·+ was performed 
by Thana's method (Thana et al., 2008). ABTS (7 mM) was oxidized 
with potassium persulphate (2.45 mM) to obtain ABTS·+ radical. For 
this assay, 50 μL PELS was reacted with 200 μL of ABTS·+ radical. 
The reaction mixture's absorbance was measured at 734 nm after 
10 min incubation.

2.6.5 | Ferric reducing power assay
The reducing power of PELS was evaluated based on the method 
published by Borawska et al. (Borawska, Darewicz, Vegarud, & 
Minkiewicz, 2016). 0.5 ml phosphate buffer (pH 6.6, 0.2 mol/L) 
and 0.5 ml potassium ferricyanide (1%, w/v) were added to 0.2 ml 
of diluted PELS solution (1 mg/ml). After reacting for 60 min at 
50°C, 0.5 ml trichloroacetic acid (10%, w/v) was added and cen-
trifuged (800g, 5 min). 0.5 ml supernatant from the mixture was 
mixed with 0.5 ml distilled water and 0.1 ml ferric chloride (0.1%, 
w/v). The absorbance (700 nm) of the reaction mixtures was re-
corded after 15 min incubation. Reducing power was calculated 
as follows:

2.6.6 | Metal ion chelating activity
The metal ion chelating activity of the PELS was analyzed by 
Giménez's method (Giménez, Alemán, Montero, & Gómezguillén, 
2009). The change in sample's color was recorded on a spectropho-
tometer. The positive control was EDTA. Results were expressed as 
a percentage of the control, which is 100%.

2.6.7 | Linoleic acid assay

The inhibition of the auto‐oxidation and degree of oxidation of linoleic 
acid by PELS were evaluated using Chen's methods (Chen, Muramoto, 
& Yamauchi, 1995). Samples were dissolved in 2 ml of 0.1 mol/L phos-
phate buffer (pH 7.4) and then mixed with 2.0 ml of 2.5% linoleic acid 
in ethanol in test tubes, which were kept at 40°C in the dark. The total 
incubation time was 7 days. At regular intervals (24 hr), aliquots of the 
reaction mixtures were withdrawn with a microsyringe for measure-
ment of the oxidation. The reference standard was BHT in the analysis. 
8 ml of 75% ethanol, 100 μL of 30% ammonium thiocyanate, and 100 
μL of 20 mmol/L ferrous chloride solution in 3.5% HCl were added to 
100 μL of the reaction mixture. After 3 min reaction, absorbance of the 
colored solution at 500 nm was measured using a spectrophotometer. 

DPPHradical scavengingactivity (%)=
[

Blankabsorbance−Sampleabsorbance

Blankabsorbance

]

×100

Inhibition (%)=

[

Bank absorbance−Sample absorbance

Bank absorbance

]

×100

ABTS scavenging activity (%)=100×
(

Acontrol−Asample

)

∕Acontrol

Reducing power=A (sample) −A (control)
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OD values (At) were measured after every 24 hr. The antioxidant ca-
pacity of the sample was represented by the inhibition rate of oxida-
tion at 144 hr, and the inhibition rate was calculated.

2.7 | Antiproliferation properties
The HepG2 and LNcap cells were grown in Dulbecco's Modified 
Eagle's Medium (DMEM), which were supplemented with 10% fetal 
bovine serum, 50 units/mL streptomycin, and 100 units/mL penicil-
lin in a humidified (5% CO2, 95% air) atmosphere at 37°C. The MTT 
cytotoxicity assay was performed according to the method (Zhang et 
al., 2016). Cells (1 × 104 cells/well) were seeded for 12 hr in 96‐well 
plates. The cells were exposed to various concentrations of PELS for 
24 hr and 48 hr. A 20 μl portion of MTT with 5 mg/ml in PBS was 
added into a well and incubated for another 4 hr. The solvent was 
removed, and dimethyl sulfoxide (DMSO) (150 μl/well) was added to 
dissolve the crystals with shaking for 10 min. The absorbance was 
measured at 570 nm by the microplate reader (BioTek). The inhibi-
tion rate was calculated using the following formula:

The IC50 value was determined by nonlinear regression, type sig-
moidal, analyzed using Graphpad Prism 5.0 software.

2.8 | Statistical analysis

All the experiments were performed in triplicate, and the results are 
presented as the means ± SD. Duncan's multiple‐range test was used 
to analyze the significant differences, and a p < .05 was considered 
significant.

3  | RESULTS AND DISCUSSION

3.1 | Total phenols and flavonoids content

Natural polyphenols benefit human health (Ferrazzano et al., 2011). 
Reports indicate that lotus root was rich in various secondary 

metabolites such as polyphenols and flavonoids (Park et al., 2009). 
In this study, we determined the polyphenols and flavonoids con-
tents of dry lotus seedpod extract (as depicted in Table 1). Our re-
sults show that TPC of PELS is higher in quantity as compared to 
phenolic content (22.5 mg GAE/g) in lotus cultivar from Korea (Park 
et al., 2009). The difference is probably caused by the different lotus 
species and extraction methods. The result of the TPC confirms that 
the extract is rich in phenolic contents.

3.2 | LC/MS analysis of PELS

The ethyl acetate fraction was used to identify the polyphenols com-
position in PELS. As shown in Figure 1 and Table 1, five compounds 
were found according to the analysis of HPLC‐DAD/ESI‐MS. The 
m/z values of peaks 1, 2, 3, 4, and 5 in negative ESI‐MS mode ([M‐H]-) 
were 593, 289, 463, 285, and 301. Peaks 2–5 were identified as cat-
echin, hyperoside, kaempferol, and quercetin by comparing with the 
authentic standards, respectively (Figure 2). The identity of peak 1 
remained inconclusive in the absence of a standard compound. The 
content of each identified compound was determined by HPLC‐DAD 
analysis (as shown in Table 1). Hyperoside was the main compound 
in PELS. To the best of our knowledge, reports on contents of single 
compound from lotus seedpot are limited. Our study allowed for the 
identification and content of polyphenols in the seedpod of N. nu‐
cifera Gaertn.

3.3 | Antioxidant activity

3.3.1 | DPPH radical scavenging effect

DPPH is a simple method which is widely used to evaluate the an-
tioxidant activities. Figure 3a shows the DPPH radical scavenging 
activity of ascorbic acid, BHT, and PELS. The effect of PELS on 
the DPPH radical increased from 83.36% to 89.38%, with increas-
ing concentrations ranging from 0.2 to 1.6 mg/ml. Compared with 
the reference standards, the scavenging effect followed this order: 
ascorbic acid > BHT > PELS (98.08, 98.0, and 89.38, respectively) at 
1.6 mg/ml.

Inhibition rate (%)=100×
(

Acontrol−Asample

)

t=144 h
∕Acontrol−At=0 h

Inhibition rate (%)=100×
(

Acontrol−Asample

)

∕
(

Acontrol−Ablank

)

TA B L E  1   Contents of total phenolics and total flavonoids, and characterization of phenolic compounds in lotus seedpod by 
HPLC‐DAD‐ESI‐MS

Peak no.
Retention 
Time (min) [M‐H]‐, m/z Identity

Molecular 
Weight

Content 
g/100 g DW

1 2.26 593 Not determined 594 –

2 2.65 289 Catechin 290 8.27 ± 0.25

3 3.70 463 Hyperoside 464 5.51 ± 0.16

4 5.14 285 Kaempherol 286 1.24 ± 0.08

5 5.22 301 Quercetin 302 3.11 ± 0.11

TPC(Total phenol content, mg GAE/g DW) – – – – 34.23 ± 4.84

TFC (Total flavonoid content, g RE/100g DW) – – – – 25.12 ± 3.58

Note: Means not applicable.
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The DPPH radical scavenging effect of PELS was reached 
above 80% at 0.2 mg/ml compared with control, together with in-
crease in PELS concentration. We postulated that the polyphenols 
of PELS might contribute significantly to its scavenging activity ac-
cording to the analysis of composition in the PELS. The active hy-
drogen atoms in the phenolic compound readily react with radicals 
and reduce the DPPH radical to DPPH‐H, thereby decreasing the 
absorbance of the solution. The hydrogen atom‐donating ability of 
compounds is often related to their antioxidant potential. The in-
vestigation reveals that PELS may be an excellent electron/hydro-
gen donator and could become an effective free radical scavenger.

3.3.2 | Superoxide anion radical scavenging effects

Superoxide anion radical is the single electron reduction product 
of oxygen molecule, which widely exists and is often continuously 

produced in normal physiologic reactions in the human body. 
Although it is not highly toxic to cells, its toxic effects cause adverse 
effects by producing hydrogen peroxide and highly reactive hydroxyl 
radicals (Xie & Chen, 2008). Polyphenols are recognized as great 
scavengers of superoxide anion radicals (Papuc, Goran, Predescu, 
Nicorescu, & Stefan, 2017). Figure 3b shows the percentage radical 
inhibition induced by PELS and positive control at 0.2–1.6 mg/ml. 
The PELS exhibited excellent scavenging activity (83.97%–99.82%) 
on the superoxide anion radicals at all the tested concentrations, 
and the scavenging effect was significantly (p < .05) higher than the 
reference (10.36%–35.01%) at the same concentration. The PELS 
extract showed strong superoxide anion radical scavenging activity 
(above 95% at 0.4 mg/ml).

It is probable that some active constituents, such as polyphe-
nols, reacted readily with superoxide anion radicals and inhibited the 
formation of blue formazan in the reaction mixture, resulting into 

F I G U R E  1   HPLC‐DAD‐ESI‐MS analysis of PELS

F I G U R E  2   Chemical structures of 
compounds identified in the PELS
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a decrease in the absorbance. The results indicated that the PELS 
possessed significant superoxide anion radical scavenging activity 
and could be a good source of natural antioxidants.

3.3.3 | Hydroxyl radical scavenging activity

Hydrogen peroxide can cross cell membranes and react with Fe2+ 
and Cu2+ ions to obtain hydroxyl radicals. This may be the origin of 
many of its toxic effects (Qi et al., 2005). In this study, the hydroxyl 
radicals were used to evaluate the hydroxyl radical scavenging ac-
tivity of PELS. As depicted in Figure 3c, the PELS exhibited mod-
erate hydroxyl radical scavenging activity (14.39%–68.25%) in a 
concentration‐dependent manner. Comparable scavenging effect 
on hydroxyl radical to that of BHT would encourage the use of 
PELS as a safe natural‐based health food supplement at higher 
concentrations.

3.3.4 | ABTS·+ radical scavenging effects

As depicted in Figure 3d, the PELS showed ABTS·+ radical scaveng-
ing activity of 28.33%–95.82%, in a concentration‐dependent man-
ner (0.2–1.6 mg/ml, p < .05). Although the scavenging effect of PELS 

was less efficient than that of BHT and GSH at lower concentra-
tions, it exhibited a higher activity than that of GSH at 0.8 mg/ml. 
The ABTS·+ scavenging effect of PELS was the most potent of all the 
tested compounds at 1.6 mg/ml. The order of activity was as follows: 
PELS > BHT > GSH (95.82, 94.96, and 86.81%, respectively).

Stable ABTS radicals were generated by donating the labile hy-
drogen atom of antioxidants to peroxyl radical; therefore, antioxi-
dants can terminate the radical reaction. We postulated that some 
polyphenols in the PELS, which may be electron or hydrogen donors, 
played the role of “radical terminator” by quenching and eliminating 
the ABTS·+, thereby decreasing the absorbance of the reaction solu-
tion. Moreover, active groups that donate electrons in the polyphe-
nols structure may contribute to the radical scavenging activity. All 
these results indicate that the PELS may be an excellent electron do-
nator with comparable effects to those of the synthetic compounds, 
BHT and GSH, and likely possesses strong ABTS·+scavenging ability 
in vivo.

3.3.5 | Reducing power assay

The relationship between antioxidant activity and reducing power 
has been described (Duh, Tu, & Yen, 1999). The higher reducing 

F I G U R E  3   Scavenging effects of polyphenols extraction from lotus seedpod on DPPH radicals (a), superoxide anion radicals (b), hydroxyl 
radicals (c), and ABTS•+ radicals (d). Data represent the mean ± SD (n = 3)
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power of antioxidants often has strong ability to donate electron. 
Therefore, reducing power is normally used to forecast the antiox-
idant capacity. The reducing power of PELS (Figure 4a) with GSH 
as a reference standard revealed that it had a significant (p < .05) 
concentration‐dependent effect, that was 0.605 at 320 μg/ml. 
Furthermore, the reducing power of PELS was very close to that of 
GSH at the same concentration. The results elucidate that the PELS 
are good electron and hydrogen donors and can convert free radi-
cals to more stable products. Thus, the PELS could be used as a po-
tent antioxidants.

3.3.6 | Metal chelating capacity

Transition metals have been reported to catalyze the formation of 
the first free radicals required to initiate the propagation of the 
radical chain reaction in lipid peroxidation (Mathew & Abraham, 
2006). Therefore, we examined chelating capacity of PELS against 
Fe2+, because it is the most effective pro‐oxidant found in food 
(Lin, Wei, & Chou, 2006). As shown in Figure 4b, the formation 
of the ferrozine‐Fe2+ was not completed in the presence of PELS. 
This suggests that PELS competed with ferrozine for chelating the 
ferrous iron, and this effect increased in a concentration‐depend-
ent manner. Existence of metal ions, especially Fe2+, will accelerate 
lipid peroxidation exponentially in food systems. Therefore, the 
metal chelating capacity that PELS possessed can indirectly retard 
lipid peroxidation although the metal chelating capacity of PELS 
was lower than that of EDTA.

3.3.7 | Antioxidant activity in linoleic acid system

Lipid peroxidation is often thought to occur via radical‐mediated 
abstraction of H atoms from methylene carbons in polyunsaturated 
fatty acids (Rajapakse, Mendis, Byun, & Kim, 2005). It is probable 
that some phenolic compounds in the PELS, which are excellent 
hydrogen donators, more readily supply hydrogen atoms than the 
linoleic acid. This protects against peroxidation. Therefore, the anti-
oxidant effects of PELS against the peroxidation of linoleic acid were 
evaluated (Figure 4c, reference standard: BHT). PELS significantly 
inhibited the peroxidation of linoleic acid at the tested range. At con-
centrations of 0.8, 1.0, 1.2, and 1.6 mg/ml, PELS showed 82.86%, 

84.73%, 85.72%, and 87.79% inhibition rate, respectively. But, the 
inhibitory effect of the PELS was slightly lower than that of BHT.

As we know, essential fatty acids including linoleic acid and ar-
achidonic acid possess important physiological functions and are 
precursors of some physiological active substances, but they are 
very susceptible to ROS and free radicals because of their struc-
ture of carbon–carbon double bond. Therefore, oxidation loss of 
essential fatty acids in food may lead to synthesis deficit of physi-
ological active substances and cause physiological malfunction or 
even some related diseases. According to this study, it is known 
that the PELS can inhibit peroxidation of linoleic acid effectively. 
Hence, it is deduced that the PELS may protect essential fatty 
acids in food from oxidation induced by ROS and free radicals. All 
these results indicate that the PELS possessed considerable inhib-
itory effects against auto‐oxidation of linoleic acid and, therefore, 
could have considerable potential application in the oil and fat pro-
cessing industry.

3.4 | Antiproliferative activity of the PELS

MTT assay was conducted on HepG2 and LNcap cells to evaluate 
the antiproliferative effect of PELS. All tested cells were treated 
at various concentrations of PELS (6.25, 12.5, 25, and 50 μg/ml) 
for 24 and 48 hr, and the results were illustrated in Figure 5. As re-
vealed by the growth curves, PELS only showed slight antiproliera-
tive activity against HepG2 cells with 54.21% inhibition at 50 μg/
ml compared with control after 24 hr. After a period of incubation 
of 24 and 48 hr, PELS showed a dose‐dependent inhibition from 
12.5 to 50 μg/ml on LNcap cells (Figure 5b). Cell treatment with 
25.0 μg/ml PELS for 24 hr reduced cell growth by 50% and treat-
ment for 48 hr reduced by 70%. The maximum effect was obtained 
with 50 μg/ml PELS, which demonstrates PELS cytotoxic effect to 
LNcap cells.

Zhao group reports the antiproliferative activity of alkaloids 
from lotus seedpot (Zhao et al., 2016), but none targeted toward 
polyphenols against HepG2 and LNcap cells. The antiproliferative 
effect of PELS may be due to the polyphenol constituents, based 
on the results of our component analysis. Our study suggests that 
polyphenols from lotus seedpot further extended the healthcare 
benefits of N. nucifera Gaertn.

F I G U R E  4   The reducing power (a), metal chelating capacity (b), inhibition of linoleic acid peroxidation (c) at various concentrations of 
polyphenols from lotus seedpod
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The present study provides new information about the antioxida-
tive and antiproliferative properties of the lotus seedpod extract 
and can be considered of practical interest. In this study, catechin, 
hyperoside, kaempferol, and quercetin were identified as the major 
constituents from PELS. The PELS showed significant antioxidant 
properties and potent antiproliferative activity, which may be cor-
related with polyphenol constituents. Our study provides evidences 
that the lotus seedpod can be used as a potent bioactive source of 
natural antioxidant and anticancer agents.
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