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Urinary tract infections (UTIs) are frequent in humans, affecting the upper and lower urinary
tract. Present diagnosis relies on the positive culture of uropathogenic bacteria from urine
and clinical markers of inflammation of the urinary tract. The bladder is constantly
challenged by adverse environmental stimuli which influence urinary tract physiology,
contributing to a dysbiotic environment. Simultaneously, pathogens are primed by
environmental stressors such as antibiotics, favoring recurrent UTIs (rUTIs), resulting in
chronic illness. Due to different confounders for UTI onset, a greater understanding of the
fundamental environmental mechanisms and microbial ecology of the human urinary tract
is required. Such advancements could promote the tandem translation of bench and
computational studies for precision treatments and clinical management of UTIs.
Therefore, there is an urgent need to understand the ecological interactions of the
human urogenital microbial communities which precede rUTIs. This review aims to
outline the mechanistic aspects of rUTI ecology underlying dysbiosis between both the
human microbiome and host physiology which predisposes humans to rUTIs. By
assessing the applications of next generation and systems level methods, we also
recommend novel approaches to elucidate the systemic consequences of rUTIs which
requires an integrated approach for successful treatment. To this end, we will provide an
outlook towards the so-called ‘uncomplicated environment of UTIs’, a holistic and
systems view that applies ecological principles to define patient-specific UTIs. This
perspective illustrates the need to withdraw from traditional reductionist perspectives in
infection biology and instead, a move towards a systems-view revolving around patient-
specific pathophysiology during UTIs.
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INTRODUCTION

Recent advances in DNA and RNA sequencing contradicts prior
assumptions that human urine is sterile; instead it harbors a
unique microbiome with ecological interactions in health and
disease (Wolfe et al., 2012; Hilt et al., 2014; Alteri and Mobley,
2015; Whiteside et al., 2015; de Vos et al., 2017; Aragón et al.,
2018). As the physiological role of the bladder is to store
nutrients and waste products in the form of urine, healthcare
practitioners must consider the unique metabolism of bladder-
associated microbial communities within this niche
(Subashchandrabose et al., 2014; Alteri and Mobley et al., 2015;
Conover et al., 2016; Horsley et al., 2018; Martıń-Rodrıǵuez et al.,
2020). More so, with the emergence of pathogens that are
resistant to first-line antibiotics, there is a pressing need to
reinterpret uncomplicated UTIs, as an ever-changing and
complicated pathology in humans (Mediavilla et al., 2016;
Zilberberg et al., 2017). With the development of novel systems
biology approaches and next generation methods, new
viewpoints of UTIs and human-associated infections are
being uncovered.

Most recently, the American Urological Association estimates
that 150 million UTIs occur worldwide annually and cost up to
$6 billion USD in healthcare costs (Flores-Mireles et al., 2015;
AUA, 2016). This has led to the misapplication of antibiotics,
likely resulting in long-term effects upon the interconnected
gastrointestinal tract, vagina, and general urinary system
(Kostakioti et al., 2012; Bartoletti et al., 2016; Nielsen et al.,
2016; Gottschick et al., 2017; Thomas-White et al., 2018).
Uropathogenic Escherichia coli (UPEC) primarily causes UTIs
and is isolated from approximately 80% of patients (Flores-
Mireles et al., 2015). Other pathogens such as Enterococcus
faecalis, Klebsiella pneumoniae, or Proteus mirabilis can also be
isolated from UTI patients (Abat et al., 2015; Thänert et al.,
2019). UTIs begin at the urethra, colonize the bladder, and
ascend to the kidneys through a multitude of mechanisms such
as evading host protective factors or inhibiting host
immunoglobulin A transport (Rice et al., 2005; Ashkar et al.,
2008). The primary microbial strain causing the rUTI may
originate from new colonizers deriving from various
environmental reservoirs such as: a sexual partner,
contaminated foods, or fecal/gut contamination of the urinary
tract (Scholes et al., 2000; Nordstrom et al., 2013; Foxman, 2014;
Gilbert et al., 2017; Thänert et al., 2019). While strains which
initiate infection may cause a rUTI relapse, it is suggested that
the initial infection caused by one UPEC strain primes the
bladder for a new strain (or slightly similar) within several
hours, which is diagnosed by two separate cultures over a
period of six months (Andersen et al., 2012; Luo et al., 2012;
Schreiber et al., 2017; Anger et al., 2019). Specifically,
uncomplicated UTIs are acute infections of urinary tracts
without anatomical or physiological defects that would make a
patient more susceptible to initial urinary tract infections
(Hooton, 2012). Women are significantly at a higher risk for
contracting a UTI as compared to men. Previous reports suggest
that one-third of all women under the age of 26 will experience a
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
UTI and 50% of those women will experience a subsequent UTI
episode (Foxman, 2002; Brumbaugh et al., 2013).: it is estimated
that (This figure has potentially increased due to the emergence
of multidrug resistance (MDR) UTIs (; Hooton et al., 2004;
Nordstrom et al., 2013; Zilberberg et al., 2017).

As knowledge in modeling the fine-scale and dynamic
changes in biological organisms increases, the context of
personalized treatment strategies must also update with
observations in molecular systems biology and microbiome
sciences (Thiele et al., 2013; Thiele et al., 2020). Ideally, this
includes withdrawing from reductionist approaches to diagnose
UTIs and moving towards models that input multiple human
data sources to create patient-specific models to characterize
infection in a holistic view (Figure 1). Overall, our
understanding of both host-microbiome interactions and rUTI
pathophysiology elicits an update to the present concept of
infection biology by redefining infectious diseases through a
modern lens.
MICROBIOTA OF THE FEMALE
UROGENITAL SYSTEM

A culturable urinary tract microbial community exists within
healthy individuals (Hilt et al., 2014). Specifically, the urobiome
has been hypothesized to shift both microbial abundance and
predicted metabolic pathways associated with various patient-
specific urological morbidities or infections (Shoskes et al., 2016;
Aragón et al., 2018). While less reports of the male urinary
microbiome exist, both sexes share a similar core microbiome
with genera from Lactobaci l lus , Streptococcus , and
Corynebacterium; the latter is more common in men and is
regularly associated with the skin microbiome (Fouts et al., 2012;
Nelson et al., 2012; Lewis et al., 2013). Specifically, the urine of
healthy females is characterized by the presence of
Corynebacterium, Lactobacil lus, Staphylococcus , and
Streptococcus that tends to fluctuate abundance during periods
of health and disease (Fouts et al., 2012; Aragón et al., 2018).
Additionally when assessed by microbiome sequencing, it has
been found that female urinary tract samples mainly consist of
organisms from the phyla Actinobacteria (Actinomyces &
Arthrobacter) and Bacteroidetes (Bacteroides), which are
typically absent from their male counter parts (Lewis et al.,
2013). More so, E. coli is readily cultured from 91% of healthy
women and only 25% of men, highlighting a stark difference in E.
coli that is cultured as a residential bacteria from the female
urobiome (Ipe et al., 2013). Generally, these differences between
males and females leading to unique microbiomes could simply
be due to both anatomical and hormone differences between
sexes (Whiteside et al., 2015).

When assessing cohorts by age, it becomes clear aging affects
normal physiology and disease types (Irizar et al., 2018).
Specifically a core female urine microbiota which parallels
aging and age-related morbidities was identified and is
manifested as asymptomatic bacteriuria (Lewis et al., 2013). In
July 2021 | Volume 11 | Article 562525
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the case of patients with so-called asymptomatic bacteriuria, E.
coli typically acts as symbionts (Godaly et al., 2016). Therefore,
unnecessary and excessive application of antibiotics to “treat”
asymptomatic bacteriuria in differing age groups leads to long-
term consequences by depleting the resilient urinary system’s
microbiota, thus driving an increased prevalence of multidrug
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
resistance (MDR) pathogens within the urinary tract across
patients (Cai et al., 2015; Ipe et al., 2016; Zilberberg et al.,
2017). This suggests that the definition of UTI diagnosis: ‘the
detection of a pathogen from the not be sterile during all periods
of health. Table 1 summarizes the known microbial diversity of
urine of a symptomatic patient’, must be modified in
FIGURE 1 | A healthy host and associated commensal microbiota enforces an environment that prevents colonization by invasive pathogens. However
dysregulation of host physiology and native microbial communities is influenced by environmental factors. Through adverse community stressors such as DNA or
protein impairment, poor diet, depleted microbial diversity, excessive metals, an inactive lifestyle, antibiotic usage, and adverse environment. The two-pronged attack
of dysregulation of both microbial communities and host homeostasis leads to dysbiosis of beneficial bacteria, thus facilitating disease outcomes of individuals and
formation of new microbial communities reflective of the pathology.
July 2021 | Volume 11 | Article 562525
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TABLE 1 | Comparison of known microbial diversity of human male and female urogenital systems during the onset of physiological disequilibrium.

Male Female Common to Male & Female Location Citation

Actinobaculum, Actinobaculum, Actinobaculum Aerococcus Atopobium Azospira
Butyricicoccus Campylobacter Catonella
Corynebacterium Dialister Finegoldia Fusobacterium
Gardnerella Lactobacillus Mobiluncus Murdochiella
Peptococcus Peptoniphilus Peptostreptococcus
Porphyromonas Prevotella Proteiniphilum
Saccharofermentans Sneathia Soehngenia
Staphylococcus

Asymptomatic
Urine

Lewis et al.
(2013)Aminobacterium, Actinomyces,

Anaerococcus, Aerococcus,
Anaerophaga, Anaerococcus,
Anaerosphaera, Anaerosphaera,
Aerococcus, Anaerovorax,
Anaerotruncus, Arcanobacterium,
Atopobium, Arthrobacter,
Atopostipes, Atopobium,
Azospira, Azospira,
Butyricicoccus, Brevibacterium,
Campylobacter, Brooklawnia,
Catonella, Butyricicoccus,
Corynebacterium, Campylobacter,
Dialister, Catonella,
Eubacterium, Caulobacter,
Filifactor, Coriobacterium,
Finegoldia, Corynebacterium,
Fusobacterium, Dialister,
Gardnerella, Enterobacter,
Gemella, Enterobacter,
Gordonibacter, Enterococcus,
Kocuria, Facklamia,
Lactobacillus, Fastidiosipila,
Lactonifactor, Finegoldia,
Marixanthomonas, Flavonifractor,
Megasphaera, Friedmanniella,
Microvirgula, Fusobacterium,
Mobiluncus, Gallicola,
Murdochiella, Gardnerella,
Mycoplasma, Gulosibacter,
Peptococcus, Helcococcus,
Peptoniphilus, Howardella,
Peptostreptococcus, Incertae Sedis,
Porphyromonas, Jonquetella,
Prevotella, Lachnospiracea,
Pseudomonas, Lactobacillus,
Rikenella, Methylovirgula,
Proteiniphilum, Microvirgula,
Pseudoramibacter, Mobiluncus,
Saccharofermentans, Modestobacter,
Sediminitomix, Murdochiella,
Sneathia, Negativicoccus,
Soehngenia, Neisseria,
Staphylococcus, Oligella,

Paraprevotella,
Parvimonas,
Pelomonas,
Peptococcus,
Peptoniphilus,
Peptostreptococcus,
Porphyromonas,
Prevotella,
Propionimicrobium ,
Proteiniphilum,
Rhodococcus,
Rhodopila,
Saccharofermentans,
Sneathia,
Soehngenia,
Sporanaerobacter,
Staphylococcus ,
Stenotrophomonas,

(Continued)
Frontiers in Cellular and Infec
tion Microbiology | www.frontiersin.org
 July 24
 021 | Volume 1
1 | Article 562525

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Josephs-Spaulding et al. Systems Biology of rUTIs
TABLE 1 | Continued

Male Female Common to Male & Female Location Citation

Streptococcus,
Streptophyta,
Sutterella,
Tepidimonas,
Tessaracoccus,
Thermoleophilum ,
Varibaculum,

Atopobium
Corynebacterium
Staphylococcus
Streptococcus Veillonella

Corynebacterium, Escherichia coli
Lactobacillus
Prevotella
Staphylococcus aureus
Streptococcus (beta-hemolytic)

Corynebacterium, Staphylococcus Streptococcus Healthy Urine Fouts et al., 2012

Atopobium vaginae
Lactobacillus species (Lactobacillus iners, L.
crispatus, L. gasseri, or L. jensenii)
Leptotrichia spp.
Megasphaera

N/A Healthy Vagina Lamont et al.,
2011

N/A Lactobacillus spp.
Pseudomonas spp. Pseudomonadaceae

N/A Non-Pregnant
Urine

Yoo et al., 2016

N /A Bacillus spp.
Lactobacillus spp.
Ureaplasma spp.
Veillonellaceae

N /A Pregnant Urine Yoo et al., 2016

N /A Atopobium spp.
Fusobacterium spp.
Lactobacillus spp.
Megasphaera spp.
Megasphaera spp.
Prevotella spp.
Sneathia spp.
Ureaplasma spp
Ureaplasma urealyticum
Veillonellaceae

N /A Preterm
Delivery Urine

Yoo et al., 2016

Enterococcus faecalis
Escherichia coli
Klebsiella pneumoniae

Gardnerella
Klebsiella oxytoca

N /A Neuropathic
Urine - Void
spontaneously

Fouts et al., 2012

Escherichia coli
Klebsiella pneumoniae
Proteus

Escherichia coli Escherichia coli Neuropathic
Urine -
Intermittent
Catheter

Fouts et al., 2012

Enterococcus faecalis
Escherichia coli (ESBL)
Klebsiella pneumoniae
Providencia stuartii
Pseudomonas aeruginosa

Citrobacter koseri (diversus)
Enterococcus faecalis
Escherichia coli
Gram Negative Rods,

Enterococcus faecalis Neuropathic
Urine - Foley
Catheter

Fouts et al., 2012

Actinobaculum, Actinomyces, Aerococcus,
Anaerococcus, Arthrobacter,
Bifidobacterium spp., Campylobacter,
Clostridium Corynebacterium,
Enterococcus, Escherchia, Lactobacillus,
Gardnerella, Prevotella, Proteus,
Psuedomonas, Serratia, Staphylococcus,
Streptococcus

N /A Overactive
Bladder

Hilt et al., 2014;
Curtiss et al.,
2017

N /A Atopobium vaginae,
Chlamydia trachomatis,
Gardnerella vaginalis,
Mobiluncus species,
Mycoplasma hominis,
Trichomonas vaginalis,

N /A Bacterial
Vaginosis

Lamont et al.,
2011

Chlamydia trachomatis,
Neisseria gonorrhoeae,
Treponema pallidum

Atopobium vaginae
Bifidobacterium,
C. trachomatis,
Dialister,

Chlamydia trachomatis,
N. gonorrhoeae,

Male Penis or
Female Vagina
w/ HIV
Infections

Saxena et al.,
2012

(Continued)
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acknowledgement that human urine may is both the male and
female urogenital system during periods of health, disease, and
the asymptomatic colonization of microbiota.

UTIs and Vaginal Microbial Communities
The dynamic exchange of microbiota, between the vagina and
urinary tract illustrates a complex environment which is
dependent on microbial composition. Probiotic strains of
Lactobacillus (L. crispatus, L. gasseri, L. iners, and L. jensenii)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
that are the dominant bacteria of the vagina are demonstrated to
repel or suppress non-native pathogens in environments through
the production of secondary metabolites and control of
environmental pH (Mirmonsef et al., 2014; Brubaker and
Wolfe, 2017; Tachedijian et al., 2017; O’ Hanlon et al., 2019).
Specifically, recent metagenomic sequencing of both the female
urinary tract an vagina have highlighted highly similar
microbiota between both systems such as E. coli, Lactobacillus
spp. and Streptococcus anginosus suggesting a degree of cross-
TABLE 1 | Continued

Male Female Common to Male & Female Location Citation

Gardnerella vaginalis,
Leptotrichia,
M. genitalium,
Megasphaera elsdenii,
Mobiluncus spp.
Mycoplasma hominis,
N. gonorrhoeae,
Prevotella spp.
Anaerococcus, Bifidobacterium,
Coriobacteriaceae, Dialister, Lactobacillus,
Megasphaera, Prevotella, Rhodococcus,
Shuttleworthia, Streptococcus,

N /A Interstital
Cystitis /
Bladder Pain
(Urine)

Meriwether et al.,
2019

Bifidobacterium, Coriobacteriaceae,
Dialister, Finegoldia, Lactobacillus,
Megasphaera, Mobiluncus, Peptoniphilus,
Prevotella, Shuttleworthia,

N /A Interstital
Cystitis /
Bladder Pain
(Vagina)

Meriwether et al.,
2019

Candida Albicans,
Enterobacter spp.,
Enterococcus, E. coli,
Klebesilla spp. Proteus
mirabilis, Pseudomonas
aeurignosa

Blautia,
Klebsiella,
Prevotella,

Klebsiella spp Type 2
diabetes
Patients w/
Asymptomatic
Bacteriuria
(Urine)
Bladder
Cancer

Balamuruganvelu
et al., 2017; Liu
et al., 2017

Acinetobacter baylyi,
Anaerococcus,
Atopostipes, Candidatus
Limnoluna,
Carnobacteriaceae,
Rickettsiales, Rothia,
Rubrobacteria,
Rubrobacterales,
Sphingobacteriaceae

N /A Bladder
Cancer

Wu et al., 2018

Alloscardovia omnicolens,
Anaerococcus lactolyticus,
Anaerococcus murdochii,
Auritidibacter ignavus
Corynebacterium coyleae,
Corynebacterium
genitalium
Corynebacterium
minutissimum,
Enterobacteriaceae,
Gammaproteobacteria,
Gardnerella vaginalis
Haemophilus haemolyticus
Propionimicrob
um lymphophilum,
Streptococcus,
Ureaplasma parvum
Ureaplasma urealyticum,

N /A Prostate
Cancer

Shrestha et al.,
2018
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talk between both environments (Thomas-White et al., 2018).
These findings suggest a dynamic continuous interplay between
beneficial commensals and invasive pathogens (Vodstrcil et al.,
2017). For example, loss or depletion of one species of
Lactobacillus spp. leads to other organisms invading the
previously occupied niche (van de Wijgert et al., 2014). More
so, loss of commensal microbial communities consisting of
probiotic strains likely leads to dysbiosis and an increased
risk for UTIs, rUTIs, or infections from other bacteria and
viruses (Sewankambo et al., 1997; Martin et al., 1999; Lamont
et al., 2011; Stapleton et al., 2011; Gilbert et al., 2017). While
microbial dysbiosis is a known mechanism underlying bacterial
vaginosis, it remains unknown how dysbiosis of microbial
communities impacts the urinary tract (Zozaya et al., 2016; Liu
et al., 2017).

While microbiota of the host urogenital system are ultimately
connected, microbiota can also be shared between the urogenital
systems of two hosts.Interestingly, microbiome studies of
patients with bacterial vaginosis highlighted a shared
microbiome between the penile/urethral microbiota and
vaginal microbiota (Zozaya et al., 2016). Specifically, penile-
vaginal sex is the primary driver for the sexual exchange and
increase of G. vaginalis in individuals with or without bacterial
vaginosis (Vodstrcil et al., 2017). Furthermore, the increased
presence of G. vaginalis in tandem with biofilm-producing
communities drives an intense competition for resources,
leading to a decreased presence of Lactobacillus spp. and an
increased risk for acquiring urogenital infections (Machado et al.,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
2013). This loss of Lactobacillus spp. shifts the host vagina
towards a more alkaline environment to include more diverse
microbial communities such as Anaerococcus, Atopobium,
Bacteroides spp. Gardnerella, Mobiluncus spp, Mycoplasma,
Peptoniphilus, Peptostreptococcus spp. Prevotella, and
Streptococcus that is found in patients with bacterial vaginosis
(Lamont et al., 2011; Ravel et al., 2011; Mirmonsef et al., 2014;
Onderdonk et al., 2016).

Host Gut and Urogenital Microbiome
Crosstalk Underlying rUTIs
Gut microbiota play a unique role in the hypothetical fecal-
perianal-urethra transmission route:fecal-associated microbiota
can contaminate patient urine during a UTI. (Yamamoto et al.,
1997; Jantunen et al., 2001; Paalanne et al., 2018). Microbiome
sequencing of human feces revealed that high abundance of
either Escherichia or Enterococcus is a risk factor for bacteriuria
and symptomatic UTIs (Magruder et al., 2019). While previous
evidence suggested that women with E. coli UTIs have a different
strains in the urine and gut; Magruder and colleagues observed
that E. coli strains are closely related, further supporting the
hypothesis of a gut microbiota-UTI axis (Bahadori et al., 2019;
Magruder et al., 2019). Interestingly, a study investigating
genomic diversity of UTI patients between urine and feces
strains observed two major patterns: the first case being that
rUTIs are caused by the same strains and the opposite, there is a
rapid and complete overtake of the bladder environment by
another strain (Chen et al., 2013). These studies highlight the
FIGURE 2 | The healthy or asymptomatic gut, vagina, and bladder microbiome is stable across individuals conditions. These microbiota protect their host-
associated niche from foreign pathogens by controlling abiotic factors and outcompeting potentially invasive microbiota. Microbial dysbiosis and an adverse
environment disrupts host homeostasis through various mechanisms such as: poor hygiene, metabolic changes (menopause, metabolic diseases, etc.), exposure to
environmental metals or antibiotics, and consumption of food-borne pathogens. This allows for microbiota to transit between the perianal-urogenital pathway and in
turn shapes other microbial communities towards dysbiosis and predisposes individuals to UTI pathophysiology.
July 2021 | Volume 11 | Article 562525
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remaining lack of clarity in developing theories to describe the
origins of gut-associated UTIs. Furthermore, all present studies
lack longitudinal data that would be useful in describing
potential reservoirs that link gut microbiota changes before
and after the onset of uncomplicated UTIs (Chen et al., 2013).
With these observations in the interconnected urogenital
ecosystem, we can begin to decipher ecological interactions
and control mechanisms between hosts and microbes, which
drive changes in microbiota composition. For example, Thänert
et al. (2019) deciphered the core genomic relatedness among E.
coli, suggesting that E.coli is well-adapted to transit between
various environments within a host, such as between the human
gut and bladder. For example, in a study investigating pairwise
interactions from patient fecal-associated E. coli and UTI E. coli,
the authors identified unique mutations for virulence and
nutrient-uptake in addition to proteins for biofilm formation,
these factors are necessary for transition between the gut and
urinary tract (Nielsen et al., 2016). Figure 2 describes the normal
female urogenital microbiome during health and how gut-
associated pathogens transit to both the bladder and vagina
during dysbiosis.

A different aspect of the microbial reservoir route was
revealed when Gottschick et al. (2017) hypothesized that the
bladder and urethra have distinct microbiotas, in comparison to
the vagina. It was found that abundant bacteria of the vaginal
fluid from bacterial vaginosis patients were also increased in the
urine. This suggests that biofilms in the urine persist for extended
times as a reservoir for recurrent bacterial vaginosis infections
(Gottschick et al., 2017). More so, this study highlights the need
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
to clarify the underlying crosstalk and mechanisms of microbiota
transition between the urethral and vagina. For example, it is
understood that uropathogenic strains rapidly form biofilms to
rapidly grow in human urine, as compared to other gut-
associated E. coli strains (Anderson et al., 2003; Justice et al.,
2004; Forsyth et al., 2018). This evidence points to a major
question: is there a microbial reservoir for the initial
contamination and recurrence of UTIs? If so, what
mechanisms is UPEC employing to invade the urinary tract
when transiting from the gastrointestinal tract?
ANTIBIOTIC RESISTANCE MECHANISMS

The emergence of so-called “superbugs” is prevalent in global
hospitals (Liu et al., 2016; Malhotra-Kumar et al., 2016;
Versporten et al., 2018). The Antimicrobial Resistance
Epidemiological Survey on Cystitis (ARESC) conducted a
multi-national survey on various nations, in which 3018
pathogens were isolated from 4264 female patients (Schito
et al., 2009). In total, 2315 (76.7%) were E. coli with an
acquired complete resistance to ampicillin (Schito et al., 2009).
These microbiota become MDR through the acquisition of
genotypes through horizontal gene transfer or mutations to
resist treatments (Davies and Davies, 2010; Mathers et al.,
2015; Salverda et al., 2017; van der Zee et al., 2018). Increased
prevalence of MDR globally is likely attributed to wide-spread
and indiscriminate application of broad-spectrum antibiotics,
FIGURE 3 | (A) Commensal microbiota are associated with a healthy normal human urothelium and protect the host from invasive pathogens. (B) An initial course
of antibiotics enforces bacteria to express flagella, type 1 pili, and adhesin proteins to attach and colonize the urothelium. (C) Continued antibiotic exposure
eliminates commensal bacteria and surviving microbiota exposed to this stressor become resistant. Invasive bacteria begin to express virulence genes to colonize
and replicate within tissue. (D) Following replication, intracellular bacteria communities are formed and antibiotic resistant biofilms become matured. Continued
exposure to stressors such as antibiotics allows for the emergence of pathogenic, MDR biofilms, which underlines recurrent chronic UTIs of the host.
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which do not eliminate MDR pathogens (Cai et al., 2015; Goneau
et al., 2015). There is a great need for the application of antibiotic
stewardship surrounding UTI treatment (Rossolini et al., 2014;
Bartoletti et al., 2016).

Subinhibitory Antibiotic Treatments
In face of the emergence of horizontally-transferred MDR genes
globally, UTIs are one of the most common sources for human-
associated MDR pathogens due to inappropriate antibiotic usage
which do not eliminate pathogens (Cullen et al., 2012; Vellinga
et al., 2012; Nordstrom et al., 2013; Bartoletti et al., 2016;
Salverda et al., 2017; Zilberberg et al., 2017; van der Zee et al.,
2018). Through antibiotic treatment, microbiota regulate a
multitude of stress response mechanisms such as mutation/
modification of the genome to alter translation, produce
enzymes to degrade antibiotics, and modifications in
membrane permeability to counteract antibiotic stress (Dantas
et al., 2008; Gniadkowski, 2008; Davies and Davies, 2010). These
observations demonstrate a wide variety of mechanisms that
pathogens employ to tolerate stress. Chronic usage of both low-
dose and full-course antibiotics disturbs commensal microbiota,
dysbiosis drives virulence and biofilm-associated resistance
mechanisms by foreign pathogens, leading to recurrent
infections (Figure 3).To map bacterial responses and
adaptation, Erikson and colleagues (2017) created a database
assessing transcriptome-level expression of genes coding for E.
coli resistance and tolerance to various stressors in the
environment. The authors identified that 12% of all transcript
changes across all E. coli experiments were due to antibiotic
treatment. The multiple antibiotic resistance transcriptional
regulator (marA) was found to be overexpressed in the
database and acts as a key-driver for MDR phenotypes in E.
coli (Ruiz and Levy, 2010; Erikson et al., 2017). The increased
expression of marA in uropathogenic bacteria is associated with
expression of flagella proteins, biofilm production, and enhanced
planktonic aggregation; all are essential for pathogenic
colonization of urothelial tissue (Hadjifrangiskou and Hultgren,
2012). Furthermore, marA is a global regulator during antibiotic
stress and activates transcription of the multidrug efflux system,
which is observed in UTI patients (Schuster et al., 2017; Atac et al.,
2018; Chowdhury et al., 2019; Praski Alzrigat et al., 2021).

Polymicrobial UTI Biofilm Formation
and Persistence
Biofilms are microbial communities that are formed through a
complex matrix of extracellular polymeric substances, such as
proteins, polysaccharides, and DNA, attached to a surface
(Stewart et al., 2013). Biofilm formation is initiated when
planktonic cells attach to both biotic and abiotic surfaces in an
environment. Through the secretion and intake of autoinducers
(small molecules or peptides), bacteria chemically interact and
interpret changes in cellular density among the biofilm, in a
process described as ‘quorum sensing’ (Azeredo et al., 2017).
Lack of space within an environment triggers self-imposed
mechanical stress for the entire biofilm community, driving
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
biofilm formation and uptake of nutrients at the periphery of
the colony (Chu et al., 2018). Cells sense both surfaces and
intermingling microbiota, thus biofilm communities in tandem
are able to dynamically orchestrate gene expression to produce
adhesins for forming multicellular communities (Papenfort and
Bassler, 2016).

Most cases of lower UTIs with UPEC infections are diagnosed
as monomicrobial (Pruetpongpun et al., 2017). Specifically,
UPEC strains harbor numerous virulence factors to enable
survival and persistence of polymicrobial communities to
persist for months against harsh host environments, thus
acting as a reservoir for recurring infections in various human
niches (Meier et al., 2008; Luo et al., 2012; Bjarnsholt, 2013).
UPEC strains generally have a higher number of fimbrial gene
clusters such as adhesins and motility complexes, such as type 1
fimbriae or pili, and flagella which greatly enhance the ability of
UPEC to form biofilms (Pratt and Kolter 1998; Spurbeck et al.,
2011; Luo et al., 2012; Sharma et al., 2016). In the case of the
human urinary tract, the formation of polymicrobial biofilms
occurs as a reaction to stressful conditions such as sub-inhibitory
antibiotic exposure, to shelter bacteria from harm (Penesyan
et al., 2019). Thus, biofilms are heavily regulated by
environmental signaling and pathways, especially as a
defensive response to antibiotics (Hoffman et al., 2005; Karatan
and Watnick, 2009). For example, rapA enhances biofilm gene
regulation to increase antibiotic resistance, both ymgB and yafQ
initiates E. coli leads to biofilm formation under antibiotic stress
(Sharma et al., 2016).

Intracellular communities of biofilms are inhabited by
multiple species that are dependent on polymicrobial
interactions (chemical, physical, spatial organization)
(Kostakioti et al., 2013; Marchal et al., 2017) between mixed or
segregated communities. Whether multispecies interactions in
polymicrobial UTI biofilms generally are synergistic or
competitive remains unclear. It is difficult to paint a clear
overall picture of the polymicrobial ecological interactions in
UTIs, especially during antagonistic interactions when exposed
to antimicrobial agents (de Vos et al., 2017). However, it is
understood that organisms involved in a mutualistic symbiosis
will evolve towards the benefit of each other, leading to mixing of
cellular populations (Marchal et al., 2017). In contrast,
competitive microorganisms tend to dissociate, thus leading to
layered or otherwise divided populations (Momeni et al., 2013).
The mechanisms for various species interact with one another is
likely within a system to support one another through cross-
feeding, co-exist in neutralism, or rigorously compete in a
multispecies system respectively (Bauer et al., 2017; Ferreiro
et al., 2018; Giri et al., 2019). Determination of the dominating
bacterium in a polymicrobial biofilm can so far only be done in a
pair-wise manner, as there is insufficient information about the
entire picture of polymicrobial UTIs (de Vos et al., 2017).
However, analysis of multispecies communities may determine
the nature of underlying host-microbiota interactions.These
challenging observations of the microbial world, involving
complex species interactions, are presently being interpreted
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through in silico modeling of microbial communities and will be
discussed later (Wootton and Emmerson, 2005; Bauer et al.,
2017; Garcıá-Jiménez et al., 2018).

Animal-Associated Pathogens as a
Potential Reservoir for rUTIs
Over time, recent evidence has uncovered that the infection route
of both UTIs and rUTIs goes far beyond the fecal-perianal-
urethra transmission route. UPEC specifically is an
intermingling pathogen which switches between humans,
animals, and the environment. This paradigm described as
One Health requires the standardization of new studies to
better identify sources of transmission by integrating an
ecological and epidemiological framework that can be
translated into clinical settings (Ewers et al., 2012; Singer, 2015;
Davis et al., 2017). For example, zoonotic pathogens that may or
may not be MDR are reintroduced as a probable environmental
reservoir for rUTIs (Nordstrom et al., 2013). Preliminary studies
suggesting a potential link between animals, E. coli, in which
women who consume chicken or pork were at a 3.2 and 3.7
greater risk respectively, to acquire MDR UTIs, suggesting that
dietary habits are an important risk factor for E. coli associated
UTIs (Shooter et al., 1970; Bettelheim et al., 1974; Linton et al.,
1977; Manges et al., 2007; Vincent et al., 2010; Nordstrom et al.,
2013). Furthermore, there is evidence of a sharing of E. coli and
K. pneumoniae between humans and companion animals
(Stenske et al., 2009; Harada et al., 2012; Naziri et al., 2016;
Wang et al., 2018; Marques et al., 2019). Zoonotic gut-associated
E. coli presents a risk to humans by transferring from farm or
companion animals, through the environment, into humans is a
significant concern with regards to MDR pathogens (Cantas and
Suer, 2014; Pomba et al., 2017; Bourne et al., 2019).

Recently, the first MDR E. coli classified as a superbug on US
soil acquired the mobilized colistin resistance (MCR-1) gene
from a commercial hog farm and manifested itself as a clinical
UTI in a human patient (McGann et al., 2016). The MCR-1 gene
is readily transferred through horizontal gene transfer and
translates to a resistance against colistin, a last-resort antibiotic
(van der Zee et al., 2018; Wang et al., 2018; He et al., 2019).
MCR-1 was observed when profiling one of the most common
MDR UTI strains: ST131 (Hasman et al., 2015). The authors
assessed 1,923 meat and 1,188 human clinical isolates and
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
observed that 1.3% and 15.3% strains respectively were
identified as ST131. Specifically, nearly all meat isolates of
ST131 were from the H22 lineage, which corresponds with
fimH22 which is involved in the expression of adhesion and
host invasion genes (Hasman et al., 2015; Liu et al.,
2018).Additionally, a recent study of MCR-1 was found to be
wide-spread in companion animals (Wang et al., 2018).
Shockingly, evidence is mounting towards the potential that
microbial strains isolated from the feces of animals may be
directly linked to human UTIs by identifying shared strains
between both species and feces or urine (Johnson et al., 2008;
Osugui et al., 2014; Marques et al., 2019).

These studies illustrate a rapidly evolving story of MDR
pathogens in which the ever-increasing emergence of UTIs
that are associated with the interactions of contaminated
animals, presenting a significant threat to public health in both
communities and clinical settings. However, the correlation
between farm or companion animals should be interpreted
with caution. Identifying similarities between human/animal
isolates does not include the transmission of microbiota and
the routes that are employed to cause disease in humans and
therefore requires an integrated One Health approach to better
understand the issue (Ewers et al., 2012; Singer, 2015; Davis
et al., 2017).
HOST-MICROBIAL INTERACTIONS
LEADING TO UTI

Urine is the primary source of information for identifying UTIs
in patients. Analytical chemistry techniques use urine to detect
biomarkers, such as excreted metabolites from pathogens (Smart
et al., 2019). Specifically, urine is a waste product from various
metabolic end-points of secondary metabolism whose
concentration is determined by an individual’s diet, lifestyle,
and a variety of other environmental factors (Bouatra et al., 2013;
Playdon et al., 2016; Tang, 2017). With regards to sex, the urine
of females generally contains greater quantities of citrate, but not
as much calcium or oxalate as males (Ipe et al., 2016). These
metabolic differences likely favors a cohort of specific microbes
which thrive in these niches. A large-scale multi-experimental
TABLE 2 | Microbial changes linked to host metabolic dysregulation.

State of dysbiosis Metabolic Change Microbiota Change Citation

Follicular fluid during IVF ↑ Estradiol & progesterone ↑ Lactobacillus gassen, L. crispatus, L. jensenii Pelzer et al., 2012
Kidney Transplant ↑ Folate metabolism ↑ E. coli & E. faecalis Rani et al., 2017
N/A ↑ Levels of free glycogen ↑ Lactobacillus spp. Mirmonsef et al., 2014
Post-Menopausal (Symptomatic) ↓ Estrogen & low glycogen ↓ Lactobacillus spp. Muhleisen and Herbst-Kralovetz, 2016
Premenopausal ↑ Estrogen & glycogen ↑ Lactobacillus spp. Muhleisen and Herbst-Kralovetz, 2016
Renal Tubular Acidosis Hypercalciuria ↑ E. coli Jamshidian et al., 2018
Type Two Diabetes Mellitus ↑ Fasting Glucose & hyperlipidemia ↑ Prevotella, Lactobacillus, and Shuttleworthia Liu et al., 2016
Urinary Tract Infections ↑ Acetic Acid & trimethylamine ↑ E. coli Lam et al., 2014
Urinary Tract Infections ↑ Ethanolamine ↑ E. coli Sintsova et al., 2018
Urinary Tract Infections ↑ Acetate & Creatinine ↑ E. coli Grochocki et al., 2017
Urosepsis ↑ Procalcitonin/Albumin ratio ↑ Increased E. coli Luo et al., 2018
Ju
N/A, Not Applicable.
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mass spectrometry study of human urine samples was conducted
to create the database of “The Human Urine Metabolome” to
identify 2651 different metabolites and unique ionic species in
healthy human urine (Bouatra et al., 2013). Overall, this study
preliminary assesses the diversity of the urine metabolome in
healthy humans and can be useful to predict metabolites which
predisposes individuals to UTIs. However, there is a lack of data
deta i l ing the metabol ic s ta te of ur ine in var ious
pathophysiologies and lack of knowledge regarding biomarkers
that may predispose patients to various infection outcomes.

Host Metabolome & Bacteria of the
Urogenital System
Urine is a hostile environment for most bacterial species due to a
pH range of 5.5 to 7, with an average of 6.2 (Rose et al., 2015).
This biofluid is a patient-specific excretion containing a
metabolomic profile, strongly dependent on health or disease
(Beger et al., 2016). Advances in quantitative mass spectrometry
have enabled the identification of specific metabolites as
biomarkers of infections or inflammation. For example, a study
identified unique biomarkers of UPEC-specific UTIs by
identifying an increased ratio of acetic acid to creatinine and
trimethylamine concentration in urine (Lam et al., 2014). While
traditional methods such as a urine dipstick urinalysis have a
variable sensitivity of 68 to 88% across different patient groups,
employment of mass spectrometry was found to have a 92% true
positive predictive value to diagnose urinary tract infections
(Devillé et al., 2004); Lam et al., 2014). (Table 2 illustrates
directional changes in microbial abundances of the urinary
tract associated with disturbances in host-metabolism.
Microbiota adapt and uptake various energy sources from the
host diet, likely leading to modifications of urine composition
and metabolic profile (David et al., 2014; Playdon et al., 2016;
Thiele et al., 2020). Generally, high quantities of glucose in the
urine tends to favor bacterial growth and eventually a UTI
(Wilke et al., 2015). For example E. faecalis is able to grow in
urine containing greater concentrations of glucose and has
enhanced recurrent biofilm formation potential, primarily in
diabetic patients (Pillai et al., 2004). Such environments
exacerbate the development of pathogenesis in patients who
are affected by metabolic disorders.

Hormonal changes that impact specific host metabolic
functions play a major role in the onset of female urogenital
infections. Menopause influences metabolite availability and may
increase the risk of UTIs (Mody and Juthani-Mehta, 2014).
Menopausal women typically have lower levels of available
estrogen, thereby lowering the level of glycogen within vaginal
fluids (Arnold et al., 2016). This change in the metabolic
composition of vaginal fluids, leads to substantial differences in
substrates that microbiota employ to attach to the vaginal
epithelium (Chan et al., 1984). Therefore menopausal
individuals with low estradiol levels tend to have an increased
risk for rUTIs (Mody and Juthani-Mehta, 2014). In contrast,
increased exposure to estrogen modulates urothelium growth
and differentiation to supplement epithelial defense mechanisms
against UPEC invasion and UTI recurrence (Lüthje et al., 2013;
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Mody and Juthani-Mehra, 2014). Clinical observations found
that the application of low-doses of estriol (0.03 mg) with
probiotic Lactobacillus acidophilus can restore vaginal
microflora (Donders et al., 2010). This therapy was
demonstrated to restore normal vaginal physiology and
mitigated bacteria linked to bacterial vaginosis (O’Hanlon
et al., 2011; Mueck et al., 2018). In a recent review of non-
antibiotic treatments for the treatment of UTIs in
postmenopausal women, the authors suggested that the
application of topical estrogen not only normalizes vaginal
microbial composition, but also represent a non-antimicrobial
therapy for the prevention and treatment of UTIs (Caretto
et al., 2017).

Impact of Dietary Transition Metals on
UTI Pathophysiology
Metals and their ions play major roles in human health and
disease through electron exchange or redox reactions, thereby
promoting cellular stress through reactive oxygen species.
Chronic dietary exposure to metals in the food-chain has the
potential to negatively impact human health, leading to a variety
of nephron- and urinary-tract associated diseases (Zhao et al.,
2017; Xu et al., 2018; Yen et al., 2018). Excessive exposure to
dietary metals eventually reach the kidneys and bladder causing
pathologies; heavy metals are also taken up by various
microbiota to incite host infection (Subashchandrabose et al.,
2014; Habibi et al., 2017; Hyre et al., 2017; Zhang et al. 2019).
Therefore, interpretation of rUTIs must be updated to include
the possibility that metal exposure from inhalation, diet, and
cosmetics are potential risk factors for UTIs onset and
recurrence. On the other hand, mitigation of urinary levels of
heavy metals may prove to be an alternative treatment to rUTIs
by depriving pathogens use of essential metals or nutrients in
comparison to antibiotic usage (Subashchandrabose and Mobley,
2015; Bauckman et al., 2019).

Free iron (Fe) is necessary for most biological processes such
as cellular respiration, DNA replication, and oxygen transport
via hemoglobin. Therefore, there is an intense competition
between the host and pathogens for Fe, Fe deprivation from
uropathogens may be a primary mechanism to mitigate virulence
(Subashchandrabose and Mobley, 2015; Bauckman et al., 2019).
For E. coli pathogenesis, invasion and disruption of the host
urothelium to increase the availability of free Fe2+/Fe3+ is
essential to initiate and maintain virulence (Gao et al., 2012).
This occurs through the promotion of the UPEC toxin
?-hemolysin, which ruptures and degrades host membranes to
promote hemoglobin release, thereby promoting bacterial
growth and virulence (Dhakal and Mulvey, 2012). UPEC
opportunistically adapts to Fe abundant conditions by
increasing the expression of siderophores, to scavenge
environmental metals(ireA, irp-2, iucC) (Zhao et al., 2009;
Shields-Cutler et al., 2015 Additionally, the induction of
evolved virulence genes (chuA, fepA, fyuA, iroN, iucA, iutA,
and sitA) are required for Fe uptake and transport systems to
incite UPEC virulence mechanisms (Subashchandrabose
and Mobley, 2015; Khasheii et al., 2016; Habibi et al., 2017;
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Tang et al., 2018). Siderophore biosynthesis and Fe acquisition
from the host-environment allows UPEC to promote
asymptomatic growth by overexpressing genes for growth,
fitness, and colonization (Watts et al., 2012). Uptake and use
of metals by uropathogens enforces an environmental niche for
invasive microbiota to resist natural and artificial stressors, thus
leading to persistent host infections (Hancock et al., 2008;
Subashchandrabose and Mobley, 2015; Ipe et al., 2016). During
UPEC-associated UTIs, Cu levels in the urine are elevated and
play an underappreciated role in UTI pathophysiology
(Subashchandrabose et al., 2014). Bacterial Cu-associated
virulence is not as common as Fe-associated virulence in UTIs,
though it is still observed in numerous organisms. The
micronutrient Cu is necessary for a variety of aerobic
organisms such as bacteria, fungi, plants, and animals by
supporting metabolic processes through the maintenance of
proteins and metalloenzymes; conversely, the interaction of Cu
ions and free oxygen radicals can damage proteins (Festa and
Thiele, 2011). Hyre et al. (2017) demonstrated that the gain or
loss of electrons of Cu through oxidation-reduction reactions
constitutes an active host response mechanism to infections with
UPEC, Klebsiella pneumoniae , and Proteus mirabilis.
Ceruloplasmin, a transport protein for Cu, serves as a
molecular source for Cu in the urine (Hyre et al., 2017). This
molecular mechanism can be observed in clinical patients who
are affected by Menkes disease, a lethal hereditary disorder of Cu
metabolism leading to Cu deficiency (Tümer and Moller, 2010).
Consequently, those with this Cu deficiency are especially prone
to developing rUTIs. (Kim et al., 2019). In contrast, recent
studies demonstrate that host-mediated mobilization of Cu
into the urinary tract during UTIs occurs, this illustrates a
potential novel approach to reduce bacteria which rely on Cu-
virulence within the urinary tract (Hyre et al., 2017). Table 3
describes uropathogenic mechanisms of siderophores and other
transport mechanisms to acquire free metals from hosts, to elicit
behaviors to colonize the urothelium.
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
EXPLORING THE URINARY TRACT
ENVIRONMENT WITH SYSTEMS
BIOLOGICAL APPROACHES

The following represents recent advances in next-generation
models and methods to examine UTI pathomechanisms. These
methods reach endpoints that cannot be typically reached
through traditional in vivo or in vitro models. To understand
the underlying environmental mechanisms which control host
invasion, these methods are useful to develop novel treatment
strategies for rUTIs. To achieve precision treatment options for
UTIs, the application of next-generation sequencing, genome-
scale metabolic modeling, and the development of novel
microfluidic or stem cells technologies to mimic the bladder is
needed based on patient specifics, rather than generalizations.
These next-generation methodologies foreshadow a future for
treating UTIs from an ecological and systemic perspective, rather
than through reductionist approaches. These examples bolster
the argument for a necessary adjustment towards clinical
diagnosis of infections and progression of host-specific diseases.

Transcriptomics and the Tolerome
E. coli are flexible microbes that thrive in various niches and
environments by tuning gene expression. These modifications
allow E. coli to rapidly adapt to stressful environments for
successive colonization during environmental stressors, like
antibiotic exposure, to incite host pathogenicity (Schwartz
et al., 2016; Erickson et al., 2017; Zhang et al., 2017). While
details of UPEC function in human urine exist, there is a lack of
consistent information about UPEC acclimation to a rapidly
changing environment Hagan et al., 2010; Sintsova et al., 2019).
Assessing UPEC gene expression from patients becomes
convoluted due to patient-specific host factors which may
induce various bacterial genes, bacterial behavioral responses,
and gene expression in differing host environments
(Subashchandrabose et al., 2014; Schreiber et al., 2017).
TABLE 3 | Uropathogenic uptake of various metals to incite virulence in host urothelium.

Metal Pathogen Gene Name (s) Function Citation

Cu II UPEC Ybt Pathogenic siderophore Chaturvedi et al., 2012
Cu 1+/2+ UPEC cusC Cu resistance & virulence mechanisms Subashchandrabose and Mobley, 2015
Fe UPEC Iha Fe siderophore uptake and virulence of bladder and

kidney
Léveillé et al., 2006

Fe UPEC FyuA Fe-Ybt siderophore uptake & increased virulence through
biofilm in bladder

Hancock et al., 2008; Brumbaugh
et al., 2013

Fe (Haem) UPEC ChuA Heme receptor for iron transport and kidney invasion
during UTI

Hagan and Mobley, 2009

Fe UPEC fepA, iroN*, iutA*, fyuA, chuA,
hma, sitA

Iron uptake and metal transport* Subashchandrabose and Mobley, 2015

Ni2+ & UPEC nikA Nickel acquisition & urofitness Subashchandrabose et al., 2014
Ni(II) UPEC Ybt Metal acquisition, unknown purpose Robinson et al., 2018
Zn2+ UPEC ZnuACB & ZupT Uropathogenic fitness & metal transport Sabri et al., 2009
Ni Uropathogenic S.

aureus
NixA, NikA Urinary tract colonization and increased fitness Hiron et al., 2010

Ni & Co Uropathogenic S.
aureus

Cnt (Opp1) Colonization of bladder & kidneys during UTI Remmy et al., 2013
Ju
*Both the IutA and IroN have been observed to lead to bladder colonization.
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Furthermore, a recent study which employed UPEC strains from
humans, compared pathogenesis mechanisms from humans in
mice and found a similar gene expression pattern associated with
metabolic machinery (Frick-Cheng et al., 2020).The complexity
to assess human UPEC infections requires updating and
clarifying definitions of bacterial virulence in heterogeneous
human patients for optimized precision health outcomes
(Mobley 2015). This aspect of biology underlies the deepening
complexity of systems-oriented interaction needed to
understand patient-specific disease outcomes.

Presently, the “Tolerome” describes transcriptome-level
information detailing E. coli tolerance and resistance response to
over 89 different stressful conditions (Erickson et al., 2017).
Understanding the Tolerome and environmental stress response
of uropathogens at a global transcriptomic level can enable a
realistic understanding of the functions underpinning microbial
colonization in urine. The undertaking of this study translates to
56263 events of up- or down-regulation in 5049 different genes
(Erickson et al., 2017). Comparative studies of this nature can
further elucidate unique bacterial signatures of microbial
communities necessary for maintaining physiological equilibrium
in human hosts. For example, global pathogenic transcriptional
responses are potential biomarkers of infection. For example, a
recent study by Sintsova and colleagues (2019) identified a novel
and universal transcriptional response which controls various
transcriptional regulators, thus driving rapid growth of UPEC
during infection. While these studies assess E. coli response to
various known or stable environments, investigations of rapidly
changing environments is not well understood. E. coli response to
environments is not well-characterized(i.e during dynamic disease
processes and pathophysiologies), there is a need to quantify
microbial communities phenotypic reactions to host-specific
perturbations and interpret how these changes impact human
health or disease in real-time.

Shotgun metatranscriptomics profiles the transcriptome of all
present strains of a microbial community in an environment and
their functions (Shakya et al., 2019). While metagenomic
sequencing provides information on the assembled genome
and potential genes of organisms which comprise microbial
communities, it cannot provide real-time information on the
functions or metabolic diversity of these communities (Mick and
Sorek, 2014). More so, while metagenomics can identify active or
inactive microbial members of a community, does not provide
much information towards the function of a microbial
community like metatranscriptomics (Brown et al., 2017;
Shakya et al., 2019). While metagenomics can provdie
information on all functional possibilities of the microbiome,
metatranscriptomics provides a snapshot of the present
infection state of the patients. Particularly, application of
metatranscriptomics deciphers both function and diversity of
microbial communities in responsive and non-responsive
individuals. Further advances in next-generation sequencing
has led to the development of scRNA sequencing of microbial
communities as a novel approach to elucidate functional
interactions among microbial species, mixed microbial
communities, and within the host-associated microbiome
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
(Lloyd et al., 2018; Imdahl et al., 2020; Kuchina et al., 2021).
While scRNA sequencing for microbial communities is
developing, metatranscriptomics is becoming readily available
to identify present organisms in microbial communities from
human samples in tandem with microbe-specific gene expression
changes host responses (Shakya et al., 2019). Metatranscriptomics
was applied to study the vaginal microbiota during bacterial
vaginosis, following antibiotic treatment (Deng et al., 2018).
Subjects were divided into responsive and non-responsive
groups to identify potential mechanisms underlying response to
the drug. The authors observed that G. vaginalis upregulated
CRISPR-Cas genes as a stress response to mitigate DNA strand
breakage from metronidazole by inducing DNA repair
mechanisms. Female patients colonized by G. vaginalis with
this unique change in gene expression were shown to be non-
responsive to antibiotic treatment. Overall the observations from
this study cast doubt on previous assumptions regarding
microbial communities and pathogenesis progression.
Metatranscriptomics for assessing the functional roles of diverse
microbial strains in various environmental conditions of humans
is growing in the literature (Shakya et al., 2019). But to date,
metatranscriptomics has not been applied to urine or patient
samples with UTIs in vitro or in vivo. Application of
metranscriptomics for the bladder microbiome would clarify
perspectives of not only the microbiota occupying the bladder,
but also their community interactions in respect to
UTI pathophysiology.

In Silico Modeling of Human-Like
Bladder Environments
Organisms adapt their metabolism to maintain homeostasis in
ideal or adverse environments by selecting either rapid growth or
resistance phenotypes (Ewald et al., 2017). Specifically, the
metabolic flux of prokaryotes dynamically adjusts during
growth alterations, thus optimal adaptation of protein
production depends on pathway expression that constrains or
allows growth (Bartl et al., 2013). Fulfillment of metabolic
requirements to maintain physiological balance is a strategy
employed by pathogens in rapidly changing environments to
thrive or survive (Wessely et al., 2011). Depending on required
response time, E. coli employs transcriptional or post-
transcriptional mechanisms to regulate metabolic pathways for
stress adaptation (Wessely et al., 2011). Identification and
understanding of stress-response regulatory networks
illustrates the role of environmental sensing and non-genetic
changes in the emergence of disease phenotypes or MDR in
pathogens. During this phase, the rapid acclimation of bacteria
can be exploited to innovate treatment options for infectious
human diseases (Conover et al., 2016).

By assessing the remarkable flexibility and diversity of
differentially expressed genes between different stressful
conditions, we can decipher UPEC adaptation towards
colonization and persistence within differing human hosts
(López-Maury et al., 2008). Transcriptional responses to
various environmental cues are understood, less is known
about UPEC response to heterogenous humans with regards to
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UTIs (Erickson et al., 2017). Furthermore, transcriptional
changes that are host-pathogen specific may not be readily
replicated in biological experiments, due to complexities when
attempting to control specific environments. Thus, the
appl icat ion of genome-scale metabol ic models for
uropathogens which predicts an organisms’ transcriptional and
metabolic changes when primed by environmental stresses is a
promising approach to unravel the complexities pathophysiology
and predict treatment strategies to prevent or intervene against
rUTIs (Józefczuk et al., 2010). The mapped genomes of various
wild-type and mutant E. coli strains have been defined and
applied to predict or engineer various metabolic capabilities
through reconstruction of constraint-based genome-scale
models. Modeling metabolic systems has been constantly
updated since the original metabolic network reconstruction of
E. coli in 2000 (Edwards and Palsoon, 2000; Orth et al., 2011;
King et al., 2015; O’Brien et al., 2015). Genome-scale metabolic
modeling is useful for creating genome-wide transcriptional
networks to illustrate transcriptional response to various
environmental stresses. By integrating both transcriptomics
and metabolomics to identify conserved responses for various
environmental stressors, such as oxidative stress, acid, cold, heat,
and shifting glucose to lactose in media which are necessary for
the maintenance of homeostasis (Józefczuk et al., 2010; Seo et al.,
2015; Du et al., 2019). Application of genome-scale metabolic
models that incorporate environmental stressors provides
inspiration to interpret uropathogenic transcriptomes which
are associated with chronic infections.

In silico community metabolic models of microbiota provide
valuable insights into the ecological interactions within a
microbial consortia. In brief, metabolic models of microbial
species are constructed based on the organism’s annotated
genome sequence. Enzymes, for which predicted genes are
assigned to reactions, which the enzymes can catalyze. By
connecting the individual reactions to a metabolic network, in
silico representations of the organism’s catalytic capabilities allow
predictions of metabolic phenotypes, for instance environmental
context-dependent growth rates, nutrient utilization, and
metabolic by-products release (O’Brien et al., 2015). Models of
community metabolism are constructed by connecting species-
specific models and allowing the exchange of metabolites
between cells as well as the competition for shared resources.
To our knowledge, there are no applications of community
metabolic models of the urinary tract microbiome. However, in
silico modeling of the human gastrointestinal microbiota
revealed specific metabolic processes, including fermentation
and metabolic cross-feeding interactions that are altered in
disease when compared to healthy controls (Bauer and Thiele,
2018; Graspeuntner et al., 2018; Aden et al., 2019; Pryor et al.,
2019). The rationale behind such models is that microorganisms
not only adjust their metabolism in response to abiotic stresses
and chemical composition of the environment, but also depend
on the presence or absence of other microbial cells in their
vicinity (Klitgord and Segrè, 2011).

In systems medicine, these models are applicable to generate
hypotheses of factors that promote ecosystem colonization with a
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potential pathogen. Thereby providing potential treatment
options, as well as prevention strategies against resistant
pathogens. Thus with the growing appreciation of the role of the
urinary tract microbiome in rUTIs, in silico models of community
metabolism can expand clinical understanding of rUTI
pathophysiology and foster the development of novel therapeutic
strategies to target the urobiome specifically.

In Vitro Modeling of Human-Like
Bladder Environments
For designing an in vitro model reflective of human rUTIs that
yields meaningful data, mimicking human conditions
realistically is necessary. Identification of a relevant urine
medium, characterization of the physical bladder environment,
and understanding the patient-specific urobiome function is
required. Standard artificial urine medium that was first
detailed in 1961 for UTI modeling is based on the 17 most
prevalent urine substances (Altman, 1961; Brooks and Keevil,
1997). However, Boutra and colleagues identified more than
2600 unique metabolite species in healthy urine by aggregating
urine from multiple donors to compensate for missing
metabolites (Boutra et al., 2013). Consequently, this approach
to urine modeling further complicates reproducibility due to
urine metabolite composition and variability. To our knowledge,
there is a deficiency of studies detailing uropathogen adaptation
to various environmental conditions of healthy urine or during
pathophysiological changes over time.

Due to the advancing need to model and replicate human
disease outside of human systems and away from animals in a
translational way towards precision medicine, a plethora of
methods have been developed to interpret complex human
diseases in vitro. Generally, preliminary animal models have
provided the investigative foundation to understand human
systems, but consistently fail to replicate and provide specific
insights into the complexity of the human system, let alone the
intricacy of the human microbiome over a lifetime. The nature of
precision medicine requires that advances move away from the
testing of in vivo models which do not reflect human health.
There is a rapid drive to develop in vitromodels which accurately
mimic human systems.For instance, a flow chamber culture
system was developed to model human bladder infection in
real-time to observe the phenotypic changes. These dynamic
UPEC changes demonstrated a switching between filamentous or
rod-shape forms to facilitate secondary infections, which could
not be observed in standard in vivo or static in vitro models
(Andersen et al., 2010; Andersen et al., 2012). (). In a follow-up
study of the same cultured flow chamber system, E. coli was
allowed to flow through a microfluidic system, in comparison to
static growth (Stærk et al., 2015). A key difference was flowing E.
coli expressed the adhesive type-1 fimbriae, as an essential
regulator for bladder cell adhesion,colonization, biofilm
formation, and eventually persistence in urothelium (Stærk
et al., 2015). Recently, a novel microfluidic biosensor for
monitoring and measuring electrical fluctuations caused by
mechanical movements of single bacteria was developed (Kara
et al., 2018).This model can uniquely employ patient-derived
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urine to study UPEC movement and susceptibility to various
host-derived factors in real-time (Kara et al., 2018). These works
illustrate the benefits of engineered microfluidic-based systems
for UPEC time-course studies, in comparison to static models
which do not accurately reflect infection in the human host.

Stem cells used to create human-like systems to model disease
pathophysiology, towards drug discovery, and toxicity testing by
developing cell lines relevant to humans for precision medicine
(Singh et al., 2015). Advances in UTI modeling is becoming
closer to reality as researchers design in vitro approaches to
employ induced pluripotent stem cells from donors to
differentiate stem cells into various cell types for creating
organ-like structures. One patient-specific method surgically
collects human urothelium from donors to create organoid
cultures, relevant to a patient-specific bladder and urinary tract
(Varley and Southgate, 2011). More recently, Horsley et al.
(2018) presented a new method for organoid development
which relies on urine for characterizing various infection types.
This novel organoid model employs a human-based urothelium
model as a platform to study the relationship between hosts and
pathogens in a variety of environments (Horsley et al., 2018).
Overall, these advances describe the rapid movement towards
redefining human UTIs by transplanting patients into a
laboratory setting, and vice-versa. In principle, this paves a
path towards studying the interactions of host-specific cells
with microbiota in application to personalized medicine.
CONCLUSION

This review challenges previous interpretations of UTI treatment
and diagnosis to discuss UTIs as a host-centric disease, requiring
a holistic approach. There is an overarching need to understand
the uncomplicated UTIs as a dynamic system, complicated by
host-associated environments and dysbiotic microbial
communities. Integrating the ecological interactions between
the host and microbial factors is necessary to progress rUTI
diagnosis and therapy in the age of antimicrobial resistance. This
integration includes observations of the female bladder
microbiome in health and disease, host metabolic
dysregulation, and dietary contaminants such as antibiotics or
transition metals. This information can be processed through the
combination of transcriptomics, in silico metabolic modeling or
systems biology methods, and culturing induced pluripotent
stem cells with microfluidic systems which are representative
of the host. Overall, the presentation of the ‘uncomplicated
environment of UTIs’ perspective can become an essential
framework to further assess the effects of UTIs and their
treatments on entire patients, rather than only the urinary
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tract. Thus advancing systems biology applications and
precision medicine practices towards understanding UPEC
pathology and other urogenital colonizing pathogens is
ultimately necessary to effectively treat patients. The broad
aspect of systems medicine in tandem with omics-based
analysis and in vitro modeling can pave the way towards a
mechanistic understanding of evidence-based diagnosis for
rUTIs. To date, there are no systems medicine works on UTIs.
Systems medicine is evolving more rapidly as available data
becomes available and is translated into patient-specific models
of biological systems. In particular, UTIs are not only one of the
most common types of human infections but it is also poorly
understood as a complicated system. That is why presently,
s c i en t i s t s , b iomed ica l eng ineer s , phys i c i ans , and
bioinformaticians have the best chance together, for
combinatorial efforts towards employing precision treatments
for rUTIs while maximizing benefits to patients.
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