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Imaging viscosity of intragranular 
mucin matrix in cystic fibrosis cells
Sebastian Requena1, Olga Ponomarchuk2,6, Marlius Castillo3, Jonathan Rebik3, Emmanuelle 
Brochiero2,4, Julian Borejdo1, Ignacy Gryczynski1, Sergei V. Dzyuba3, Zygmunt Gryczynski1,5, 
Ryszard Grygorczyk2,4 & Rafal Fudala1

Abnormalities of mucus viscosity play a critical role in the pathogenesis of several respiratory diseases, 
including cystic fibrosis. Currently, there are no approaches to assess the rheological properties of mucin 
granule matrices in live cells. This is the first example of the use of a molecular rotor, a BODIPY dye, to 
quantitatively visualize the viscosity of intragranular mucin matrices in a large population of individual 
granules in differentiated primary bronchial epithelial cells using fluorescence lifetime imaging 
microscopy.

Mucus forms a sticky, gel-like layer that covers wet surfaces of various organs and tissues, including airways. 
Under physiological conditions, mucus layer act as the first line of defense against toxins and pathogens inhaled 
into the lungs. It is produced by the secretion and hydration of gel-forming mucins, which are large fibrous 
biopolymers that are synthetized and stored as a condensed matrix inside the secretory granules in mucus/gob-
let cells. However, under pathological conditions, such as in cystic fibrosis (CF), abnormally viscous and sticky 
mucus obstructs the lungs, harbors bacteria and particulates, and is not cleared by the mucociliary system, thus 
leading to chronic respiratory infections, progressive lung damage, and ultimately mortality1,2. Mucus abnormali-
ties in CF are mostly attributed to dehydration or acidification of extracellular surface fluid into which mucins are 
secreted and undergo swelling and hydration3–5. However, it is also possible that CF mucus defects may already 
be present prior to mucin secretion during the early stages of biogenesis, which could impact the packaging and 
rheological properties of the intragranular mucin matrix. This notion has not been explored to date, and it would 
require the ability to assess the rheological properties of the intragranular mucin matrix.

The rheological properties of secreted mucus critically affect its physiological and pathological functions, and 
as a result, the viscosity of mucus has received considerable attention in an attempt to elucidate the relationship to 
the progression of various mucus-related disorders. It was shown that the viscosity of secreted mucus depends on 
a variety of environmental factors, and it varies over a wide range, from viscous fluid to gel-like states6–8. Standard 
methodologies to measure the physicochemical properties of mucus rely on the use of bulk samples of secreted 
mucus and classical macro-rheological techniques, such as plate rheometry, capillary viscometry, and magnetic 
microrheometry5. More recently, particle-tracking microrheology was used to characterize mucus properties 
with low volume samples5. On the other hand, the contribution of defects intrinsic to stored mucin granules, 
which may manifest as abnormal intragranular mucin matrix packaging and viscosity, remain unexplored. The 
assessment of the nanoscale physicochemical properties of mucins that are stored in a highly condensed state in 
the lumen of mucin granules is challenging and requires novel experimental approaches.

Small molecule probes are viable tools for reporting on the properties of various environments. Notably, fluo-
rescent rotors are well-established viscometers that are used to gauge the viscosity of many biological systems9,10. 
In most cases, these viscometers undergo an internal rotation/twisting, producing a set of conformations that 
typically have different photophysical properties. Importantly, the rotation in the excited state is known to alter 
the fluorescence lifetime, which is one of the most significant photophysical properties. Since the lifetimes of 
fluorophores are independent of concentration, photobleaching, absorption, and excitation intensity, they are 
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used for the unambiguous assessment of microviscosity11–13. Fluorescence lifetime imaging microscopy (FLIM), 
which provides images that are based on differences in excited state decays, allows for excellent sensitivity and 
high spatial resolution; thus, FLIM is an ideal tool for cellular and subcellular studies11–13. As such, fluorescent 
probes that could permeate the cell membrane, accumulate inside mucin granules, and whose lifetimes are sen-
sitive to intragranular viscosity fluctuations would be a significant addition to the diagnostic/analytical tools of 
chemical biology.

Results and Discussion
BODIPY dyes are among the most versatile fluorophores that have been used as sensors and environmental 
probes for numerous applications, especially in biological and biomedical fields14,15. BODIPY-based viscometers 
proved to be useful in assessing the viscosity of various types of biological media, including membranes, tissues, 
and cellular environments16–22. In the course of our studies on developing BODIPY-based viscometers16,17, we 
discovered that a simple BODIPY dye (Fig. 1, where the rotation of the phenyl group around the BODIPY core is 
sensitive to the viscosity of the surrounding media, i.e., BODIPY rotor) showed appreciable membrane permea-
bility and accumulation inside mucin granules. Here, we present the results on the use of BODIPY rotor to probe 
the viscosity of the intragranular mucin matrix of differentiated primary cultures of human bronchial epithelial 
cells from non-CF and CF patients (carrying the dominant CF mutation (F508del/F508), which affects 70 % of all 
CF patients worldwide23), which to the best of our knowledge, is the first example of a small molecule viscometer 
that is capable of reporting on the viscosity of intact mucin granule matrices in live cells.

In order to ensure that the fluorescence lifetimes of the BODIPY rotor were only related to the viscosity of 
its environment, and not to any other physical property of the media, such as polarity and pH, several control 
experiments were performed (Supplementary Figs 1–3; Supplementary Table 1). Specifically, the absorption and 
emission maxima appeared to be independent of the viscosity of glycerol-water mixtures (Supplementary Fig. 1; 
Supplementary Table 1). No changes in the fluorescence lifetimes were noted within the 5.5–8.5 pH range of the 
aqueous media or in organic solvents of various polarities (Supplementary Fig. 2). Importantly, at viscosities over 
20 cP, such as those reported for mucus, i.e., significantly higher than 20 cP6–8, the fluorescence lifetimes of the 
BODIPY rotor linearly correlated with the viscosity of the media, and the relationship could be described by a 
modified Förster-Hoffmann equation (Supplementary Fig. 3), making this dye a reliable reporter for the range of 
apparent viscosities that might be expected for the intragranular matrix. In addition, we examined the behavior 
of BODIPY non-rotor (Fig. 1, where the rotation of the phenyl group around the BODIPY core is not possible 
due to the presence of two methyl groups) to demonstrate that no significant changes in the fluorescence lifetime 
occurred upon variation of viscosity, pH, or solvent polarity (Supplementary Figs 1–3; Supplementary Table 2).

To determine the viability of the BODIPY rotor (Fig. 1) as a mucin-specific viscometer, differentiated, primary 
cultures of bronchial epithelial cells from CF patients (F508del/F508del), were chosen.

Upon incubation with CF cells (Fig. 1a), the fluorescence lifetime of BODIPY rotor appeared to vary over a 
broad range (i.e., 2.5 to 5.0 ns), while minimal variation in the fluorescence lifetime was noted when BODIPY 
rotor was incubated with non-CF cells (Fig. 1b). Importantly, BODIPY non-rotor did not display any signifi-
cant variations in fluorescence lifetime in CF or non-CF cells (Fig. 1c and d, respectively). These results strongly 

Figure 1.  Structures of the dyes and FLIM images. FLIM images of the BODIPY rotor and non-rotor dyes 
incubated with CF (a and c) and non-CF (b and d) cells. Images scales are 80 × 80 µm. Insets: examples of high-
resolution scans of the highlighted regions of interest.
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indicated that BODIPY rotor could potentially differentiate between healthy and diseased cells. It is also of inter-
est to note that both the rotor and non-rotor showed good cell permeability and accumulation in granule lumen. 
Overall, these results suggested that viscometers based on BODIPY scaffolds could be used as intragranular 
probes for mucin matrix viscosity.

In general, FLIM images of epithelial cells are highly dimensional and visually complex, which means that 
their analysis using conventional segmentation techniques could be time consuming. Moreover, image analysis 
is strongly dependent on user-based threshold parameters, which potentially could lead to user-biased results. 
Here, since each of the acquired FLIM images contained hundreds of mucin granule candidates, we chose to apply 
a machine-learning algorithm to segment the image and isolate individual mucin granules for high-throughput 
data analysis (see Supplementary Fig. 4 and online methods for details). Based on such assessment, the intragran-
ular viscosity of a large population of individual mucin granules in airway epithelial cells collected from non-CF 
subjects and CF patients was determined (Fig. 2). The viscosity distributions revealed that non-CF cells had a 
single population of mucin granules with a viscosity centered around 520 cP (i.e., 521 ± 28 cP). Unexpectedly, the 
CF cells showed the presence of two populations of mucin granules. The smaller population had a viscosity of 
ca. 500 cP (i.e., 501 ± 46 cP), which was similar to that of the non-CF cells. However, the larger population had a 
lower viscosity around 160 cP (i.e., 164 ± 11 cP).

It should be noted that clusters/aggregates of mucin granules are commonly found in goblet cells of a vari-
ety of tissues24–27, thus the viscosity variations within the aggregates have also been analyzed. Specifically, we 
have performed comparative analysis of granule clusters and individual granules (see Supplementary Fig. 5). The 
results indicated that there were no appreciable differences between viscosities of mucin matrix of the individual 
granules and the granule’s aggregates.

Albeit preliminary, these results strongly suggest that the heterogeneity of mucin matrix viscosity in CF cells 
might be related to the disease, and provide an impetus for more detailed studies.

Notably, the size distributions of the mucin granules were found to be similar for both the CF and non-CF 
data sets (Supplementary Fig. 6). This confirmed that the mucin granules in CF and non-CF cells were not sig-
nificantly different in regard to their maturation or swelling states. Therefore, the observed fluorescence lifetime 
variations between CF and non-CF cells were most likely the reflection of distinct viscosity distributions within 
their intragranular matrixes. Whether this variability is related to different degrees of mucin molecule packaging 
that could be affected, e.g., by alkalization of intraluminal pH in CF cells 28,29, will be determined in future studies.

Figure 2.  Viscosity of intragranular mucin matrix. The viscosity distribution of intragranular mucin matrix in 
CF (a and c) and non-CF (b and d) cells using rotor and non-rotor BODIPY dyes. The analysis was performed 
in three independent experiments with a total of 10–12 images analyzed per set. The number of granules (N) 
analyzed in each case is given at the right top corner of each panel. Blue, green and red lines are fits: blue – 
overall fits, green and red lines are fits for lower and higher viscosity populations.
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Conclusions
We demonstrated that BODIPY-rotor could probe intragranular viscosities of CF and non-CF cells. Importantly, 
two different populations of viscosities were identified in the CF granules as opposed to a single population of vis-
cosities in non-CF granules. This indicates a heterogeneous nature of the CF granules, which might be related to the 
pathology. Overall, our results suggest that BODIPY-based viscometers could be viable tools for assessing the viscoe-
lastic properties of mucin matrix within intact granules in live cells. Combining FLIM studies with such molecular 
viscometers should provide valuable insight into various stages of CF mucus pathogenesis, and potentially could 
aid in the development of efficient therapeutic approaches to combat the disease, for which no cure currently exists.

Methods
Cell culture.  CF primary human airway epithelial cells (AEC), provided by the Respiratory Tissue and 
Cell Biobank of CRCHUM, were isolated from bronchial tissues collected from CF patients who underwent 
lung transplantation at CHUM hospital per approved ethical protocols and with written informed consent30,31. 
Non-CF human AEC, provided by the Primary Airway Cell Biobank (PACB) of Cystic Fibrosis  Translational 
Research Center, were from healthy individuals (without lung disease). Freshly isolated cells were seeded on flasks 
coated with Purecol (Cedarlane Laboratory, Burlington, ON, CA) and cultured in CnT-17 medium (CellnTec 
Advanced Cell Systems, Bern, CH) until 80% confluence was reached. Cells were then detached with trypsin 
solution, seeded on permeant filters (Corning, NY, USA) coated with collagen IV (Sigma-Aldrich, ON, Canada), 
and cultured in CnT-17 until confluency. Next, the medium was removed to create an air-liquid interface and 
the basolateral medium was replaced with differentiation medium (1:1 volume of BEGM and DMEM (Life 
Technologies, CA, USA) supplemented with 1.5 µg/mL BSA, 1 × 10−7 M retinoic acid, and 100 U/mL of penicil-
lin-streptomycin every two days for at least 35 days to obtain highly differentiated cultures30,31.

Viscosity of water-glycerol mixtures.  Mixtures of various viscosities were prepared using commonly 
used glycerol-water mixtures32–34, by varying the volume fraction of a mixture of Milli-Q ultrapure water (EMD 
Millipore, MA, USA) and spectroscopic grade glycerol (Sigma-Aldrich, MA, USA) in 10% increments35.

Steady state fluorescence measurements.  All measurements were performed using 1.0 cm path length 
quartz cuvettes. Absorption measurements were acquired on a Varian Cary 50 Bio UV–Vis spectrophotometer (Agilent 
Technologies, CA, USA). Fluorescence measurements were performed on a Cary Eclipse spectrofluorometer (Agilent 
Technologies, CA, USA). Fluorescein (Sigma-Aldrich, MA, USA) in 0.1 M NaOH with a quantum yield of 0.95 was 
used as the standard for quantum yield calculations36. The quantum yield was determined using Eq. 1 as follows:
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where, Q is the quantum yield of the sample, n is the index of refraction of the solvent the sample is in, I is the 
integrated intensity measured, and A is the absorbance of the sample. The remaining terms were the values from 
the reference standard.

Fluorescence lifetime imaging microscopy.  CF and non-CF primary human AEC were incubated with 
BODIPY rotor and non-rotor (2.3 µM each) for 30 min at 37 °C, under 5% CO2 atmosphere with mild agitation. Cells 
were washed twice for 2 minutes in HBSS w/o Ca2+ and Mg2+, mounted between coverslips, and examined using the 
Time-Correlated Single Photon Counting system. An MT-200 (PicoQuant, Berlin, Germany) confocal microscopy 
system  with a 60 × 1.2 NA Olympus water immersion objective and 50 µm pinhole was used with an Olympus 
IX71 inverted microscope with a piezoelectric scanning stage (Physik Instrumente, Karlsruhe, Germany) for all 
fluorescence imaging measurements and lifetime measurements. A PDL-470 (470 nm wavelength) laser operated at 
20 MHz repetition rate by a PDL 828 “Sepia II” was used as the excitation source in all measurements. A 488 nm LP 
filter (Semrock, NY, USA) was used to remove the excitation from the collection. Symphotime V 4.2 (PicoQuant, 
Berlin, Germany) software was used to analyze and fit fluorescence lifetime decays. The time-dependent intensity 
decay curves were modeled as a series of exponential decays using Eq. 2 as follows:

∑ τ= −
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where Ai, is the initial intensity, t is the time in the lifetime trace, and τi is the characteristic fluorescence lifetime 
of the process. Fits used lifetime components such that the reduced χ ~ 12 . Fluorescence point spectra were col-
lected by coupling an Ocean Optics USB2000 + (Ocean Optics, Florida, USA) to the MT200 microscope 
system.

Image analysis.  A machine-learning algorithm was applied to segment the image and isolate individual 
mucin granules. Individual granules were chosen over the aggregates to obtain uniform populations for the anal-
ysis. Specifically, the original FLIM images were mapped from lifetime space to viscosity space using the calibra-
tion curve. Trainable Weka Segmentation37 was used to train the classifier manually on several datasets. Once 
trained, the algorithm could be used to identify and isolate mucin granules in the images. We rejected all granules 
that did not fit into circularity criteria to assure that the observed responses were reported only from individual 
granules, rather than from their aggregates, which facilitated high-throughput data analysis and rapid analysis of 
thousands of granules (Supplementary Fig. 4).
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