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Although the incidence of osteosarcoma (OS) is relatively low compared with other cancer types, the overall survival of metastatic
OS was less than 30%.+is study aimed to reveal the role of pyroptosis in osteosarcoma and develop a prognostic model related to
pyroptosis. Weighted correlation network analysis (WGCNA) was applied to identify key gene modules related to pyroptosis.
Univariate Cox regression analysis was used to screen prognostic genes related to pyroptosis. +e least absolute shrinkage and
selection operator (LASSO) and stepwise Akaike information criterion (stepAIC) were employed to optimize and construct a
prognostic model. Five prognostic genes (COL13A1, TNFRSF1A, LILRA6, CTNNBIP1, and CD180) related to pyroptosis were
identified. According to the 5-gene signature, OS samples were divided into high- and low-PPRS groups with differential
prognosis. Immune-related pathways were more activated in the low-PPRS group. +e 5-gene signature was effective and robust
to predict OS prognosis. +ese five prognostic genes were involved in OS development and may serve as new targets for de-
veloping therapeutic drugs.

1. Introduction

Sarcomas are a group of rare malignant tumors deriving
from mesenchymal cells, with an incidence of about 2–4 per
100,000 [1]. Osteosarcoma (OS) is one of the types of sar-
comas with an incidence of about 3.4 per million worldwide,
which commonly occurs in children and adolescents [2].
Two peaks of its incidence rate are shown at the ages of
15–19 and 75–79 [3]. Osteosarcoma mostly localizes in long
bones, especially in arms, legs, knees, and shoulders. Al-
though localized osteosarcoma patients have a relatively
high overall survival, reaching a 5-year survival of 70–75%,
metastatic patients have no more than 30% largely due to the
resistance to chemotherapy or radiotherapy [4].

Immunotherapy is developed as a potential therapy for
cancers and has achieved satisfactory efficiency in some
cancer types. Some immune checkpoint inhibitors such as
antiprogrammed cell death protein 1 (PD-1) inhibitors have
been approved by Food andDrug Administration (FDA) [5].

Evidence supports that immune checkpoint inhibitors can
also be potential therapeutic drugs for osteosarcoma. Tawbi
et al. observed that one of 22 OS patients had an objective
response to an anti-PD-1 antibody [6]. However, in a phase 2
trial of pembrolizumab for treating advanced osteosarcoma,
no significant antitumor activity of pembrolizumab was
presented in 12 patients [7]. On the one hand, more effective
immunotherapy is needed and on the other hand, reaching a
more personalized therapy for patients is also important.
+at is, to identify patients who are more suitable or sen-
sitive to immunotherapy is beneficial.

Currently, a number of prognostic signatures or mo-
lecular subtypes have been developed for different cancer
types based on gene expression data. Pyroptosis, as an
emerging hot spot in cancer, plays an important role in
cancer cell proliferation and migration [8]. A number of
studies reported that pyroptosis suppresses cancer cell
growth in most the cancers such as glioma, ovarian cancer,
gastric cancer, and colon cancer [8]. However, the tumor-
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promotive role of pyroptosis is shown in cervical cancer and
esophageal adenocarcinoma [8]. +e role of pyroptosis in
osteosarcoma remains unclearly. Bioinformatics analysis
helps a lot in exploring the mechanism of cancer develop-
ment and the biomarkers for predicting cancer prognosis
[9–11].

In this study, we revealed the relation between pyroptosis
and osteosarcoma survival. By using weighted correlation
network analysis (WGCNA) and Cox regression analysis, we
identified key prognostic genes of osteosarcoma. A 5-gene
signature related to pyroptosis was constructed, and its
prognostic value was verified in three independent datasets.
In addition, we evaluated the relation between the signature
and tumor microenvironment (TME). +e 5-gene signature
was demonstrated to have an ability to identify individuals
who were more sensitive to immunotherapy.

2. Materials and Methods

2.1. Data Information. +e flow chart of this study is shown
in Supplementary Figure S1. +e TARGET-OS dataset
containing RNA-seq data was downloaded from National
Cancer Institute Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/). GSE21257 and GSE39055
datasets containing expression data of osteosarcoma samples
were downloaded from Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). For the
TARGET-OS dataset, samples without survival time and
status were removed. Ensembl ID was converted to gene
symbol by using hgu133plus2. db R package. +e median
expression value of one gene was selected when the gene had
multiple gene symbols. For GSE cohorts, probes were
matched to gene symbols by using hgu133plus2. db R
package. +e median expression value of one gene was
selected when the gene matched multiple probes. One probe
was excluded when they had multiple genes. Finally, 86, 53,
and 37 osteosarcoma samples remained in TARGET-OS,
GSE21257, and GSE39055 datasets, respectively.

2.2. IdentifyingKeyGenes Related to Prognosis andPyroptosis.
A gene set of “REACTOME_PYROPTOSIS” was down-
loaded from Molecular Signature Database (MSigDB,
https://www.gsea-msigdb.org/gsea/msigdb/). Single sample
gene set enrichment analysis (ssGSEA) in GSVA R package
[12] was performed to calculate ssGSEA score of pyroptosis
based on “REACTOME_PYROPTOSIS” gene set in the
TARGET-OS dataset. Samples were divided into two groups
with high and low scores of pyroptosis according to the
median value.WGCNA [13] was applied to identify key gene
modules related to pyroptosis. Firstly, samples were clus-
tered to screen the coexpression network. To meet the
standard of a scale-free network, a correlation coefficient
>0.85 was determined. +en, the expression matrix was
transferred to the topology matrix. Based on the topological
overlap matrix, average-linkage clustering was used to
cluster genes with each gene module containing at least 30
genes. Next, eigengenes of each gene module were calcu-
lated, and modules were further clustered and combined

with conditions of height� 0.25, deepSplit� 2, and min-
ModuleSize� 30. +e correlation between each module and
pyroptosis score was assessed. +e most significant gene
module was chosen to be the key module and used to
construct a prognostic model.

2.3. Constructing a Prognostic Model Based on the Key Gene
Module. Univariate Cox regression analysis was performed
on genes within the purple gene module for screening
prognosis-related genes in the TARGET-OS dataset
(P< 0.05). +e least absolute shrinkage and selection op-
erator (LASSO) Cox regression analysis in glmnet R package
[14] was used to decrease the number of prognostic genes by
constructing a penalty function-based model. +e coeffi-
cients of each gene were compressed with changing lambda
values. Coefficients closed to zero with the increasing
lambda values. 5-fold cross-validation was used to validate
the model. Stepwise Akaike information criterion (stepAIC)
in MASS R package [15] was further introduced to decrease
the number of prognostic genes. Finally, the prognostic
model was established as follows: pyroptosis-related prog-
nostic risk score (PPRS)� coefficient 1∗gene 1+ coefficient
2∗gene 2+, . . . + coefficient n∗gene n.

2.4. Validating the Prognostic Model. PPRS was calculated
for each sample in the TARGET-OS dataset. Samples were
divided into high-PPRS and low-PPRS groups according to
the optimal cut-off determined by survminer R package
(http://www.sthda.com/english/rpkgs/survminer/). Receiver
operating characteristic (ROC) analysis in the timeROC R
package [16] was used to evaluate the effectiveness of the
prognostic model to predict 1-year, 3-year, and 5-year
overall survival. +e area under ROC curve (AUC) was
calculated. Kaplan–Meier survival analysis was performed to
assess overall survival between high- and low-PPRS groups.
By using the same methods, we validated the model in
GSE21257 and GSE39055 datasets.

2.5. Gene Set Enrichment Analysis (GSEA). GSEA is a
popular methodology that allows calculation of the en-
richment score based on the expression of a gene set [17].
SsGSEA is an extended methodology based on GSEA, which
enables the calculation of the enrichment score for each
sample [18]. We used ssGSEA to evaluate the enrichment of
the pyroptosis pathway and hallmark pathways. Cluster-
Profiler R package was applied to annotate Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathways and gene
ontology (GO) terms [19]. +e top 10 significantly enriched
pathways and GO terms were visualized (P< 0.05).

2.6. Evaluation of Tumor Microenvironment. CIBERSORT
(http://cibersort.stanford.edu/) was employed to assess the
estimated proportion of 22 immune cells in high- and low-
PPRS groups [20]. Estimation of STromal and Immune cells
in MAlignant Tumours using Expression data (ESTIMATE)
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was applied to calculate the stromal score, immune score,
and ESTIMATE score [21]. Immune checkpoints obtained
from HisgAtlas database were analyzed [22]. Tumor Im-
mune Dysfunction and Exclusion (TIDE, http://tide.dfci.
harvard.edu/) was implemented to predict the response of
high- and low-PPRS groups to immunotherapy [23]. A
higher TIDE score represents a higher immune escape from
immunotherapy.

2.7. Statistical Analysis. All statistical analysis was con-
ducted in R software (v4.1.1). Parameters of methodologies
not indicating were default. +e log-rank test was conducted
in Kaplan–Meier survival analysis and univariate and
multivariate Cox regression analysis. +e Wilcoxon test was
conducted to test the difference between the two groups.+e
Kruskal–Walls test was performed among four groups.
P< 0.05 was considered significant (Ns, not significant.
∗P< 0.05, ∗∗P< 0.01, ∗∗∗P< 0.001, and ∗∗∗∗P< 0.0001).

3. Results

3.1. Pyroptosis Is Associated with Overall Survival of OS.
To understand the relation between pyroptosis and OS
prognosis, we calculated the ssGSEA score of pyroptosis for
each sample in the TARGET-OS dataset. We found that the
distribution of clinical features including age, gender, and
metastasis was significantly associated with the enrichment
score of pyroptosis (P< 0.0001, Figure 1(a)). Samples were
divided into two groups with high and low ssGSEA scores.
Kaplan–Meier survival analysis showed that two groups had
differential overall survival (Figure 1(b)), suggesting that
pyroptosis played an important role in tumor progression.
However, no significant difference was observed between
different groups of clinical features including age, gender,
metastasis, and survival status (Figure 1(c)).

3.2. Identifying Key Genes Related to Pyroptosis by WGCNA.
We confirmed that the pyroptosis score was significantly as-
sociated with OS prognosis. To identify key genes related to
pyroptosis, we applied WGCNA to cluster samples and screen
co-expressionmodules (Figure 2). Samples in the TARGET-OS
dataset were clustered (Figure 2(a)). To reach a scale-free
network, a negative correlation over 0.85 between log (k) and
log (P(k)) was selected, where k indicated connectivity degree.
+erefore, the power of soft threshold (β)� 3 was confirmed
(Figures 2(b) and 2(c)). By using average linkage clustering
based on the topological overlap matrix (TOM), samples were
further clustered. According to the dynamic cut method,
modules were primarily distributed with each module con-
taining at least 30 genes (Figure 2(d)). +en, adjacent modules
were merged based on the eigengenes of each module, and
finally, 41 modules remained (Figure 2(d)). +e gene counts of
each module were visualized (Figure 2(e)). Furthermore, we
assessed the correlation between each module and pyroptosis.
As a result, we observed that the purple module was signifi-
cantly correlated with pyroptosis (R� 0.62, P � 2.92e − 10,
Figure 2(f)). In addition, the expression of genes in the purple
module was positively correlated with the enrichment of

pyroptosis (R� 0.87, P � 4.7e − 151, Figure 2(g)). +erefore,
the purple module was considered as a pyroptosis-related
module for the following analysis. Functional analysis of KEGG
pathways and GO terms for genes within the purple module
showed that some immune-related terms were significantly
enriched, such as neutrophil activation involved in immune
response, MHC protein complex, immunoglobulin binding,
and MHC protein complex binding (Supplementary
Figure S2).

3.3. Constructing a Prognostic Model Based on Pyroptosis-
Related Genes. Next, we utilized univariate Cox regression
analysis and screened 187 prognostic genes within pyrop-
tosis-related genes in the TARGET-OS dataset, with 10
positively (risk) correlating with prognosis and 177 nega-
tively (protective) correlating with prognosis (P< 0.05,
Supplementary Figure S3A). To construct a model using the
minimum prognostic genes, we introduced LASSO Cox
regression and stepAIC to reduce the number of prognostic
genes. In LASSO analysis, the coefficients of prognostic
genes were close to zero with the increasing lambda value
(Supplementary Figure S3B). 5-Fold cross-validation
revealed the confidence interval for each lambda value
(Supplementary Figure S3C). When lambda� 0.1395, the
model was optimal. Moreover, stepAIC was conducted to
further optimize the model. Finally, 5 prognostic genes
remained, with one risk gene (COL13A1) and four protective
genes (TNFRSF1A, LILRA6, CTNNBIP1, and CD180)
(Supplementary Figure S3D).

For each sample in the TARGET-OS dataset, pyroptosis-
related prognostic risk score (PPRS) was calculated. According
to the optimal cut-off analyzed by survminer, samples were
divided into high-PPRS and low-PPRS groups. We observed
that dead samples were significantly enriched in high-PPRS
group compared to low-PPRS group (Figure 3(a)). +e ex-
pression of COL13A1 was higher in high-PPRS group, while
the other four genes were lower expressed (Figure 3(a)). ROC
analysis presented that the model was effective to predict 1-
year, 3-year, and 5-year overall survival, with a high AUC of
0.87, 0.87, and 0.88 (Figure 3(b)). Kaplan–Meier survival
analysis showed that two groups had differential overall sur-
vival in the TARGET-OS dataset (P< 0.0001, Figure 3(c)). To
verify the robustness of the prognostic model, we examined it
in another two independent datasets (GSE21257 and
GSE39055). Similar results were generated that samples were all
classified into two groups with distinct prognoses (P � 0.017
and P � 0.00035, respectively, Figures 3(d)–3(g)). +e above
results demonstrated that the 5-gene prognostic model was
valid to predict prognosis for OS patients, and pyroptosis-
related genes played an important role in OS development.

3.4. �e Relation between PPRS Score and Clinical Features.
We verified that PPRS score was significantly associated with
overall survival in both test and validation datasets. To know
the relation between PPRS score and other clinical infor-
mation such as ages, genders, metastasis, and recurrence, we
compared their PPRS score between high- and low-PPRS
groups. No significant differences in ages, genders, and
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grades were observed between the two groups in all three
datasets (Figures 4(a)–4(c)). Noteworthy, PPRS scores
varied significantly between metastatic and nonmetastatic,
alive and dead, recurrent and nonrecurrent samples
(P< 0.05). It could be speculated that pyroptosis-related
genes were involved in the cancer cell metastasis.

3.5. Differentially Enriched Pathways betweenHigh- andLow-
PPRS Groups. To understand the enriched pathways of
high- and low-PPRS groups, we calculated ssGSEA score of
hallmark pathways for each sample in TARGET-OS dataset.
Pearson correlation analysis revealed that 29 pathways were
significantly correlated with PPRS score (|R|≥ 0.4,
Figure 5(a)). +e majority of pathways were related to
immunity such as primary immunodeficiency, complement
and coagulation cascades, cytokine-cytokine receptor in-
teraction, B cell receptor signaling pathway, T cell receptor
signaling pathway, and chemokine signaling pathway. In the
comparison of enriched pathways between high- and low-

PPRS groups, cell cycle-related pathways such as Myc tar-
gets, E2F targets, and G2M checkpoint were more enriched
in the high-PPRS group, while immune-related pathways
such as interferon-c response, inflammatory response, and
IL6-JAK-STAT3 signaling pathway were more enriched in
the low-PPRS group (Figure 5(b)). +e above results sug-
gested that the high-PPRS group had higher activity in the
cell cycle andmay thus contribute to cancer cell invasion and
migration. +e activation of immune-related pathways in
the low-PPRS group possibly served as protective factors for
inhibiting cancer cell progression.

3.6. TME Features and Immunotherapy/Chemotherapy Re-
sponse of High- and Low-PPRS Groups. Next, we evaluated
whether there was a difference in TME features between the
two groups. CIBERSORT analysis revealed a similar dis-
tribution of 22 immune cells in two groups (Supplementary
Figure S4A). However, ESTIMATE analysis showed that the
low-PPRS group had higher stromal and immune
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Figure 1: +e relation between pyroptosis and clinical features of osteosarcoma in TARGET-OS dataset. (a) +e distribution of different
clinical features ranked by the z-score of ssGSEA score of pyroptosis. (b) Kaplan–Meier survival analysis of high- and low-score groups
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Figure 2: WGCNA for identifying key gene modules related to pyroptosis. (a) Clustering for TARGET-OS samples. (b, c) Analysis of scale
independence and mean connectivity for different soft thresholds (power). (d) Cluster dendrogram based on topology and identification of
gene modules. (e) Gene numbers of each gene module. (f ) Pearson correlation analysis between gene modules and pyroptosis. Correlation
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infiltration than the high-PPRS group in the TARGET-OS
dataset (P< 0.01, Supplementary Figure S4B). In GSE21257
and GSE39055 datasets, we observed similar results (Sup-
plementary Figure S5). In addition, we assessed the corre-
lation between the PPRS score and the enrichment of 22
immune cells. CD8 Tcells and activated memory CD4 Tcells
were negatively correlated with PPRS score. M0

macrophages and resting dendritic cells were positively
correlated with PPRS score.

Of the immune checkpoints, we found that 6 of 21 were
differentially expressed between high- and low-PPRS
groups, including CD27, CD47, GEM, HAVCR2, LAG3, and
TNFSF4 (P< 0.05, Supplementary Figure S6A). Further-
more, we assessed the enrichment of three
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Figure 3: Validating the performance of the 5-gene prognostic model. (a) Risk score, survival status, and z-score expression of prognostic
genes of each sample in the TARGET-OS dataset. (b) ROC analysis of the model for predicting 1-year, 3-year, and 5-year overall survival in
the TARGET-OS dataset. (c) Kaplan–Meier survival plot of high- and low-PPRS groups in TARGET-OS dataset. (d, e) ROC analysis and
survival analysis in GSE21257 dataset. (f, g) ROC analysis and survival analysis in the GSE39055 dataset. +e log-rank test was conducted in
Kaplan–Meier survival analysis.
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immunosuppressive cells in two groups. Myeloid-derived
suppressor cells (MDSCs) and tumor-associated macro-
phages (TAMs) were more enriched in the high-PPRS
group, while cancer-associated fibroblasts (CAFs) were more
enriched in the low-PPRS group (Supplementary
Figure S6B). TIDE analysis showed that the low-PPRS group
had more serious T cell exclusion and dysfunction than the
high-PPRS group. A higher TIDE score was shown in the
low-PPRS group, indicating a higher possibility to escape
from immune checkpoint blockade therapy, although there
was no significance between the two groups (Supplementary
Figure S6B). Moreover, in the response to chemotherapy, the
PPRS-high group was more sensitive to doxorubicin than
the PPRS-low group (Supplementary Figure S7). However,
the estimated IC50 of the other three drugs (cisplatin,
methotrexate, and paclitaxel) showed no significant differ-
ence between the two groups.

3.7. Optimizing the Prognostic Model for Clinical Use. To
make the prognostic model more accurate for clinical use,
we constructed a decision tree based on ages, genders,
metastasis, and the model. Finally, only metastasis and the
model remained, and four subgroups were generated (C1 to
C4, Figure 6(a)). Four subgroups varied massively in overall
survival, where C1 had the longest survival and C4 had the
worst prognosis (Figure 6(b)). Low-PPRS samples were only
displayed in C1 and C2 subgroups, and high-PPRS samples
were only included in C3 and C4 subgroups (Figures 6(a)

and 6(c)). Dead samples were the most distributed in the C4
subgroup and alive samples composed the most in the C1
subgroup, which was consistent with the survival analysis
(Figures 6(b) and 6(d)). Univariate and multivariate Cox
regression analysis showed that metastasis and PPRS score
were independent risk factors (Figures 6(e) and 6(f )).
According to PPRS score and metastasis, we established a
nomogram to predict 1-year, 3-year, and 5-year prognosis
for osteosarcoma patients (Figure 6(g)). +e predicted 1-
year, 3-year, and 5-year overall survival were corrected
(Figure 6(h)). Compared with metastasis and PPRS score,
the nomogram was optimal to assist decision-making and
create the maximum benefit for patients (Figure 6(i)). ROC
analysis showed that the PPRS score and the nomogram had
the highest AUC (Figure 6(j)), which further proved the
effectiveness and practicability of the nomogram for its
application in the clinic.

4. Discussion

+is study demonstrated that pyroptosis was associated with
the overall survival of osteosarcoma, suggesting that
pyroptosis played an important role in OS progression. By
using the WGCNA methodology, we identified a gene
module significantly correlated with pyroptosis. Within the
gene module, we screened 187 genes related to pyroptosis
and OS prognosis. To construct a prognostic model, LASSO
and stepAIC were applied to decrease the number of these
genes. Finally, a 5-gene prognostic model consisting of
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Figure 5: KEGG pathway analysis of high- and low-PPRS groups in the TARGET-OS dataset. (a): Pearson correlation analysis between
KEGG pathways and PPRS score. Pathways with |correlation coefficient| ≥ 0.4 were visualized. Blue indicates negative correlation, and red
indicates positive correlation. (b) Comparison of enriched pathways between high- and low-PPRS groups in three datasets (FDR <0.05).
Yellow indicates higher enrichment in the high-PPRS group, and purple is the reverse. NES, normalized enrichment score. ∗P< 0.05,
∗∗P< 0.01, and ∗∗∗P< 0.001.
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COL13A1, TNFRSF1A, LILRA6,CTNNBIP1, andCD180was
established for predicting the prognosis of osteosarcoma.
+e 5-gene signature could divide OS samples into high- and
low-PPRS groups with distinct overall survival in three
independent datasets.

Pyroptosis has been reported to occur with a strong
inflammatory response, which is activated by inflamma-
somes such as NLR family pyrin domain containing 1
(NLRP1) [24], NLRP3 [25], and NOD-like receptor con-
taining a caspase activating and recruitment domain 4
(NLRC4) [26]. By comparing the high-PPRS group to low-
PPRS group, we observed differential enrichment of KEGG
pathways between them. Noteworthy, a number of immune-
related pathways were identified to be negatively associated
with PPRS, such as T cell receptor signaling, Toll-like sig-
naling, JAK-STAT signaling, NOD-like receptor signaling,
chemokine signaling, and cytokine-cytokine receptor sig-
naling pathways. Our results further demonstrated that the
five pyroptosis-related genes were possibly involved in
immune-related pathways and the modulation of immunity.

Except for COL13A1 more expressed in the high-PPRS
group, other four prognostic genes were all expressed low in
the high-PPRS group. For osteosarcoma, COL13A1 was a
risk factor and the other four genes were protective factors.
In research of identifying survival-related genes in osteo-
sarcoma, COL13A1 and CTNNBIP1 were also included as
prognostic biomarkers [27]. COL13A1 was upregulated and
CTNNBIP1 was downregulated in dead OS patients, which
was consistent with our result that COL13A1 overexpression
and CTNNBIP1 downregulation were associated with un-
favorable prognosis.

In bladder cancer, Miyake et al. found that a high uterine
level of COL13A1 was associated with a poor prognosis [28].
+ey discovered that COL4A1+COL13A1 was an indepen-
dent predictor for intravesical recurrence of bladder cancer
[28]. High expression of COL13A1 was observed in breast
cancer cells, correlated with invasive tumor growth, and
induced anoikis resistance [29]. CTNNBIP1 was reported as
a suppressor in lung cancer that high expression of
CTNNBIP1 could inhibit the progression of lung cancer
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Figure 6: Application of the 5-gene prognostic model in the TARGET-OS dataset. (a) A decision tree based on the prognostic model and
metastasis. (b) Kaplan–Meier survival curve of C1 to C4 subgroups. (c, d)+e distribution in high- and low-PPRS groups and alive and dead
groups in C1 to C4 subgroups. ANOVA was conducted. (e, f ) Univariate and multivariate Cox regression analyses on ages, genders,
metastasis, and PPRS score. (g) A nomogram based on PPRS score and metastasis. (h) Correction for predicted 1-year, 3-year, and 5-year
overall survival based on the observed survival. (i) Decision curve analysis (DCA) of the nomogram, metastasis, and PPRS score. (j): AUC
values of the nomogram, ages, genders, metastasis, and PPRS score. +e log-rank test was conducted in Kaplan–Meier survival analysis (b)
and univariate and multivariate Cox regression analysis (e, f ). ANOVA test was conducted in (c, d). ∗P< 0.05.
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[30]. Low expression of CTNNBIP1 was a risk factor for lung
cancer (hazard ratio � 1.85) [30], which is accordant with
our observation that the low-PPRS group had lower ex-
pression of CTNNBIP1. CTNNBIP1 downregulation was
also discovered in human gastric adenocarcinoma tissues
[31].

TNFRSF1A encodes a transmembrane receptor for tu-
mor necrosis factor (TNF)-α. High expression of TNFRSF1A
was demonstrated to be associated with STAT3 activation in
breast cancer cells, where STAT3 is known as a critical factor
in tumorigenesis [32]. CD180 was identified as a pharma-
codynamic biomarker for tumors especially in lymphocytic
leukemia [33]. LILRA6 has not been reported to be signif-
icantly associated with cancer development, serving as a new
potential biomarker for predicting OS prognosis.

Besides differentially enriched pathways, the high-PPRS
and low-PPRS groups also had a difference in immune
infiltration. Higher immune infiltration was shown in the
low-PPRS group due to a more activated immune response
in the low-PPRS group. In addition, we constructed a de-
cision tree based on PPRS and metastasis. Four subgroups
(C1–C4) were classified by the decision tree with differential
prognoses. For the application of the 5-gene signature, we
established a nomogram presenting superior performance
than PPRS only for predicting OS prognosis.

In conclusion, this study identified five prognostic genes
related to pyroptosis and constructed a 5-gene signature
with robust performance in three independent datasets. We
further demonstrated the important role of pyroptosis in
osteosarcoma development and the relation between
pyroptosis and immunity. +e five prognostic pyroptosis-
associated genesmay play an important role in osteosarcoma
pyroptosis. +e 5-gene signature could serve as a new tool
for predicting OS prognosis. In addition, the five prognostic
genes may be potential targets for exploring new molecular
therapies for OS patients.
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+e datasets generated and/or analyzed during the current
study are available in the GSE21257 repository (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc�GSE), in GSE39055
repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc�), and in TARGET repository (https://portal.gdc.cancer.
gov/projects/TARGET-OS).
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Supplementary Materials

Supplementary Figure S1. KEGG and GO function analysis
on genes within the purple module. (A) +e top 10 enriched
KEGG pathways. (B–D) +e top 10 enriched GO terms of
molecular function, cellular component, and biological
process. Supplementary Figure S2. Identifying prognostic
genes related to pyroptosis and constructing a prognostic

model. (A) Identifying genes in the purple module was
significantly associated with prognosis by univariate Cox
regression analysis. Log-rank test was conducted. (B–C)
LASSO Cox regression analysis for decreasing the number of
genes.+e dotted red line indicates the optimal lambda value
of 0.1395. (D) +e LASSO coefficients of five prognostic
genes. Supplementary Figure S3. Comparison of TME be-
tween high- and low-PPRS groups in TARGET-OS dataset.
(A) +e proportion of 22 immune cells in two groups.
Student’s t-test was conducted. (B) Comparison of the
stromal score, immune score, and ESTIMATE score be-
tween high- and low-PPRS groups. Student’s t-test was
conducted. (C) Pearson correlation analysis between PPRS
score and enrichment of immune cells. Blue and red indicate
negative and positive correlations, respectively. ns, not
significant. ∗P< 0.05, ∗∗P< 0.01, and ∗∗∗P< 0.001. Supple-
mentary Figure S4. Comparison of TME in GSE21257 (A-B)
and GSE39055 (C-D) datasets. ns, not significant. ∗P< 0.05,
∗∗P< 0.01, and ∗∗∗P< 0.001. Supplementary Figure S5. (A)
Expression of immune checkpoints in high- and low-PPRS
groups. (B) Enrichment of immunosuppressive cells
(MDSC, CAF, and M2 TAM), T cell exclusion, T cell dys-
function, and TIDE score in high- and low-PPRS groups.
Supplementary Figure S6. (A) Expression of immune
checkpoints in high- and low-PPRS groups. (B) Enrichment
of immunosuppressive cells (MDSC, CAF, and M2 TAM),
T cell exclusion, T cell dysfunction, and TIDE score in high-
and low-PPRS groups. Supplementary Figure S7. +e esti-
mated IC50 of four chemotherapeutic drugs in TARGET-OS
(A), GSE21257 (B), and GSE39055 (C) datasets. (Supple-
mentary Materials)
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