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Abstract

Original Article

IntroductIon

Magnetic resonance imaging (MRI) offers superior soft-tissue 
contrast than computed tomography (CT) and is usually the 
inevitable imaging modality for brain radiotherapy planning. 
Because MRI does not reveal electron density information, 
CT images are used to define the attenuation characteristics 
and MRI images are used for soft-tissue contouring. Usually, 
CT and corresponding MRI images are registered to enjoy 
the complementary benefits. With the development of 
integrated MRI-linear accelerator (MRI-linac),[1] MRI-guided 
radiotherapy is emerging as a highly promising technique 
because MRI-linac offers high-quality, real-time anatomic, and 
physiologic imaging which would allow treatment monitoring, 
tracking, online adaptive radiotherapy (ART), and tumor 
response assessment throughout the treatment course. Although 
MRI-based tracking or online ART is exciting, it is quite 
challenging to handle large numbers of daily images, especially 

the organ and tumor delineations, which were usually done 
manually by experienced dosimetrists or physicians. The 
manual segmentation is very time-consuming, is subjective 
with inter-observer variability, and can be the bottleneck for 
online tracking and ART. To fully exploit the benefits of MRI 
guidance, it is desirable to develop segmentation methods to 
delineate daily MRI images fast and accurately.

Most of the previous auto-segmentation work related to 
radiotherapy dealt with CT images only,[2-9] while most MRI-based 
auto-segmentation studies[10-18] were not related to radiotherapy 
but instead focused on classifying brain tissues or structures such 
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as gray matter, white matter, cerebrospinal fluid, thalamus, and 
ventricles for neuroimaging purposes. This is because brain MRI 
has been the standard tool for diagnosis and treatment of mental 
illness. Auto-segmentation of organs at risk (OARs) on MRI for 
radiotherapy is understudied, and the possible reason is small and 
narrow organs could be much more challenging to segment than 
large tissues and structures, and CT has been the default choice 
for OAR segmentations for radiotherapy. However, a patient who 
receives MRI-based radiotherapy and especially online ART will 
only have daily MRI images, so fast and accurate segmentation 
of OARs on MRI is critical.

In this study, we developed a segmentation approach 
based on K-nearest neighbor (KNN) machine learning 
algorithm. We chose KNN algorithm because it has only 
two hyperparameters as K value and distance metric, which 
are very easy to tune,[19] fast and simple, robust to noise and 
missing values in data, and works well for multiclass (multiple 
tissue segmentation) problems.[20] Multiple investigators have 
used KNN for MRI segmentations, for example, Anbeek 
et al. used KNN in a series of studies[21-24] to segment white 
matter lesions, white matter, central gray matter, cortical gray 
matter, cerebrospinal fluid, ventricles, and multiple sclerosis 
lesion in cranial MRI, and they showed that segmentation 
based on KNN technique is an automatic and accurate 
approach that is applicable to standard clinical MRI; Mazzara 
et al.[25] compared a semi-automated KNN method with a 
fully automatic knowledge-guided method for gross tumor 
volume segmentation on MRI images (T1, proton density 
weighted, and T2) of glioma patients. The semi-automated 
KNN method required a manual selection of region of 
interest (ROI) on each MRI slice for training, whereas 
the automatic knowledge-guided method did not require 
any manual intervention. They found that KNN method 
performed better (average accuracy 56% ± 6%) than the 
knowledge-guided method (52% ± 7%); Steenwijk et al.[26] 
improved KNN classification of white matter lesions in 
MRI by optimizing intensity normalization and using spatial 
tissue type priors, which showed excellent performance. 
Most of the previous studies used KNN algorithm for brain 
tissue classification and were not related to radiotherapy, 
while using KNN to segment OARs for radiotherapy is 
underinvestigated.

The purpose of this work is to develop a KNN machine 
learning method to segment OARs and tumor within the brain 
using standard MRI sequences, i.e., T1 and T2 images. Gabor 
filter-derived features were used in our work to improve the 
performance of KNN model segmentation. Evaluation of our 
segmentation results and comparison with previous studies 
were also performed.

MaterIals and Methods

Image data
MRI data of 12 brain cancer patients were anonymized[27] and 
included in this study. MRI consisted T1- and T2-weighted 

images acquired on a 1.5 Tesla Philips Intera scanner using 
three-dimensional (3D) gradient echo sequences with the 
following acquisition parameters: TE/TR = 3.414/7.33 ms, 
flip angle = 8o, voxel size 0.983 × 0.983 × 1.1 mm3, field of 
view 236 mm × 236 mm × 158.4 mm, and pixel bandwidth 
241 Hz/pixel.

MRI images in Digital Imaging and Communications in 
Medicine format were converted to Neuroimaging Informatics 
Technology Initiative format (.nii) using open-source 
image analysis software (3D SLICER, version 4.9, Slicer 
Community, USA).[28] MRI bias correction was also applied 
using the N4ITK MRI Bias correction module available 
within 3D SLICER with parameters: BSpline  order of 3, 
BSpline grid resolutions of (1, 1, 1), a shrink factor of 4, a 
maximum number of 100 iterations at each of the 3 resolution 
levels, and a convergence threshold of 0.0001. MRI images 
were sampled to 1 mm × 1 mm × 1 mm voxel size, and T1 
and T2 MRI images were rigidly aligned. MRI intensity 
variation across patients was standardized by normalization 
process, which consisted of matching the intensity histograms 
of all patient images to the histogram of a randomly selected 
T1/T2 image.

Feature extraction
In addition to original T1 and T2 image intensity values, the 
following image features were derived to train KNN models: 
local energy and mean amplitude images based on Gabor 
filter, and gradient images (Gx, Gy, Gz). It was shown that 
including spatial information improved learning algorithm 
accuracy,[24,29] so Cartesian coordinates originating from the 
center of whole-brain T1/T2 image were also included. In 
summary, total 15 image features were used for training, 
including 6 features (1 original intensity, local energy and mean 
amplitude images based on Gabor filters, and 3 gradients) for 
each of T1 and T2 MRI, and 3 Cartesian coordinates.

There are certain advantages in using the Gabor filter in MRI 
segmentation, for example, the noise in MRI can be smoothed 
by the Gaussian kernel in the Gabor filter, and the Gabor 
filter also enables to extract the edge features accurately.[30] A 
Gabor filter extracts multiple narrow frequency and orientation 
signals from the textured images. A two-dimensional (2D) 
Gabor filter in spatial domain is defined as a Gaussian kernel 
function modulated by a sinusoidal wave and can be written 
mathematically as follows:[31]

'2 2 '2

2
x  +  y2 -

j2 fx'+2fG(x, y)= e e
γ

π φσ

πγη
 (1)

cos sinx' = x + yθ θ  (2)
sin cosy' = -x + yθ θ  (3)

where f is the sinusoidal wave frequency, γ is the spatial aspect 
ratio which specifies the ellipticity of the support of the Gabor 
function, σ is the standard deviation of the Gaussian curve, ϕ 
is the phase offset, and θ represents the direction of the normal 
to the parallel stripes of a Gabor function.
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Using the method in the literature,[31,32] we calculated total 
40 2D Gabor filters [Figure 1] with 5 scales and 8 orientations 
for 3 × 3 pixel window size. The Gabor filter is a frequency and 
orientation-selective Gaussian envelope. The scale channels in 
Gabor filter would help to capture a specific band of frequency 
components and scale the magnitude of the Gaussian envelope, 
and the orientation channels are used to extract directional 
features from the MRI images.

The original T1 and T2 MRI images were convolved with 
each Gabor filter (real part), which resulted in 40 different 
representations for each MRI image. These 40 response images 
were then converted to feature images such as local energy (ψ) 
and mean amplitude (A):[33]

( )240
i=1 i i= I Gψ Σ ⊗  (4)
40
i=1 i iA = | I G |Σ ⊗  (5)

where Ii and Gi are the MRI image and the Gabor filter, and 
the symbol ⊗ represents the convolution operation.

Directional gradient images of T1 and T2 images along 
x-axis (right-left), y-axis (anterior-posterior), and 
z-axis (inferior-superior) were also created using the Sobel 
gradient operator.[34] Further, three Cartesian coordinates x, y, 
and z were also derived from the center of whole-brain T1/
T2 image. As T1 and T2 images were registered, they had the 
same spatial coordinates.

Organ and tumor segmentations
The reference class labels for right eye, right lens, right optic 
nerve, left eye, left lens, left optic nerve, brain stem, optic 
chiasm, and tumor were contoured manually on all training 
patients by dosimetrists in our clinic previously. In order 
to improve the efficiency and accuracy of KNN model, 3D 
ROI was used to extract the image region that had only a 
particular organ or tumor with a certain margin for training. 

The generation of ROI for each OAR was automated using 
an atlas-based approach: MRI images of a reference patient 
were selected, and individual ROIs were manually created 
with a 2-cm margin around the organs. The training patients’ 
and any test patient’s MRI images were affine registered with 
the reference patient, and the ROIs were transferred from the 
reference patient to the training patients and the test patient. 
ROI for tumor was selected manually because tumor position 
was different for each patient, and it was created as a region 
that has the tumor by visual observation with an approximately 
2-cm external margin.

The aforementioned 15 image features were used as predictor 
variables in KNN models. Eight separate KNN binary models 
were trained to contour each OAR inside the ROI region, and a 
KNN binary model was generated to contour the tumor inside 
the manually selected ROI region. Only features extracted 
within the ROI are used for the training and prediction, 
which will reduce the computation complexity and improve 
the KNN model performance. The KNN prediction classifies 
each pixel within ROI (like a semantic segmentation), and the 
final predicted segmentation patch of an OAR is reshaped to 
match the full 3D MRI image. The KNN classifier was trained 
in MATLAB (MathWorks, Natick, MA, USA). Our initial 
evaluation of various K values and distance metrics showed 
that the K value of 50 and Euclidean distance are best-suited 
parameters for this segmentation study. The workflows for 
OAR and tumor segmentations are shown in Figure 2.

The overall architecture of our segmentation method is 
as follows: in order to bring all the images to a common 
coordinate system, the T1 and T2 MRI images of all patients 
are registered with the respective images of a reference 
patient selected randomly, and the ROIs of individual 
OARs are transferred from the reference patient to the other 
patients. The image region within an ROI is input into the 

Figure 1: Gabor filters used in this study. Total 40 two‑dimensional filters were calculated with 5 scales and 8 orientations for pixel window 3 × 3. 
The colors are used to show the difference in scale and orientation
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OAR-specific KNN model which predicts the particular 
OAR segmentation. Finally, the predicted individual OARs 
are combined to form a 3D segmentation matrix. A similar 
process is followed for tumor segmentation of a test patient 
except the ROIs are created manually instead of using the 
atlas-based approach.

Evaluation
Performance of the trained models was evaluated using 
“leave-one-out cross-validation” approach: N-1 patients 
(training) were used to train the KNN model and the 
segmentations were predicted for the one remaining patient 
(validation), and this procedure was repeated for all possible 
combinations of training and validation data.

The dice similarity coefficient (DSC)[35] and normalized 
surface dice (NSD)[36] were used to evaluate the accuracy of 
segmentation results:

t p

t p

2 | V V |
DSC =

V + V
∩

 (6)

where Vt and Vp are the true and predicted segmented volumes.
(r) (r)

t p p t

t p

| S B | + | S B |
NSD =

| S | + | S |
∩ ∩

 (7)

where St and Sp are the surfaces of the true and predicted 
segmentations. ( )

tB τ and ( )
pB τ are the border regions of true and 

predicted segmentation surfaces at a tolerance τ. The tolerance 
value τ was chosen as 1 mm for small volume OARs such 
as lens, optic nerves, and optic chiasm, and 3 mm for other 
remaining larger volumes. In case of tumor, the tolerance value 
τ of 3 mm was used. DSC and NSD values range from 0 to 1 
and higher value indicates better segmentation performance.

Sensitivity and specificity[37] were also used for evaluation:

TPSensitivity =
(TP + FN)

 (8)

TNSpecificity =
(FP + TN)

 (9)

where TP represents true positive (intersection between the 
predicted segment and reference segment), and FN represents 
the false negative (parts of reference segment not covered by 
predicted segment). TN represents the true negative (pixels 
correctly detected as background) and FP represents the false 
positive (parts of predicted segment not covered by reference 
segment).

We also used Hausdorff distance (HD) to measure the boundary 
similarity between the true and predicted segmentations. They 
quantify the maximum distance of a point in X (predicted) to 
the nearest point in Y (true).

)HD = max{h(X,Y),h(Y, X }  (10)

a X b Yh(X,Y)= max min a - b∈ ∈  
 (11)

results

Figure 3 shows the comparison of organ segmentations with 
the ground truth for a typical patient. Table 1 shows DSC, 
NSD, and sensitivity values, and Table 2 shows HD values 
for organ segmentations. Specificity values are always 1 and 
are not included in the tables. Our method generates slightly 
poorer results for small organs such as eye lens, optic chiasm, 
and optic nerve.

Figures 4 and 5 show the comparison of tumor segmentation on 
axial, sagittal, and coronal planes for the best and worst cases, 
and Table 3 shows DSC, NSD, sensitivity, and HD values for 
tumor segmentations. Specificity values are always 1 and not 
included in the table.

Table 4 compares our study with previous automatic MRI 
segmentation studies using brain tumor patients.

The KNN model trainings take approximately 40 min for 
organs, and 15 min for tumor on a laptop with 2.5 GHz 
Intel i5 processor and 8 GB random-access memory (Intel 
Corp., Santa Clara, CA, USA), and the model trainings are 

Figure 2:  Workf lows for (a) organs at r isk and (b) tumor 
segmentations

a

b
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required only once. Automatic segmentations for a new 
patient take approximately 6 min (4 min for organs, and 
2 min for tumor).

dIscussIon

In this work, we present a machine learning method to segment 
OARs and tumor in standard T1 and T2 brain MRI images. 

Figure 3: Comparison of segmentation of organs at risk (eyes, eye lens, optic nerves, optic chiasm, and brain stem) on different slices for patient 
number 8. Top row: Original magnetic resonance imaging. Bottom row: Segmented magnetic resonance imaging with solid lines representing the 
ground truth and dashed lines representing K‑nearest neighbor predictions

Figure 4: Comparison of segmentation of tumor on different planes for patient number 9. Top row: Original magnetic resonance imaging. Bottom row: 
Segmented magnetic resonance imaging with solid red lines representing the ground truth and green dashed lines representing K‑nearest neighbor 
predictions
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A simple rigid registration was used to align all the library 
images to the same spatial coordinates. The KNN models were 
used to characterize the knowledge of previous segmentations, 
and the trained models were used to predict OARs and tumor 
contours.

Deeley et al.[10] compared the performance of automatic 
segmentation of OARs with human experts using T1 MRI 
images of 20 high-grade glioma patients and found that the 
differences were less 5%. However, the segmentations of 
smaller tubular structures such as chiasm and optic nerves 
showed higher variation and were challenging for both experts 

and automatic segmentation methods. Isambert et al.[38] also 
compared automatic segmentation with manual segmentation 
using T1 MRI images of 11 brain patients. They observed an 
excellent segmentation accuracy for OAR volumes >7 cc, for 
example, DSC values for larger OARs such as eyes, brain 
stem, and cerebellum were >0.8, while they were <0.41 for 
smaller structures such as optic nerves, optic chiasm, and 
pituitary gland. Similarly, our results showed that the accuracy 
of segmentation was generally better for large volume objects, 
and we achieved a slightly better segmentation accuracy for 
small volume objects than other studies. The mean DSC is 
0.49 ± 0.17 for optic chiasm, 0.75±0.09 for right optic nerve, 

Table 1: Dice similarity coefficient, normalized surface dice, and sensitivity values for organs at risk segmentations

Patients number Evaluation 
metrics

Right eye Right lens Right ON Left eye Left lens Left ON BS OPC

1 DSC 0.90 0.64 0.69 0.88 0.34 0.81 0.84 0.50
NSD 0.82 0.68 0.73 0.80 0.46 0.80 0.72 0.54
Sensitivity 0.92 0.52 0.55 0.99 0.22 1.00 0.88 0.46

2 DSC 0.88 0.82 0.83 0.84 0.86 0.86 0.85 0.60
NSD 0.89 0.67 0.72 0.89 0.67 0.80 0.69 0.48
Sensitivity 0.80 1.00 0.75 0.74 1.00 0.81 0.88 0.45

3 DSC 0.86 0.83 0.88 0.88 0.93 0.74 0.85 0.33
NSD 0.87 0.73 0.73 0.87 0.74 0.73 0.66 0.39
Sensitivity 0.98 0.96 0.96 1.00 0.95 0.89 0.86 0.24

4 DSC 0.83 0.90 0.82 0.88 0.84 0.86 0.89 0.72
NSD 0.93 0.72 0.71 0.93 0.73 0.73 0.69 0.61
Sensitivity 0.99 0.89 0.84 0.97 0.98 0.95 0.96 0.63

5 DSC 0.84 0.50 0.70 0.75 0.37 0.72 0.90 0.71
NSD 0.85 0.66 0.70 0.74 0.61 0.70 0.67 0.67
Sensitivity 1.00 0.34 0.91 0.97 0.24 0.81 0.99 0.60

6 DSC 0.94 0.88 0.80 0.93 0.86 0.77 0.85 0.40
NSD 0.86 0.68 0.67 0.85 0.67 0.66 0.63 0.41
Sensitivity 0.92 0.94 0.87 0.92 0.82 0.86 0.96 0.36

7 DSC 0.90 0.51 0.60 0.92 0.93 0.23 0.91 0.32
NSD 0.82 0.63 0.63 0.88 0.69 0.31 0.66 0.44
Sensitivity 0.98 0.34 0.45 0.91 0.91 0.13 0.90 0.22

8 DSC 0.93 0.87 0.62 0.89 0.88 0.73 0.87 0.65
NSD 0.87 0.71 0.73 0.87 0.71 0.74 0.66 0.58
Sensitivity 0.95 0.98 0.50 0.97 1.00 0.85 0.89 0.56

9 DSC 0.93 0.70 0.80 0.94 0.77 0.85 0.90 0.68
NSD 0.83 0.69 0.76 0.84 0.71 0.75 0.67 0.62
Sensitivity 0.94 0.99 0.76 0.97 1.00 0.83 0.97 0.76

10 DSC 0.86 0.76 0.80 0.89 0.80 0.72 0.88 0.34
NSD 0.85 0.66 0.69 0.85 0.73 0.69 0.64 0.43
Sensitivity 0.98 0.75 0.79 0.99 0.83 0.95 0.90 0.23

11 DSC 0.92 0.73 0.75 0.90 0.85 0.69 0.90 0.30
NSD 0.85 0.68 0.67 0.85 0.72 0.70 0.64 0.12
Sensitivity 0.98 0.59 0.79 0.99 0.76 0.54 0.87 0.02

12 DSC 0.90 0.38 0.71 0.91 0.43 0.77 0.91 0.39
NSD 0.81 0.55 0.69 0.81 0.58 0.71 0.64 0.48
Sensitivity 1.00 0.24 0.98 0.99 0.27 0.80 0.94 0.36

DSC Mean±SD 0.89±0.04 0.71±0.17 0.75±0.09 0.88±0.05 0.74±0.22 0.73±0.17 0.88±0.03 0.49±0.17
NSD Mean±SD 0.85±0.03 0.67±0.05 0.7±0.04 0.85±0.05 0.67±0.08 0.69±0.13 0.66±0.02 0.48±0.14
Sensitivity Mean±SD 0.95±0.06 0.71±0.29 0.76±0.18 0.95±0.07 0.75±0.31 0.79±0.24 0.92±0.04 0.41±0.21
DSC: Dice similarity coefficient, NSD: Normalized surface dice, ON: Optic nerve, BS: Brain stem, OPC: Optic chiasm, SD: Standard deviation
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and 0.73 ± 0.17 for left optic nerve in our study, while it was 
lower than 0.41 for these organs in Isambert et al.[38] and was 
around 0.4–0.5 in Deeley et al.[10]

For some OARs (especially for optic chiasm and brain stem) 
and tumors, the DSC and HD were observed to be relatively 
poorer [Tables 1-3] than the others, which is mainly attributed to 
the considerable variation of shapes, size, and location of these 
OARs or tumors. Furthermore, the boundaries of them were 
generally unclear and irregular with discontinuities, adding 
significant challenges to the auto-segmentation. In addition, 
the MRI scans in general acquired with a clinical scanner have 
wide inter-patient variations due to the heterogeneity in MRI 
protocols and difference in tissue contrast, which is a function 
of MRI field  strength and vendor specific.[29]

Compared to previous studies, our research has multiple 
strengths. First, it develops a semi-automated segmentation 
method by using the simple KNN learning algorithm. Our 
method can avoid manual contouring of new patients, reduce 
the uncertainties, and facilitate online plan adaptation. Second, 
it does not require multiple or special MRI sequences and only 
needs standard T1- and T2-weighted MRI, which makes our 
methods easy to implement and avoids the issues associated 
with specialized sequences such as limited availability, 
increasing scan time, patient movement, and costs. Third, 
unlike previous studies,[10,38] it does not require deformable 
registration between training and new patients, which avoids 
the possible uncertainties or errors associated with image 
registration.

Table 2: Hausdorff distance (mm) for organs at risk segmentations

Right eye Right lens Right ON Left eye Left lens Left ON BS OPC
1 3.2 4.1 3.7 5.1 5.9 2.0 7.8 7.5
2 7.2 1.4 5.5 7.2 1.4 1.4 8.9 8.1
3 2.4 1.4 1.4 2.2 1.0 2.8 7.9 8.6
4 3.5 1.0 5.5 2.0 1.4 1.4 6.3 5.7
5 6.2 2.8 6.2 8.9 3.7 7.0 4.4 6.7
6 2.2 1.4 4.5 5.1 2.2 4.6 7.2 8.8
7 5.9 4.1 4.1 4.9 1.0 9.1 7.6 7.2
8 2.2 2.2 4.6 3.0 1.4 3.7 7.3 9.3
9 2.4 2.0 4.4 2.2 1.7 6.3 9.2 5.5
10 5.7 4.0 3.2 4.7 2.2 2.8 8.1 9.5
11 3.6 2.2 4.1 2.8 2.2 5.1 9.4 9.4
12 6.0 5.1 2.8 5.0 5.0 2.4 6.0 8.2
Mean±SD 4.2±1.8 2.7±1.4 4.2±1.3 4.4±2.1 2.4±1.6 4.1±2.4 7.5±1.4 7.9±1.4
ON: Optic nerve, BS: Brain stem, OPC: Optic chiasm, SD: Standard deviation

Figure 5: Comparison of segmentation of tumor on different planes for patient number 2. Top row: Original magnetic resonance imaging. Bottom row: 
Segmented magnetic resonance imaging with solid red lines representing the ground truth and green dashed lines representing K‑nearest neighbor 
predictions
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Our study has some limitations. First, the ROI for tumor 
segmentation was created manually due to patient specificity. 
However, only a rough estimation of tumor location is 
required, and the creation of ROI only takes a few seconds, 
especially with the prior knowledge of the patient’s cancer 

condition. Second, all of the patients included in our study 
had a localized tumor, and they were all treated with a 
conventional fractionated radiotherapy. Multiple metastasis 
brain tumors are very common in stereotactic radiotherapy/
radiosurgery treatments. A separate study is required to explore 
the feasibility of segmenting multiple tumors automatically. 
Third, our current study is a preliminary work, which used 
handcrafted image features and the simple KNN algorithm 
to understand the issues posed by the learning algorithms for 
automatic segmentation. Even though the KNN requires less 
time for training compared to the deep learning approach, 
the prediction process is usually slower. Note a laptop with 
low-level configuration was used in this study, and we expect 
that our method would be much faster if graphics processing 
unit (GPU) computing is used, considering that GPU-based 
high-performance computing has been increasingly used in 
RT.[41] Unlike the deep learning approach, the KNN does not 
learn the weights during training, is a memory-based classifier, 
and requires the entire training data for prediction. Future 
study should explore other alternative algorithms such as 
deep learning approach for a fully automatic segmentation in 
brain. However, we think MRI segmentation based on a simple 
learning method like KNN is still quite valuable because it 
is simple, easy-to-implement, requires minimum computer 
resource, and very easy to tune. In addition, KNN is a good 

Table 4: Comparison of dice similarity coefficient values in current work with previous studies for segmentation of 
organs at risks and tumor within the brain

Study Number of 
patients

Details of the study BS ON OPC Eyes Eye lens Tumor

Isambert 
et al.[38]

11 Method: Atlas-based
Image: MRI

0.85 
(0.80-0.88)

0.38 
(0.4-0.53)

0.41 
(0-0.58)

0.81 
(0.780.85)

- -

Deeley 
et al.[10]

20 Method: Combination of atlas-based 
registration and atlas-navigated optimal 
medial axis and deformable model
Image: MRI + CT

0.83±0.06 0.52±0.14 0.37±0.18 0.84±0.07 - -

Agn, 
et al.[39]

70 Method: Atlas-based model for normal 
brain structure segmentation and 
convolutional restricted Boltzmann 
machine model for tumor segmentation
Images: MRI + CT

0.86 0.56 0.39 0.86 - 0.67

Egger 
et al.[11]

27 Method: Balloon inflation force method
Image: MRI

- - - - - 0.81±0.074

27 Method: Graph-based method
Image: MRI

- - - - - 0.83±0.082

Demirhan 
et al.[12]

20 Method: Self-organizing map
Image: MRI

- - - - - 0.56±0.27

Liu et al.[15] 36 Method: Supervoxel clustering
Image: MRI

- - - - - 0.86±0.09

Narayana 
et al.[18]

1008 Method: Deep learning based on 
convolutional neural network
Image: MRI

- - - - - 0.86±0.016

Havaei 
et al.[40]

70 Method: KNN
Image: MRI

- - - - - 0.80-0.85

Current 
study

12 Method: KNN
Image: MRI

0.88±0.03 0.74±0.13 0.50±0.17 0.89±0.04 0.72±0.19 0.87±0.07

BS: Brain stem, ON: Optical nerve, OPC: Optic chiasm, CT: Computed tomography, MRI: Magnetic resonance imaging, KNN: K-nearest neighbor

Table 3: Dice similarity coefficient, normalized surface 
dice, sensitivity, and Hausdorff distance (mm) values for 
tumor segmentation

Patients number DSC NSD Sensitivity HD
1 0.86 0.91 0.76 2.2
2 0.81 0.69 1.00 9.8
3 0.91 0.81 1.00 3.3
4 0.93 0.92 0.98 1.4
5 0.95 0.98 0.92 1.4
6 0.72 0.70 0.95 6.8
7 0.89 0.84 0.97 2.2
8 0.86 0.75 0.80 6.4
9 0.94 0.97 0.93 1.4
10 0.91 0.79 0.96 2.2
11 0.78 0.93 0.73 4.4
12 0.87 0.84 0.82 3.2
Mean±SD 0.87±0.07 0.84±0.10 0.90±0.10 3.7±2.7
DSC: Dice similarity coefficient, NSD: Normalized surface dice, SD: 
Standard deviation, HD: Hausdorff distance
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algorithm to start with and to understand the issues posed by 
the learning algorithms for automatic segmentations, and can 
be used as a baseline for comparisons with more sophisticated 
learning algorithms. Finally, the dataset used in our study is 
smaller than most of the other studies in the literature, but 
our OAR and tumor segmentation results are comparable 
or superior to others [Table 4]. This is because we carefully 
evaluated the various features and found the best features 
for this work. In addition, we used ROIs to assist learning in 
this study. In the future work, the data augmentation such as 
random rotation, translation, and scaling may also be applied 
to the training data, which would increase the training data.[42]

conclusIons

In this paper, we presented a semi-automatic segmentation 
approach based on KNN model to segmenting organs (brain 
stem, optic chiasm, optic nerve, eye lens, and eye globes) 
and tumor on standard T1 and T2 brain MRI images. Overall 
performance of our method is superior to the previous work. 
It provides fast and accurate image processing and planning 
tools and is one step forward for MRI-guided radiotherapy.
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