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Abstract

Mild TBI (mTBI) is a significant health concern. Animal models of mTBI are essential for understanding mechanisms, and

pathological outcomes, as well as to test therapeutic interventions. A variety of closed head models of mTBI that

incorporate different aspects (i.e., biomechanics) of the mTBI have been reported. The aim of the current review was to

compile a comprehensive list of the closed head mTBI rodent models, along with the common data elements, and

outcomes, with the goal to summarize the current state of the field. Publications were identified from a search of PubMed

and Web of Science and screened for eligibility following PRISMA guidelines. Articles were included that were closed

head injuries in which the authors classified the injury as mild in rats or mice. Injury model and animal-specific common

data elements, as well as behavioral and histological outcomes, were collected and compiled from a total of 402 articles.

Our results outline the wide variety of methods used to model mTBI. We also discovered that female rodents and both

young and aged animals are under-represented in experimental mTBI studies. Our findings will aid in providing context

comparing the injury models and provide a starting point for the selection of the most appropriate model of mTBI to

address a specific hypothesis. We believe this review will be a useful starting place for determining what has been done

and what knowledge is missing in the field to reduce the burden of mTBI.
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Introduction

Mild traumatic brain injury (mTBI), caused by blunt

trauma, acceleration, or deceleration forces, is a significant

public health concern.1 In the United States, mTBI is estimated to

occur in 1.6–3.8 million cases annually.2 Estimates of mTBI are

under-reporting cases of mTBI attributed to the fact that many

individuals who sustain a mTBI never seek medical treatment.3 Not

only are incidences of mTBI on the rise— 62% increase in

recreation-related mTBI cases over a 10-year period4—there is also

a growing appreciation that a mTBI is not benign and the brain may

not fully recover from the injury with time. The Department of

Veterans Affairs and the Department of Defense Clinical Practice

Guidelines and the World Health Organization guidelines classify a

head injury as a mTBI according to the following criteria: normal

structural imaging; loss of consciousness <30 min; alteration of

consciousness less than 24 h; post-traumatic amnesia of less than a

day; and an initial Glasgow Coma Scale of 13–15.5 By far, the

majority of mTBIs are caused by a closed head injury.6 The Centers

for Disease Control and Prevention (CDC) concluded there was the

need for research to understand the full magnitude of mTBI inci-

dence, risk factors, and strategies to reduce and improve mTBI

outcomes.1 Much of this research begins with understanding the

pathological and mechanistic changes of mTBI in pre-clinical

models.

The use of animal models in TBI research is crucial. Many

animal models have been developed over the last 80 years to

replicate the different unique features of mTBI (e.g., emotional or

cognitive symptoms), as well as biomechanical forces (e.g., im-

pact or rotational). Although the overall number of experimental

mTBI studies are small in number, they are steadily increasing at a

rate reflecting the public’s appreciation of the seriousness of

mTBI. However, to paraphrase an expert in animal models of TBI,

the field is a ‘‘wild west’’; referring to the vast array of injury

methods currently used to create a rodent model of mTBI. The

aim of this systematic review is to compile a comprehensive list of

TBI rodent models that are specific to mild closed head injury.

Our review includes information about the methodology as well

as the broad classes of outcomes. Understanding all of the dif-

ferent models, as well as pathologies associated with the model,

is needed to propel the field forward by taming the wild west,

building a framework of common data elements for future re-

porting of mTBI models, and uncovering gaps in our current

knowledge base.
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Methods

Search criteria

Our search criteria were established to be specific for mTBI
models caused by a closed head injury. Following guidelines es-
tablished by PRISMA,7 comprehensive searches (on May 15, 2018)
of both PubMed and Web of Science were conducted using the
following keyword search: mild TBI, concussion, closed head in-
jury, rodent, mice, mouse, or rat; excluding controlled cortical
impact, fluid percussion, or review articles. Using the advanced
search tools on PubMed and Web of Science, both title and abstract
were searched with the following Boolean search strategy:
[(((((((rodent) OR rat) OR mouse) OR mice)) AND (((mild TBI)
OR concussion) OR closed head injury))) NOT ((CCI) OR fluid
percussion)]. From PubMed, 984 articles were given in the final
results, and Web of Science produced 1336 articles. Both of these
lists of articles were combined and duplicate references were re-
moved, leaving 1890 articles (Fig. 1).

Inclusion/exclusion criteria

Abstracts and titles were screened by C.N.B. to include only
peer-reviewed primary research reports specific for mild, closed
head TBI only in rodents. All other types of articles were excluded.
Blast injuries were excluded because, although military related
blast injuries are a major cause of mTBI,5 the vast complexity of the
different injury models used were beyond the scope of this review.8

All repeat injury models (85) were also considered beyond the
scope of this review and were thus excluded (Fig. 1).

Retrieval of information from full-text articles

For collection of information on methods of each of these arti-
cles, a GoogleForm was used by C.N.B., K.N.R., and E.K.H. The

title, first author, last author, publication date, name of model, and
references cited for the model were collected as general identifiers.
For the method of injury induction, the following information was
collected: injury device used, anesthesia use, surgery indicator,
injury device type, head fixed with method of fixation, animal
stabilization method, impact tip size, impact tip shape, impact tip
material, impact surface, impact location, weight for drop, height
for drop, tube composition, and the type of impact absorbent ma-
terials used (if any). Species, sex, and age of animals were also
recorded. Finally, injury outcomes were collected, including mor-
tality rate, righting reflex latency, neuroscore, motor deficits (open
field, balance beam, rotarod, etc.), cognitive deficits (novel object,
Morris water maze, radial arm water maze, Y/T maze, etc.), af-
fective behavior deficits (elevated plus, social, sucrose preferences,
etc.), and histology (cell and tissue changes, axonal injury markers,
myelin markers, gliosis markers, etc.). Information on outcome
variables was collected only between sham and control animals, not
with any treatments done within the publication. If any treatments
were done in the publications, the effects observed with treatment
were not considered as content for this review.

Results

From searches on both PubMed and Web of Science, a total of

1890 articles were initially included. From this list, articles were

screened for inclusion and exclusion criteria (Fig. 1). From this

screening, the following articles were excluded: not including a

TBI (n = 293); any article in which the skull was open and the brain

surface was impacted (controlled cortical injury [CCI]/fluid per-

cussion injury/or open skull; n = 125); any injury that was reported

as moderate or severe (n = 237); duplicates missed in the original

removal (n = 21); non-rodent models (n = 54); articles that used an

in vitro or computational method (n = 63); blast injuries (n = 160);

book chapters and reviews that were missed in the initial identifi-

cation (n = 96); articles in another language (n = 24); articles with

no explanation of their method, no sham animals, or not a full

article (n = 20); and repeat injuries (n = 85). Finally, 402 articles

were determined to be single, mild, TBIs to rodents. These 402

articles were then examined in full text and the common data ele-

ments were compiled (Fig. 1).

Of the 402 articles identified three main groups of injury models

emerged. The largest group was weight drop models (n = 335),9–343

followed by piston-driven models (n = 43),344–386 and then all

‘‘other’’ models (n = 25)387–411 (Fig. 2A). Please note that one ar-

ticle used both a weight drop model and a piston-driven model and

was thus included in both of these groups.199 Within the piston-

driven models and the ‘‘other’’ models, there was a wide variety of

methods used (Fig. 2B,C). We compared how often the different

categories of models were used over time to identify trends in usage

(Fig. 2D). Weight drop models have featured prominently in the

literature since the early 1990s. Piston-driven models gained pop-

ularity beginning in 2002. The ‘‘other’’ models were typically used

early (1941–1987) and used more unconventional methods to in-

duce mild brain injury. Once the weight drop models became more

popular in the 1990s, this model became the dominant model in use

during this time. Beginning in the mid-2000s, new models besides

weight drop began to emerge, each attempting to model different

aspects of mild TBI and increase the reproducibility of the injury

model. At the same time, the number of weight drop publications

plateaued.

From each article, the time post-injury at which the dependent

variables were measured was collected (up to 1 day, up to 1 week,

up to 1 month, over 1 month, or over 1 year). A vast majority were

FIG. 1. Methods flow chart. Identification through searches on
two separate web-based platforms yielded 1,890 articles which
were screened by abstract and then eligibility was determined via
full text examination to exclude 1,403 articles. Removing mTBI
articles in which repeat injuries were sustained, a total of 402
single mTBI articles were included in our review. mTBI, mild
traumatic brain injury.
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recorded under a month, with 39% reporting up to 1 day post-

injury, 35% reporting up to a week after injury, and 19% reporting

up to 1 month after mTBI (Supplementary Appendix [SA] 0.1).

Only 24 articles reported dependent variable measurements over a

month, and only two publications reported measurements after a

year (SA 0.1) (see online supplementary material).

Weight drop model

The weight drop model consists of dropping a projectile of

specified characteristics through a tube at a specified height onto the

head of the animal (Fig. 3A). We found considerable variation in

the reported weight of the projectile (Figs. 3A and 4A) and drop

height of the projectile (Figs. 3A and 4B) between different pub-

lications. Additional model-specific common data elements that we

captured and varied between different publications included: 1) if

the mice were anesthetized at the time of impact; 2) if surgery was

performed; 3) direct versus indirect impact to the skull (Figs. 3F and

4C); 4) impact location; 5) if the head was immobilized (Figs. 3G

and 4D); 6) the surface the animal was placed on (Fig. 3A,H); 7)

projectile shape; and 8) projectile material. Animal-specific common

data elements that we captured included 1) sex of the animals

(Fig. 4E) and 2) age of the animals (Fig. 4F).

Weight drop model: animal-specific common data ele-
ments. The reported animal-specific common data elements for

the weight drop method showed remarkably little variation in sex or

age of the animals used. The use of rats and mice occurred at an

B

C

A

D

FIG. 2. Overall summary of included studies. Of the 402 articles included in our final analysis, 3 major categories of models were
found (A). Within the piston category (B) and the ‘‘other’’ models (C) there was considerable variability. A breakdown by year of
publication (D) demonstrated the weight drop model over the last four decades and the increase in use of piston driven models over the
last decade. TBI, traumatic brain injury. Color image is available online.
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approximately equal ratio—57% used rats (SA 1.1), 43% used mice

(SA 1.2), and two publications used both rats and mice (SA 1.3). In

the 8% of publications that used female animals (SA 1.4), 17 of

those articles used both males and females and only eight analyzed

data by sex for sex differences (Fig. 4E; SA 1.5). Adult animals

were the most common age reported (Fig. 4F; SA 1.7). At the young

age range, P7 was a typical age used for mice, whereas P17–48 was

common for rats (SA 1.6) (see online supplementary material).

Only two publications specifically reported using aged mice, as

defined by the authors of the publication (SA 1.8).

Weight drop model: model-specific common data ele-
ments. Our review of the model-specific common data elements

for the weight drop method was informative for both the intermodel

similarities, but also for the degree of variations that have been

used. For 98% of the publications using the weight drop method,

animals were anesthetized at the time of the impact, leaving six

publications that did not use anesthesia (SA 1.9). The majority

(72%) of articles created an incision to expose the skull (SA 1.10).

Of the publications that exposed the skull, metal disc helmet was

placed on the skull in 40% of publications to diffuse the blow and

reduce skull fractures and focal lesions (Figs. 3F and 4C; SA 1.11).

The scalp was the surface of impact in 26% of articles (SA 1.12)

(see online supplementary material), and a helmet on the scalp was

used in 2% of articles (SA 1.13). There was an even split on the

location of the injury, with 49% reporting a midline injury,

FIG. 3. Example experimental set-up for weight drop and piston mTBI models. In the weight drop model (A), a variable weight is
dropped from a variable height, onto the head of the animal and the animal can be on either a hard surface or a foam pad. Piston driven
models (B), use either an electromagnetic (C) or a pneumatic (D) driven piston that is set to a specified velocity and impact depth and
strikes the head of the animal. In piston driven models, the impact angle (E) can vary between study designs. In both the weight drop and
the piston driven models the impact surface can vary with either a helmet or no helmet on the intact scalp or the exposed skull
(F). Further, the head can be either fixed or free to rotate after the impact (G). The impact tip which contacts the head of the animal to
induce injury can be either flexible or rigid (H) causing different injury biomechanics. An emerging model utilizes rotation following
impact by placing the animal on a thin sheet following impact the animal falls through the sheet onto a foam pad (I). Color image is
available online.
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typically located in the midcoronal plane between bregma and

lambda on the sagittal suture, and 48% reporting a lateral injury,

typically located 1–2 mm lateral of midline in the midcoronal

plane. In 56% of publications, the head was not secured and 19% of

publications did not report this essential common data element

(Fig. 4D). In 24% of publications, the head was held in place by

methods that ranged from the heads being fixed rigidly with ear bars

in a stereotactic frame (35%; SA 1.14), loosely between two blocks

(6%; SA 1.15), or within the hand of the experimenter (17%;

Fig. 3G; SA 1.16). (see online supplementary material). Similarly,

53% of publications did not report what the animal’s head was

resting on when it received the impact. Of those that reported

resting surface of the head, a foam pad was used in 79% of publi-

cations (SA 1.17). We noted that few publications described the

type and source of the foam pad, the spring constant of the foam, or

how often it was replaced. Other surfaces that animals were placed

on included, but were not limited to, foil (SA 1.18) see online

supplementary material at (http://www.liebertpub.com), rubber

(SA 1.19), or spring-loaded platforms (SA 1.20). Fifty-three per-

cent of weight drop publications did not specifically describe the

surface that the animal rested on during injury induction.

The two major weight drop–specific common data elements

where we observed significant variability was in the weight of the

projectile, and the projectile drop height (Fig. 4A,B). The majority

of publications that reported impactor material used a rigid pro-

jectile, which was most often a brass weight (75%; Fig. 3I; SA

1.21). Whereas 25% of publications used a non-rigid projectile,

which was most often a silicone tipped metal rod (SA 1.22), a few

publications reported using a specific diameter projectile, but most

did not report this common data element. Of the 57% of the total

articles that used rats, the weight of the projectile used was most

often 400 g or heavier (Fig. 4A). Also, projectiles were dropped

from greater heights, on average, in the studies that used rats

compared to experiments with mice (Fig. 4B). Seventy-six publi-

cations cited Marmarou and colleagues for the methods of the

weight drop model.179 The investigators used a few variations on

A

B

C D E F

FIG. 4. Common data elements for the weight drop model. Weight drop models have been used with a variety of different weights
(A) and heights (B). Mice were injured typically using lower weights and heights, while rats were injured using heavier weights and
heights. Injuries were induced on different surfaces (C) with the head either fixed or unfixed (D). A majority of papers used male (E),
adult animals (F). Total numbers for (E) and (F) are greater than the 335 total publications because several publications reported using
more than one sex or age of animals. N.R., not reported. Color image is available online.

REVIEW OF EXPERIMENTAL MILD CLOSED HEAD TBI 1687



the name of the model (e.g., Marmarou, modified Marmarou, or

impact-acceleration injury model), but most of the common data

elements associated with the model were consistent. For instance, a

450-g brass weight was dropped from a height of 200 or 100 cm.

The use of a 450-g weight with a 100-cm height was reported in 13

publications (SA 1.23), whereas a 200-cm drop height was reported

in 44 publications (SA 1.24). Another aspect associated with these

57 publications was the use of a steel disk placed midline on the

exposed skull as a ‘‘helmet.’’ Animals were anesthetized and often

intubated. The head was generally free to move, but was supported

on a foam pad.

We found a cluster of publications in mice (n = 29) that used a

drop height of 80 cm (SA 1.25). Of these 29 publications, 76%

used a 30-g metal weight, commonly with a lateral impact (79%).

In these 29 articles, the impact was most often (83%) to the scalp.

A helmet was used in one publication.380 A second cluster of 32

reports (22% of mouse publications) used a drop height of 2.5 cm

or less (SA 1.26). Of these 32 reports, 47% used a 333-g pro-

jectile (SA 1.27), 75% induced a lateral injury to one hemisphere

of the brain (SA 1.28), and 88% delivered the impact directly to

the skull (SA 1.29). Most of these (23 of 32) articles were ref-

erencing Flierl and colleagues and/or Chen and colleagues for

the methods.85,412

We also identified a few additional model-specific common data

elements that were associated with either preventing rebound im-

pacts or to cause a rotational injury. Specifically, some publications

report methods to prevent rebound impacts from the projectile,

including attaching a rope to the projectile (SA 1.30); however, a

majority of the publications did not report this common data ele-

ment. There are 12 publications of a modified version of the weight

drop model where the animals are placed either on a Kimwipe or a

piece of scored tin foil. Placement of the mice on the non-rigid

material allows the animal to fall through the material and lands on

a foam pad underneath from the force of the projectile impacting

the head (Fig. 3H; SA 1.31).

Weight drop model: injury-induced functional and histo-
pathological changes. In addition to the animal- and weight

drop–specific common data elements, we also collected informa-

tion about the previously assessed functional and histological

endpoints in the model. We collected data for the presence or ab-

sence of an injury-induced change only. It was beyond the scope of

this review to describe specifics of when the injury-induced chan-

ges occurred, if they resolved with time, and which endpoints

showed the most significant injury effect. Our goal in summarizing

the common endpoint measurements was to identify regularly re-

ported endpoints that would be useful for comparisons between

studies and highlight areas that are understudied.

Weight drop model: motor skills assays. The Neurological

Scale Score (NSS) is a measurement used to test sensorimotor skills

and involves a battery of tests.379 This test has been used and

described for a mild (<10 points), moderate (11–14 points), or

severe injury (>14 points).48 From our search, we found that of the

335 weight drop publications, only 31% reported doing the NSS. Of

these articles, 87% reported a deficit and 13% reported no deficits

after mTBI (SA 1.32). Further, righting reflex, a measure that is

commonly used as a surrogate for loss of consciousness,5 was only

reported in 10% of articles (SA 1.33). The most common latency

for righting reflex was between 1 and 10 min (81% of those who

reported). Mortality rate was reported in 24% of publications. Low

mortality (0–5%) was found in 39% of these articles (SA 1.34), a

moderate mortality (5–30%) was found in 51% of articles

(SA 1.35), and a high mortality rate (30%+) was found in 10% of

those articles who reported (SA 1.36).

An assessment of motor skills was most often done by one of

three tests—balance beam, rotarod, and open field—and reported in

19% of weight drop publications (Fig. 5A). Specifically, the bal-

ance beam test was reported in 50% of publications with a deficit in

84% of those studies (SA 1.37). In the open field and rotarod assay,

67% (SA 1.38) (see online supplementary material) and 45%

(SA 1.39) of the studies found a deficit, respectively. In addition to

these three tests, nine additional motor skills tests were measured,

including: foot placement (4/0), grid walking (1/0), grip test (3/1),

tape removal (1/0), general activity (2/1), staircase test (0/1),

whisker test (2/0), seizure susceptibility (1/0), and thermal or me-

chanical withdrawal (1/0; n = deficit/no deficit; SA 1.40).

Weight drop model: learning and memory as-
says. Cognitive tasks typically involve learning in some capacity

on the part of the animal, and common tests we found included

passive avoidance, Y/T maze, radial arm water maze, novel object

0 10 20 30 40

Balance Beam
Rotarod

Open Field
Other Behavioral 15 / 3 

12 / 6 
5 / 6 

27 / 5 

0 10 20 30 40

Barnes Maze
Morris Water Maze
Fear Conditioning

Novel Object
Radial Arm Water Maze

Y/T Maze
Passive Avoidance

Other Cognitive 6 / 2
6 / 1

2 / 0
11 / 2

27 / 3
2 / 2

24 / 5
2 / 0

0 10 20 30 40

Elevated Plus Maze
Social
Other 11 / 5

2 / 0
8 / 6

0 10 20 30 40 50 100 150

Cell or Tissue Changes
Axonal Injury

Blood Brain Barrier
Gliosis
Myelin

Edema
Other

Number of publications

74 / 4
16 / 0

4 / 2
41 / 3

15 / 1
36 / 1

57 / 14

A Motor function

B Cognitive function

C Affective behavior function

D Histopathology

no deficit
deficit

FIG. 5. Functional and Pathological deficits observed in the
weight drop models of mTBI. Outcome measures collected in-
cluded motor function (A), cognitive function (B), affective be-
haviors (C), and histology measures (D). Numbers indicate the
number of studies with / without deficits. mTBI, mild traumatic
brain injury.
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recognition, fear conditioning, Morris water maze, and Barnes

maze. Twenty-one percent of weight drop articles reported doing

some sort of cognitive testing. Of the articles reporting cognitive

testing, deficits were recorded in 84% of cases (Fig. 5B). All of the

publications that used either the Barnes maze or the radial arm

water maze found deficits after mTBI (SA 1.41–42). In the Y/T

maze (85%; SA 1.43), novel object (90%; SA 1.44) (see online

supplementary material), and Morris water maze (83%; SA 1.45), a

majority of publications found a weight drop–induced deficits.

When fear conditioning was tested, 50% found deficits (SA 1.46).

Passive avoidance was reported in two publications, and both found

deficits (SA 1.47). Other cognitive testing identified, included the

water finding test (2/2), location discrimination test (1/0), go/no-go

testing (1/0), closed circle exiting (1/0), and novel context mis-

match (1/0; n = deficit/no deficit; SA 1.48).

Weight drop model: affective behavior testing. Affective

behavior tests are designed to be used as a surrogate for more

complex emotions like anxiety (and other affective behaviors). Of

the 355 articles that used the weight drop method, only 7% reported

affective behavior tests. The elevated plus or zero maze and social

testing were commonly used in these publications (Fig. 5C). In the

two publications that tested social behaviors, both found deficits

compared to sham (SA 1.49). In the elevated plus maze tests, eight

publications found deficits whereassix other publications did not

find any deficits (SA 1.50). Other affective behavior tests that

were reported included temperature sensitivity (1/0), tail suspen-

sion (1/2), olfactory avoidance (1/0), nociception (1/1), forced

swim (6/1), fear conditioning (0/1), and acoustic startle reflexes (1/

0; n = deficit/no deficit; SA 1.51).

Weight drop model: histopathology. In addition to behav-

ioral tests, we collected information on which articles reported

common histological changes that have been cited in the literature

on brain injury. Cell or tissue changes are typically looked at by

hematoxylin and eosin, cresyl violet, neuronal nuclei, or Nissl

staining. Other categories of histological interest included axonal

injury (shown by amyloid precursor protein, silver staining, or

neurofilament stains), gliosis (shown by glial fibrillary acidic

protein, ionized calcium binding adaptor molecule 1, CB68, or

CD11b staining), myelin changes (shown by luxol fast blue or

myelin basic protein staining), and blood–brain barrier disruption

(Evans blue). Other staining was noted even if it was not within

these categories.

Histology was more commonly reported as compared to be-

havioral changes in the articles included in our final analysis of

weight drop models. Of the 335 articles, 55% reported using his-

tology of these major categories and, of those, 88% found there to

be a significant change after mTBI compared to sham animals

(Fig. 5D). Changes to cellular and tissue makeup were reported as

significantly different from sham in 80% of publications whereas

14 publications did not find a deficit (SA 1.52). Deficits were also

more common in axonal injury (95%; SA 1.53); blood–brain barrier

disruption (94%; SA 1.54); edema (100%; SA 1.55); gliosis (93%;

SA 1.56); and myelin staining (67%; SA 1.57). Many other histo-

logical measures were done for specific proteins of interest for the

experimental design. A few of these include terminal deox-

ynucleotidyl transferase dUTP nick end labeling or apoptosis

staining (11/1), inflammation/immune activation (10/0), caspase

activation (3/0), complement activation (3/0), as well as many

others (SA 1.58).

Piston-driven closed head injury models

Injuries caused by a piston are typically induced by zeroing the

piston on the surface of the skull or scalp and then delivering an

injury at a specific depth, velocity, or impact force (Fig. 3B). There

are a few variations of the piston devices (Fig. 2B), including

compressed nitrogen, electromagnetic, or pneumatically driven

pistons (Fig. 3C,D). Another variation within this category is lo-

cation of the injury and placement of the animal. For example, in

the CHIMERA model, the animal is placed on its back within the

device, and the injury is induced from below, thus allowing the

head to flex after impact.202 Another example of using a piston at a

different injury location is the ‘‘Hit & Run’’ model.400 In order to

induce an injury using this particular model, the animal is hung

from a string by the incisors, allowing a piston to strike the side of

the head. This approach allows the animal to freely move after the

impact. Other models use lateral angle for impact; however, in

these models, animals lie on a flat surface and move laterally after

the impact106,199,236 (Fig. 3E).

As in the weight drop articles, we also collected animal indi-

cators such as 1) species, 2) sex (Fig. 6A), and 3) age (Fig. 6B).

Common data elements of the injury were collected for these

piston-driven models as well. We recorded 1) anesthesia use; 2)

surgery indication; 3) head fixation (Figs. 3G and 6C); 4) method of

head fixation; 5) impact location; 6) impact surface (Figs. 3F and

6D); 7) what material the animal was placed on; 8) impactor tip size

(Fig. 6E) and shape; 9) impact velocity (Fig. 6F); and 10) head

displacement (Fig. 6G).

Piston-driven closed head injury models: animal-specific
common data elements. Most articles using piston-driven in-

jury utilized mice (74%) as opposed to rats (26%; SA 2.1). Of the

articles that reported the sex of the animals, males (72%) were most

common (Fig. 6A; SA 2.2). When females were used, 94% of the

articles also included males; and only half of the time were data

separated by sex to determine sex differences (SA 2.3). Adult an-

imals were most prevalent (79%), followed by pups (19%; SA 2.4),

with no studies reporting the use of aged animals (Fig. 6B).

Piston-driven closed head injury models: model-specific
common data elements. Anesthesia was uniformly used for

this injury model. Direct impacts were given either to the scalp

(17%; SA 2.5) or exposed skull (49%; Fig. 6D; SA 2.6) (see

online supplementary material). A helmet was used in 35% of

articles, either placed on the scalp (SA 2.7) or skull (SA 2.8). The

head was left free to move after the injury in 33% of the publi-

cations (Fig. 6C; SA 2.9), and in some cases the animal was placed

on a foam pad (SA 2.10) or on scored tin foil and allowed to fall

through the foil after the injury (Fig. 3H; SA 2.11). Generally, if

an animal’s head was fixed, a stereotactic frame was used (77%;

Fig. 3G; SA 2.12). Other methods of securing the head varied in

the amount that the head was able to move after injury; this in-

cluded foam wrapped ear bars,355 an acrylic or resin mold,347,363 a

plastic collar,348 a mouse restrainer,349 or secured vertically from the

incisors.400

Velocity of the impact used in mice was typically slower as

compared to rats (Fig. 6F). Six publications used an impact velocity

of 6.8 m/s, the fastest velocity used in mice (SA 2.13). All six cited

the previous works by Lynch and colleagues.365,366 With this

model, a rigid, flat impact tip of 2 mm was typically used (Fig. 6E).

An impact of 5 m/s was reported in seven publications in mice with

a 5-mm impact tip and impacted either 1 or 1.5 mm deep (SA 2.13).
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A common reference was not used for this configuration. Pub-

lications using rats (n = 11) reported using faster velocities of

ranging from 5 to 10 m/s (SA 2.14).

The depth of impact set on the piston device was also typically

smaller for mice than rats (Fig. 6G). One head displacement depth

of 10 mm was used in the Hit & Run model.400 All other reported

head displacement depths were 3.2 mm or less (SA 2.15).

Different materials could be used within the impactor tip, with

58% using a rigid tip and 5% reporting a flexible tip such as rubber

or silicone (Fig. 3I; SA 2.16). A large number of publications did

not report the material of the impact tip (37%; SA 2.17). The shape

of the impact tip was most often flat (60%) or round (35%) when

reported (SA 2.18).

Piston-driven closed head injury model: injury-induced
functional changes. We found for the piston-driven model that

mortality was under-reported (only 23% of articles reporting), with

most (90%) reporting a mortality rate of 0–5% (SA 2.19). Moderate

mortality was reported in one publication, and no publications re-

ported high mortality (SA 2.19). Righting reflex was reported in

33% of the piston-driven closed head injury (CHI) models, with

most having a latency of 1–10 min (79%; SA 2.20).

Piston-driven closed head injury model: motor skills as-
says. The NSS was not commonly reported in the piston-driven

CHI model, with only one publication reporting no deficit365 and

two finding a significant change from sham after injury.202,354

Deficits were found in five publications after piston-driven injury in

the balance beam, with one publication finding no deficits

(SA 2.21). Rotarod was tested in 10 publications, and nine found

deficits with one publication finding no change after injury

(SA 2.22). Open field was tested in six publications, and in five,

deficits after mTBI were found and one found no deficit (SA 2.23).

Other motor tests assessed in the piston-driven CHI included wheel

running and wire hanging, with deficits observed in both assays

(Fig. 7A; SA 2.24).

Piston-driven closed head injury model: learning
and memory assays. Forty-seven percent of piston-driven CHI

publications reported cognitive testing. The Morris water maze was

the most commonly used cognitive test after the piston-driven CHI,

and deficits were commonly found (88%; SA 2.25). All three of the

publications using fear conditioning after a piston-driven CHI re-

ported an injury-induced deficit, whereas two of three publications

using novel object recognition found an injury-induced deficit

(SA 2.26). The Y/T maze (2/0), radial arm water maze (1/1), and

Barnes maze (1/1) were each run in two publications (n = deficit/no

deficit; SA 2.26). The passive avoidance test with no deficit and a

labyrinth maze test with a deficit were reported only once (Fig. 7B;

SA 2.26).

Piston-driven closed head injury model: affective behav-
ior testing. Affective behavior changes in different affective

behaviors were reported in 19% of the piston-driven models (n = 8).

When these tests were conducted, three of four found deficits in the

elevated plus maze (3/1; SA 2.27) and two of three found social

deficits (Fig. 7C; SA 2.28). One other affective behavior test was

conducted in this group, a sucrose preference task, in which a deficit

was found after injury.385

Piston-driven closed head injury model: histopa-
thology. Histopathology was reported in 74% of the piston-

driven CHI publications we reviewed. Cell or tissue changes were

reported in 9 of 10 publications (SA 2.29). Axonal injury was re-

ported in 13 of 14 publications (SA 2.30). Gliosis was reported in 19

of 19 publications (SA 2.31). Three publications reported injury-

induced alterations in myelin (SA 2.32). The other histopathological

endpoints that we noted included blood–brain barrier alterations (1/

A
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FIG. 6. Piston driven CHI models of mTBI common data ele-
ments. Most animals were male (A) and adult (B). The head was
most often fixed (C) and the impact surface varied (D). The im-
pact tip size when reported was typically 5 mm or less (E). Impact
velocity (F) and depth (G) were smaller for mice than rats.
Numbers indicate the number of studies using rats / mice. Total
numbers are greater than the 43 total publications because several
publications reported using more than one sex or age. CHI, closed
head injury; N.R., not reported. Color image is available online.
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1), inflammation (2/0), caspase activation (1/0), and complement

activation (1/0; n = deficit/no deficit; Fig. 7D; SA 2.33).

‘‘Other’’ models

The last broad class of mTBI models we defined as ‘‘other’’

models. We organized these models based on the biomechanical

mechanism or type of device used to cause the injury. As shown in

Figure 2C, the most commonly used of these ‘‘other’’ models was

the rotational injury models (SA 3.1), whereas the least widely used

was the reflex hammer model.390 Although some of these models

date back to the 1940s, it is still important to consider these older

and less-used methods given that these studies are informative on

how mild TBIs have been modeled over time. Our review of these

models, which follows, will go from the most to the least used

(Fig. 2C).

The group of ‘‘other’’ models with the most publications are

associated with a rotational biomechanical mechanism. Two

models have been developed that utilized rotation to induce mTBI.

The Medical College of Wisconsin Rotational Injury model

(SA 3.1) produced an injury by using a spring-loaded launching

arm that strikes a moment arm. This moment arm causes the device

to rotate with the animal’s head in it, thus causing the injury. The

head is fixed after induction of anesthesia, and no incision is made

to the scalp. In a similar model, Rostami and colleagues induced a

rotational injury in anesthetized rats by placing the animal with an

exposed skull in the injury device and hitting a bar within the device

to cause rotation of the animal’s head (SA 3.1). Of the rotational

injury models, two publications used females,278,409 whereas four

used males.375,388,389,401 All six publications used adult rats. When

reported, both models resulted in low mortality when reported.278,388

with long righting reflex latencies of over 10 min.388,389 NSS was

performed in one publication, and no deficits were found after

injury.409

Spring-loaded injury devices—used pre-1990s—are another

method used to induce mTBI. One of these models uses a modified

rat trap to induce injury.247,406,407 No anesthesia was used in this

model, and the injury was induced onto the intact scalp of the rat.

The injury used the spring-loaded rat trap with a modified knob on

the end to hit the midline of the adult male rat head. Mortality with

this model was reported in one publication between 0% and 5%407

and in another 5–30%,247 and when a righting reflex was reported, it

was between 1 and 10 min.247 Another model used a coiled spring-

loaded gun to induce mTBI.210 With this model, a helmet was

secured to the skull of the adult male rats. Mortality in this model

was 5–30%, with a righting reflex of 1–10 min.

Fall-type injury models have the animals fall onto an immov-

able surface.378,392,413 The authors of these models speculate that

this model may more closely mimic certain head trauma cases in

humans with the head moving and hitting a stationary object.413

These injuries were induced both with and without anesthesia,

but always to the scalp. The injury was induced when the animal’s

head (midline) hit the stationary object at the bottom of the

fall. Male (n = 2)392,413 and female (n = 1)413 adult rats were used

with these models. Mortality and NSS were not reported with

this model. Righting reflex 1–10 min was reported in two publi-

cations.392,413

A pendulum injury model is another older model used to induce

mTBI.238,394,398 In all of these publications, the animals were

anesthetized. One publication did not fix the head394 whereas the

other two used a bite bar to secure the head.238,398 All injuries were

to the scalp of rats, and only adult males were used. No mortality

rates were reported, and when a righting reflex was reported, the

latency was 1–10 min.394 NSS was reported with deficits after

mTBI in one publication.398

Two models were developed that we defined as projectile

models. The Walter Reed Army Institute of Research developed a

model called the WRAIR Projectile Concussive Impact mod-

el.387,395 In this model, anesthetized animals are placed on their

back on a movable platform above a heating unit. Within the

heating unit, they place a microcentrifuge tube filled with dry ice

with a secure cap, causing the ice to sublimate, and the pressure

causes the cap to be shot off and hit the helmet from below.387 The

head is not fixed, but the body of the animal is held in place with an

elastic band. This model used adult, male rats that were anesthe-

tized and impacted laterally on the intact skull with a helmet. One

other model from 1984 used a projectile to induce mTBI in adult

male rats.405 In this model, a dart was shot at midline of the exposed

scalp of an anesthetized animal. Mortality rates and the NSS were

not reported for these models. Only one publication reported a

righting reflex latency of 1–10 min.395
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FIG. 7. Outcome measures for piston driven injury models.
Common tests typically reported for motor function (A), cognitive
function (B), affective behaviors (C), and histological measures
(D) were reported. Numbers indicate the number of studies with /
without deficits.
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MicroTBI is a unique surgical technique used to cause increased

pressure to the surface of the brain.159,227,397 This technique first

surgically thins the skull of the mice and then applies pressure for

a certain period to cause a brain injury. The head is fixed within

a stereotactic frame through the injury procedure. Animals are

anesthetized, the injury is caused laterally on the left somatosen-

sory cortex of adult male mice. Mortality, righting reflex, and the

NSS were not reported with this model.

The Maryland model of mTBI uses the energy of steel ball

rolling down a 2.1-m track, hitting a coupling device that causes

the impact to be centered on the malar processes to impact the

front of the head.391,393 Rats are anesthetized and taped in place to

reduce movement. The skull is not exposed in this model; how-

ever, surgery is done in order to expose the malar processes in

which the injury device is positioned. The head is fixed in place

within the device and is not free to move after the impact. Both

publications with this model used adult male rats. One publication

reported a mortality rate of 0–5%,393 and the other reported no

deficit in the NSS.391 Righting reflex was not reported for this

model.

Finally, one model from 1997 used a rubber reflex hammer that

is fixed to a pivot for injury production.390 This injury was induced

onto the intact scalp of adult of anesthetized adult male rats.

Mortality, righting reflex, and the NSS were not reported with this

model.

‘‘Other’’ model: model and animal-specific common
data elements. In this group as a whole, anesthesia was used in

80% of publications (Fig. 8A; SA 3.2), and the head was fixed in

84% of publications (SA 3.3). Different impact locations were

used; 24% scalp with a helmet; 12% on the skull with a helmet;

44% to the intact scalp; and 20% to the skull (Fig. 8B; SA 3.4–3.7).

Rats were used in 88% of publications (Fig. 8C; SA 3.8). A majority

of the publications (76%) used male animals, regardless of species

(Fig. 8D; SA 3.9). Of the publications that used females, one used

both males and females and they did look at sex differences in their

outcomes.413 All of these publications used adult animals.

‘‘Other’’ model: injury-induced functional and histopatho-
logical changes. Behavioral outcomes were collected for these

models as well. Motor behaviors were reported in 28% of these

‘‘other’’ models. The balance beam test commonly found deficits

(3/2) (n = deficit/no deficit), and in one publication in the open field

test (Fig. 8E; SA3.10). Rotarod was tested in one publication, and

no deficits were found (SA 3.11). Other behavioral tests conducted

included incline plane (1/0), gait analysis (1/0), and vision changes

(1/0; n = deficit/no deficit; SA 3.12). Cognitive outcomes were re-

ported in 24% of these publications (Fig. 8F). Testing in the main

measurements was only observed for the Morris water maze (0/4),

the radial arm maze (1/0), and novel object recognition (1/0;

n = deficit/no deficit; SA 3.13). No other cognitive testing was re-

ported in any of these ‘‘other’’ models. Of the common affective

behavior tests, only the elevated plus maze was reported (2/1;

n = deficit/no deficit; Fig. 8G; SA 3.14).

Histology, much more common in this category as compared to

behavioral testing, was reported in 52% of publications (Fig. 8H).

Cell and tissue changes were found in six publications, with one

publication finding no deficits (SA 3.15). Similarly, axonal injury

histological marker deficits were found in five publications, with

two finding no deficits (SA 3.16). Gliosis activation was tested in

five publications, and four found deficits while one found none
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FIG. 8. ‘‘Other’’ models common data elements. Most pub-
lications used anesthesia (A). Impact locations varied between
models (B). However, most publications used males (C), and
rats (D). Motor function (E), cognitive function (F), affective
behaviors (G), and histological changes (H) were recorded for
all ‘‘other’’ models. Numbers indicate the number of studies
with / without deficits. Total numbers are greater than the
25 total publications in (C) and (D) because several publica-
tions reported using more than one sex and species. N.R., not
reported. Color image is available online.
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(SA 3.17). Other histology included complement activation (1/0),

doublecortin (1/0), brain-derived neurotrophic factor (1/0), and

aquaporin 4 (1/0; n = deficit/no deficit; SA 3.18) (see online sup-

plementary material).

Discussion

In this systematic review, we identified and screened 1890

publications and summarized 402 original scientific reports of

rodent CHI models of mTBI. We provide a summary of the

common data elements used in these mTBI models to help define

the current state of the field of rodent pre-clinical mTBI models.

Identifying the common data elements is essential for big data

efforts, such as the Federal Interagency Traumatic Brain Injury

Research (FITBIR) informatics system (fitbir.nih.gov). We be-

lieve that our review will provide a framework for future research

by summarizing the similarities and differences between models

of CHI for mTBI, in both the ways the models were conducted and

major classes of outcomes that were measured. Moreover, this

review highlights the need for a consensus agreement on the best

practices for pre-clinical models of mTBI CHI to both help new

investigators move into the field and provide some degree of

standardization of the common data elements used across labo-

ratories. In addition to our review of the common data elements

and outcome variables, excellent past reviews have discussed the

TBI models of all severity types and comprehensively looked

specifically at strengths and weaknesses of the different TBI

models. We recommend that the interested reader consider the

following reviews.5,414–422

In comparison to pre-clinical models of moderate-to-severe TBI,

the number of publications attempting to model mild TBI is much

smaller in number. At the same time, there is currently increased

excitement in the field for developing mTBI models, in part be-

cause of the alarming number of people that suffer a mTBI, and the

appreciation that an mTBI can have a lasting negative impact on the

health of the brain. As new models are developed and character-

ized, they will add significantly to our understanding of the natural

history of mTBI and how different biomechanical forces alter that

history. Our review will help place emerging data into a historical

context. By comparing how the values of injury model common

data elements vary, and thus result in similar or disparate outcomes,

can help to identify the most important aspects of the model that are

leading to increased variability or are critical for causing a partic-

ular histopathological or functional outcome.

Before the early 1980s, there were no commercially available

experimental models of TBI, which accounts for many of the

‘‘other’’’ models found from our search criteria (Fig. 2D). Further,

during this time period, many researchers were using cats and dogs

to study TBI423 and therefore would have been excluded from this

review that pertains specifically to rodent models: a potential

limitation of our review.

In 1989, a model was produced and marketed by General Motors

Research Laboratory that changed the trajectory of TBI re-

search.414 The production of this piston-driven model was the early

precursor to the CCI model—described initially in ferrets and later

adapted for use in rodents.424 We mention the General Motors

model here because of its contribution to commercially available

models. In 2007, the Impact OneTM was introduced to the market as

a cheaper, user-friendly, and more space economical version of a

piston impactor, which again changed the trajectory of TBI re-

search.425 Introduced by Marmarou and colleagues in 1994,179 the

weight drop model was another major advancement in the field of

CHI, given that the device itself was easily producible in individual

labs and continues to be widely used in the TBI field.

The presence of many different models can be a strength given

that the differences between each one provides an opportunity to

study varying mechanics of injury. We recognized that common

data elements, which we currently view as important, were left out

of many publications. For example, weight drop publications often

did not include all details about the foam used to support the ani-

mals. It is known that specific foams can be used a finite number of

times with a specific amount of time between use before the me-

chanical properties change.426 Thus, the understanding of the me-

chanical properties of the foam are important to report for future

studies to ensure reproducibility. Similarly, within the piston-

driven models, not all articles reported the impactor tip shape. In

the CCI model, use of a flat or a rounded impact tip was found to

change the progression and severity of the injury427; thus, the shape

of the impact tip is important to know for understanding the injury

produced. Although the surface of the brain is not exposed for the

injury models in this review, it is reasonable to assume that the

same principle will apply to CHIs. We mention these examples not

to suggest that publications we reviewed which failed to report

foam properties or impactor tip shape are flawed studies. For many

of these studies, it was unknown at the time that foam properties or

impactor tip shape were important. Nevertheless, having well-

defined reporting standards for future studies will improve our

ability to make cross-study comparisons. Along with ongoing ef-

forts such as FITBIR, which will define national common data

element reporting standards, this review will also help in providing

context to the standards.

Future directions

A striking finding from this work is the general lack of female

animals used in mTBI models. This creates a huge gap in the un-

derstanding of brain injury responses specific to females. In 2000, a

meta-analysis was conducted on clinical TBI studies which indi-

cated poorer outcomes for females after a TBI.428 Differences be-

tween sex hold true also with pre-clinical animal model TBI.429

Many studies are not statistically powered to analyze the data by

sex, given that the effect of sex may not be a specific aspect of their

hypothesis. Nevertheless, for studies that include both male and

female animals, future big data efforts of merging studies to look

for effects of sex will only be possible if more researchers include

both sexes in their studies.

Another major gap identified by this systematic review is the

lack of both models of pediatric and geriatric mTBI. The CDC

indicates that the rates of mTBI are at least several times higher in

children compared to adults.1 Further, higher rates of mTBI are

noted in the geriatric population (>65 years of age) compared to

adults.3 Future studies addressing similarities and dissimilarities

between adult animals and animals at the opposite ends of the aging

spectrum will be useful to understand what aspects, if any, of the

adult preclinical mTBI models are relevant to these two most at-

risk patient populations.

Of the various dependent variables measured and collected in

our review, we also collected the time point at which each publi-

cation looked at their variable. From this information, we found that

very few of the 403 publications looked further than 1 month after

mTBI. With the CDC reporting that around 5.3 million individu-

als live with a permanent TBI-related disability, the lack of long-

term studies in the literature is a major gap that needs to be filled

in the field.1
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Limitations

Not only within the context of this review, but in the TBI field as

a whole, the definition of mTBI can vary from study to study. Most

often, mTBI and concussion are used interchangeably. Experts

have attempted to establish universal guidelines, but they have only

been able to agree on the fact that mTBI represents a ‘‘change in

brain activity from a traumatic force.’’3 Changes in brain function

can be so subtle that they may be difficult to detect, as observed in

some of the publications included in this review in which no deficits

in behavior or histological measures could be found after a trau-

matic blow to the head of a rodent. While we attempted to only

include publications that were mild, we relied on the author’s cri-

teria for a mild injury, which can be rather varied.

The guideline for systematic reviews published by PRISMA

includes a section to address bias within and between the arti-

cles used for the review.7 We did not address the quality of the

publications included in the final analysis. The aim of this review

was to compile a list of closed head mTBI rodent models and

simply provide which tests have been done within those publica-

tions. Future work may use the models found from this review and

retrieve information from the publications about the time course of

pathology or behavior changes noted and compare across studies.

When outcome measures were recorded from the 402 publica-

tions, certain tests, such as the open field and the passive avoidance

test, were kept within one category, either motor or cognitive re-

spectively. These tests have multiple aspects, however, that can

measure different parts of rather complex behaviors. Further in-

vestigation to determine which factor was the main purpose of the

test for each article’s experimental design is warranted.

Conclusion

We have compiled over 400 articles all using a closed head mild

injury model to study TBI in rodents. Not only are all of these

articles now in one place, but further information about the com-

mon data elements of the injury protocol, the animals used, and the

outcomes measured have also been compiled and summarized. We

believe that this review will be helpful for understanding where the

closed head mTBI field has been, where gaps are present that need

to be addressed, and what the future holds for the field.
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