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Car driving is supported by perceptual, cognitive, and motor skills trained through
continuous daily practice. One of the skills that characterize experienced drivers is
to detect changes in the driving environment and then flexibly switch their driving
modes in response to the changes. Previous functional neuroimaging studies on motor
control investigated the mechanisms underlying behaviors adaptive to changes in
control properties or parameters of experimental devices such as a computer mouse
or a joystick. The switching of multiple internal models mainly engages adaptive
behaviors and underlies the interplay between the cerebellum and frontoparietal network
(FPN) regions as the neural process. However, it remains unclear whether the neural
mechanisms identified in previous motor control studies also underlie practical driving
behaviors. In the current study, we measure functional magnetic resonance imaging
(fMRI) activities while participants control a realistic driving simulator inside the MRI
scanner. Here, the accelerator sensitivity of a virtual car is abruptly changed, requiring
participants to respond to this change flexibly to maintain stable driving. We first
compare brain activities before and after the sensitivity change. As a result, sensorimotor
areas, including the left cerebellum, increase their activities after the sensitivity change.
Moreover, after the change, activity significantly increases in the inferior parietal lobe
(IPL) and dorsolateral prefrontal cortex (DLPFC), parts of the FPN regions. By contrast,
the posterior cingulate cortex, a part of the default mode network, deactivates after
the sensitivity change. Our results suggest that the neural bases found in previous
experimental studies can serve as the foundation of adaptive driving behaviors. At the
same time, this study also highlights the unique contribution of non-motor regions to
addressing the high cognitive demands of driving.

Keywords: car driving, motor control, internal model, frontoparietal network, default mode network, salience
network

INTRODUCTION

A car is one of the most advanced devices humans operate in daily life. Accordingly, people need
to accumulate a certain amount of driving experience to acquire practical driving skill. One of the
skills that characterize experienced drivers is the ability to rapidly detect changes in the driving
environment and then flexibly switch the driving mode in response to those changes. For example,
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experienced drivers can maintain their car’s movement at a
constant speed regardless of running uphill or downhill, and they
can keep their driving stable after their car suddenly encounters
a slippery road surface. Such adaptive driving behaviors are
supported by sophisticated computation in the brain. Knowledge
of human motor control, which has been extensively studied
in the fields of psychology and neuroscience, could play
an important role in understanding the neural mechanism
underlying adaptive driving behaviors (Lappi, 2015). However, a
limited number of studies have investigated the neural basis for
driving from the perspective of human motor control.

A neural system that may support flexible switching of
driving modes is internal models, which mimick the input–
output properties of our body or controlled devices (Wolpert
et al., 1995; Wolpert and Kawato, 1998; Kawato, 1999). The
brain maintains not a single but multiple internal models
employed for different environments or properties of control
devices. Previous neuroimaging studies suggest that the motor-
related regions, especially in the cerebellum, maintain multiple
internal models in a modular manner (Imamizu et al., 2003;
Krakauer et al., 2004; Girgenrath et al., 2008). Imamizu et al.
(2003) demonstrated that different control properties (velocity
vs. rotation control of a computer mouse) were organized
with spatially segregated patterns in the cerebellum. The neural
mechanism that allows flexible switching of multiple internal
models has also been studied (Imamizu et al., 2004; Imamizu
and Kawato, 2008). The frontoparietal network (FPN) regions
play a key role in internal model switching through interacting
with the cerebellar cortex. The roles of the FPN regions
are different; the superior parietal lobe (SPL) is involved in
switching depending on predictive contextual information, while
the dorsolateral prefrontal cortex (DLPFC) and inferior parietal
lobe (IPL) contribute to switching driven by sensorimotor
feedback (Imamizu and Kawato, 2008). Thus, the acquisition and
switching of multiple internal models is fundamental to adaptive
motor control. The previous literature on human motor control
provides clues to understanding the neural mechanisms involved
in flexible switching of driving modes in response to changes in
the driving environment. However, previous findings were based
on well-controlled experimental paradigms using a computer
mouse or a joystick. It remains unknown whether the neural
bases found in previous motor control studies also support the
skills needed for practical car driving.

In the current study, we investigated the brain regions
recruited in car driving using functional magnetic resonance
imaging (fMRI). Participants drove a virtual car on a simulated
circuit course by controlling custom-made devices, which had
a relationship between device control and car behavior (i.e.,
input-output relationship in driving) similar to that in actual
driving, inside the MRI scanner (Figure 1A). We defined the
ratio of acceleration relative to a stepping-in amount of the
accelerator pedal as accelerator sensitivity and abruptly changed
this sensitivity at the mid-point of a straight section of the
course in order to introduce unpredictable changes in the
driving environment into the experimental task. Participants
were required to respond to the change quickly while maintaining
stable driving. We explored activation/deactivation in response

to the change in the level of accelerator sensitivity. We also
performed multivoxel pattern analysis (MVPA) to examine the
cerebellar activity patterns involved in switching of driving
modes in response to different levels of accelerator sensitivity.

MATERIALS AND METHODS

Participants
Twenty-five healthy volunteers (three females) with a mean age of
21.9 years (19–33) participated in our experiment. We recruited
volunteers who had obtained a driving license. The mean licensed
period was 2.7 years (0.4–15). The mean hours of driving per
week was 4.42 (0.25–21) across the participants. We collected
data of 10 participants from the University of Tokyo and 15
participants from Hokkaido University. We excluded the data of
five participants from analysis due to large head motion during
the fMRI scan (for details, see below: Preprocessing of MRI data).
We eventually analyzed the data of 20 participants (two females)
with a mean age of 22.2 years (19–33), a mean licensed period
of 2.9 years (0.8–15), and mean driving hours of 4.8 (0.5–21).
Written informed consent was obtained from all volunteers in
accordance with the latest version of the Declaration of Helsinki.
The experimental protocol was approved by the ethics committee
at the University of Tokyo.

Experimental Task
Participants drove a virtual car using a driving simulator
(CarSim, Virtual Mechanics, Japan) by controlling a custom-
made MRI-compatible control device (Leading-Edge Research
and Development Accelerator, Inc., Japan; Figure 1A). They
manipulated two levers serving as brake and accelerator pedals
with their left hand while controlling a knob serving as a steering
wheel with their right hand. This custom-made device required
participants to coordinate different effectors to operate their
virtual car, as with actual car driving. Furthermore, the input-
output relationship in this virtual car driving was similar to that
in actual driving. We customized program codes with MATLAB
and Simulink (Mathworks, United States) to set up the ratio of
acceleration/deceleration to a stepping-in amount of the brake
and accelerator pedals and that of steering angle to the degree of
turning the knob.

A virtual car ran on a circuit course consisting of 1,000-
m straight sections and 150-m radius curves (Figure 1B).
Participants were instructed to drive their car while following
a preceding car during the task. They were required to keep
their car at a 25-m distance from the preceding car as precisely
as possible through the straight sections. We incorporated this
task to control the timing of changes in accelerator sensitivity
and participant driving behavior. Note that participants learned
how to keep the target distance during the 5-day practice session
before the fMRI experiment (for details, see below). Although
following the preceding car was required, they were not required
to attend to the distance between the two cars while driving
through the curves. At the start of each run, the participant’s car
was placed at the beginning of a curve (star in Figure 1B). The
preceding car ran at 40 km/h for the first 400 m of the straight
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FIGURE 1 | (A) Experimental setup. Participants drove a virtual car while lying on the bed of an MRI scanner. The virtual car was controlled with MRI-compatible
customized devices. The two levers manipulated with the index and middle fingers of the left hand served as brake and accelerator pedals (upper right) while the
knob controlled with the right hand functioned as a steering wheel (lower right). Participants viewed a monitor via a mirror. (B) Driving course. The driving circuit
consisted of 1,000-m straight sections and 150-m radius curves. The star denotes the starting point. The preceding car runs at 40 km/h for the first 400 m of the
straight section and accelerates from 40 to 60 km/h for the next 100 m. The white line and two houses were displayed to inform participants of the acceleration point
of the preceding car. The bottom panel shows the trajectory of the preceding car’s speed. The trajectory is aligned to the beginning of the straight section (0 m).

section and accelerated from 40 to 60 km/h for the next 100
m. A white line across the road and two houses were located
in the display 400 m from the beginning of the straight section
to inform participants of the timing of the acceleration. Then,
the preceding car ran on the remaining 500-m straight section
at 60 km/h (speed trajectory of preceding car is shown in the
bottom panel of Figure 1B, see also Supplementary Movie 1).
We positioned a tree as a landmark of the end of the straight
section. The preceding car decelerated from 60 to 40 km/h while
going around a curve. We defined the drive through a straight
section as one trial. Participants were asked to drive their car four
laps in a run, that is, a run consisted of eight trials.

We defined “accelerator sensitivity” as the ratio of the
acceleration of a virtual car to the stepping-in amount of

an accelerator pedal. We established two levels of accelerator
sensitivity (high and low sensitivity), and they abruptly changed
from one to the other in the middle of driving on the straight
section. Specifically, they changed when the participant’s car
crossed the 500-m point from the beginning of the straight
section. The high-sensitivity level was three times more sensitive
than the low-sensitivity level. This means that a car at high
sensitivity produced three times greater acceleration than one at
low sensitivity with the same amount of stepping pressure on
the accelerator pedal. The level of accelerator sensitivity changed
in half of the trials, while not in the remainder of the trials.
Participants were informed of the initial accelerator sensitivity
at the beginning of each run to reduce the difficulty of driving
through the first curve.
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Experiment Schedule
We asked each participant to conduct a 5-day practice, held
outside an MRI scanner, and a 2-day MRI session. Note that
the practice and MRI sessions were not always conducted on
consecutive days. One participant conducted MRI experiments
for 3 days due to his limited schedule. In the practice session,
participants drove their car with either low or high sensitivity
during an entire run (i.e., without changes in accelerator
sensitivity). They practiced driving a car with the two levels of
sensitivity in eight runs each throughout the 5-day practice (i.e.,
16 runs in total). We instructed them to keep a 25-m distance
from the preceding car while driving. A white line was displayed
25 m behind the preceding car as guidance of the target distance
in the first eight runs of the practice session. In addition to the
16-run practice, participants conducted the same task as the MRI
experiment, in which the accelerator sensitivity changed in the
middle of driving on a straight section, for two runs at the end of
the practice session. The MRI session consisted of five runs per
day, and thus we conducted 10 runs over 2 days. Note that three
participants (out of 20) performed nine runs in total due to their
limited schedule during the MRI scanning.

Magnetic Resonance Imaging Data
Acquisition
A 3 Tesla Magnetom Prisma scanner (Siemens, Germany) with
a 64-channel head coil was used to acquire T2∗-weighted echo-
planar images (EPI). We acquired 435 volumes in each run
with a gradient echo EPI sequence under the following scanning
parameters: repetition time (TR), 2,000 ms; echo time (TE),
30 ms; flip angle (FA), 80◦; field of view (FOV), 192 × 192 mm;
matrix, 64 × 64; 32 axial slices; and thickness, 4 mm with a
1-mm gap. T1-weighted (T1w) magnetization-prepared rapid
acquisition gradient-echo (MP-RAGE) fine-structural images
were obtained with 1 × 1 × 1-mm resolution with a gradient
echo sequence [repetition time, 2,250 ms; echo time, 2.98 ms;
inversion time (TI), 900 ms; flip angle, 9◦; FOV, 256 × 256; 192
axial slices; and slice thickness, 1 mm without gap]. Although
we collected MRI data at both the University of Tokyo and
Hokkaido University, the scanners (i.e., 3 Tesla Magnetom
Prisma, Siemens), number of channels in a coil, and imaging
parameters were identical to each other.

Preprocessing of Magnetic Resonance
Imaging Data
We performed preprocessing of the MRI data using the pipeline
provided by fMRIPrep version 20.2.0 (Esteban et al., 2019).
The preprocessing steps included slice-timing correction, motion
correction, segmentation of T1-weighted structural images,
coregistration, and normalization to Montreal Neurological
Institute (MNI) space (for more details on the pipeline).1 The
first five volumes of each run were discarded. We next applied
spatial smoothing to the data with a 6-mm full-width at half-
maximum (FWHM) Gaussian kernel using SPM 12 (Wellcome
Trust Centre for Neuroimaging, London, UCL) on MATLAB.

1http://fmriprep.readthedocs.io/en/latest/workflows.html

Spatial smoothing was not applied to the data for MVPA,
since this might blur the fine-grained information contained in
multivoxel activity (Mur et al., 2009).

We calculated frame-wise displacement (FD) based on the six
realign parameters as an index of the amount of head motion for
each run in each participant (Power et al., 2012). We excluded the
runs in which the number of frames with FD > 0.5 mm was over
5% of all frames in a run from further analysis. As a result, the
number of runs of five participants’ data became less than five;
thus, we excluded these five participants from data analysis.

General Linear Model Analysis
We used a general linear model (GLM) analysis to explore
activations or deactivations in brain regions after changing the
level of accelerator sensitivity. One run included four conditions
involving the sensitivity change: (1) change from low to high
sensitivity, (2) change from high to low, (3) no change from
low sensitivity, and (4) no change from high sensitivity. The
following three periods of straight-section driving in each of the
four conditions were modeled as separate 12-boxcar regressors
that were convolved with a canonical hemodynamic response
function: (1) a baseline period (period between the timings when
the participant’s car passed the 100-m point of the straight
section and when the preceding car passed the 400-m point),
(2) an acceleration period (period between the timings when the
preceding car passed the 400-m point of the straight section and
when the participant’s car passed the 500-m point), (3) a target
period (period between the timings when the participant’s car
passed the 500-m point of the straight section and when the
preceding car passed the 1,000-m point). Note that we excluded
the period for the first 100-m driving on the straight section from
the baseline period to avoid contamination of the baseline period
by the effect of curve driving. The six realign parameters were
modeled as a regressor of no interest. We removed low-frequency
noise using a high-pass filter with a cut-off period of 128 s. Serial
correlations among scans were estimated with an autoregressive
model implemented in SPM12.

To explore regions that were activated after the change in
the level of accelerator sensitivity, we generated a contrast image
using a fixed-effects model. We first generated contrasts of the
target vs. baseline period in both the change and no-change
conditions. We then subtracted the contrast in the no-change
from that in the change condition:(

Targetc − Baselinec
)
−

(
Targetn − Baselinen

)
. (1)

Here, Targetc and Baselinec represent the target and baseline
periods, respectively, of the change condition. Targetn and
Baselinen represent the target and baseline periods, respectively,
of the no-change condition. Next, we explored regions that
were deactivated after the sensitivity change by subtracting the
contrasts in the opposite direction:(

Targetn − Baselinen
)
−

(
Targetc − Baselinec

)
. (2)

We also generated contrasts of the acceleration vs. baseline
period using trials in both change and no-change conditions
together in order to investigate brain regions that were
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activated or deactivated in response to acceleration of the
preceding car. The contrast images of all participants were
taken into the second-level group analysis using a random-
effects model of a one-sample t-test. We adopted statistical
inference with a threshold of p < 0.05 [family-wise error
(FWE) corrected at cluster level with a cluster-forming threshold
of p < 0.001]. The anatomical localization was determined
according to the automated anatomical labeling (AAL) atlas
(Tzourio-Mazoyer et al., 2002).

Multi-Voxel Pattern Analysis
We performed MVPA to classify whether participants were
driving the car with either high or low accelerator sensitivity from
the fMRI voxel patterns (Haynes and Rees, 2005; Kamitani and
Tong, 2005; Norman et al., 2006). We modeled the target period
of each of the eight trials as a separate boxcar regressor that was
convolved with a canonical hemodynamic response function. The
GLM also included the six realign parameters as a regressor of no
interest. As a result, eight independently estimated parameters
(β-values) per run were yielded for each voxel. We used the
parameter estimates within a region of interest (ROI) as the
input of a classifier. We used the linear support vector machine
(SVM) implemented in LIBSVM2 with default parameters (a fixed
regularization parameter C = 1). Because it has been suggested
that the cerebellum is involved in internal models (Shadmehr
and Holcomb, 1997; Wolpert et al., 1998; Imamizu et al., 2000;
Shadmehr and Krakauer, 2008; Cerminara et al., 2009; Stein,
2009), we targeted the anterior and posterior cerebellum as ROIs,
which were anatomically defined with the AAL atlas and split into
the left and right sides.

The SVM classifier was trained using the data in the no-change
conditions (Figure 2, left). We first aimed to examine whether the
cerebellar activity exhibited distinct patterns that corresponded
to the low- and high-sensitivity levels. We thus applied the
trained classifier to the data in the no-change conditions (“test
1” in Figure 2, right) and obtained a classification accuracy.
Next, we aimed to examine whether the cerebellum switched its
activity patterns according to the change in the level of accelerator
sensitivity. Here, we applied the classifier trained with the data
in the no-change condition to the data in the change conditions
(“test 2” in Figure 2, right). Here, we allocated high- or low-
sensitivity labels to the test data according to sensitivity levels
after the sensitivity change (darker colored car in the bottom-
right area of Figure 2). We expected classification accuracy to
be significantly higher than chance level if voxel patterns were
switched in response to the sensitivity change. In contrast, we
expected classification accuracy to be significantly lower than
chance if voxel patterns were unaffected by the change. We
performed a leave-one-run-out cross-validation in both “test 1”
and “test 2” procedures to estimate classification accuracies as
a way to prevent the differences among runs from becoming a
confounding factor.

We statistically tested decoding accuracies by calculating
z-scores using the following permutation procedure (Langfelder
et al., 2011; Shibata et al., 2016; Ohata et al., 2020). We

2http://www.csie.ntu.edu.tw/~cjlin/libsvm/

first randomly permuted the correspondence between the fMRI
activity and the condition labels (i.e., high vs. low sensitivity)
of the training dataset and then applied the classifier trained
using the permuted data to the test dataset. We generated 1,000
surrogate classification accuracies by repeating the procedure
1,000 times. We calculated the z-scores of the original (without
permutation) classification accuracies based on the empirical
distribution of the 1,000 surrogate data for each participant
separately. We tested the statistical significance of the z-scores
using a two-sided t-test with a threshold of p < 0.05.

RESULTS

Behavioral Results
Figure 3A shows time courses of the inter-vehicle distance
(distance between the preceding and participant’s driving cars)
for one participant as an example. The time courses were aligned
at the possible timing of change in accelerator sensitivity (0
s: timing of passing the 500-m point of the straight section,
see Figure 1B). His car speeded up after the change in the
level of accelerator sensitivity from low to high, resulting in the
shortened inter-vehicle distance (Figure 3A, left). By contrast, his
car slowed down due to the sensitivity change from high to low,
resulting in the lengthened distance (Figure 3A, right). Once the
inter-vehicle distance reached the maximum or minimum, the
distance gradually returned to the target distance (25 m). Next, we
subtracted the inter-vehicle distance in the no-change condition
from that in the change condition at every sampling point.
Figure 3B shows the difference averaged across participants. The
difference in the inter-vehicle distance became largest at 9.6 s
(averaged across participants, SD: 4.5 s) after the accelerator
sensitivity changed from low to high and at 12.0 s (SD: 6.0) after
the sensitivity changed from high to low. Note that the reported
mean peak timing is not the same as the peak timing seen in
Figure 3B; this was because the averaged value was strongly
affected by the data of some participants with large values.

General Linear Model Results
We explored the brain regions in which the activities responded
to the change in the level of accelerator sensitivity according to
the contrast of activity represented in Equation (1). Figure 4A
shows the regions activated after the sensitivity change (see
Table 1). We first found significant activation in the left
cerebellum, cerebellar lobule VI. We also found activation in
the bilateral supramarginal gyrus and right middle frontal gyrus,
which are portions of the IPL and DLPFC, respectively. The
bilateral anterior insula (AI) and the thalamus, which are the
components of the salience network (SN, Seeley et al., 2007;
Menon and Uddin, 2010; Seeley, 2019), also activated after
the sensitivity change. Next, we explored the deactivations in
response to the sensitivity change (Figure 4B and Table 1)
according to the contrast represented in Eq. (2). The posterior
cingulate cortex (PCC), which is a component of the default
mode network (DMN, Raichle et al., 2001; Buckner et al.,
2008), and a part of the right cerebellum (VIIA CrusI) were
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FIGURE 2 | Multivoxel pattern analysis procedure. First, a classifier was trained to discriminate high from low sensitivity using the fMRI data in the no-change
conditions. The trained classifier was applied separately to the data in the no-change conditions (denoted as “test 1”) and the data in the change conditions
(denoted as “test 2”). The anterior and posterior parts of the cerebellum split into the left and right sides are selected as ROIs.

significantly deactivated in response to the change in the level of
accelerator sensitivity.

Next, we investigated brain regions activated by the
acceleration of the preceding car. We generated the contrast
between the acceleration and baseline periods from the data
in both change and no-change conditions together. We found
that some activated regions overlapped those found in Figure 4
(Supplementary Figure 1). We were concerned that the activities
involved in the preceding car’s acceleration were, for some reason,
different between the change and no-change conditions and
affected the activations in response to the change in sensitivity
(i.e., Figure 4). To assess this concern, we generated the contrasts
(acceleration vs. baseline periods) from the data in the change
and no-change conditions separately. We compared the two
contrasts but found no region showing a significant difference
in the contrasts. Therefore, the activations/deactivations shown
in Figure 4 were very unlikely involved in the preceding car
acceleration prior to the change in acceleration sensitivity.
Finally, we compared the activation related to the accelerator
sensitivity changes with those related to the preceding car’s
acceleration. We found significantly larger activations in the
sensorimotor regions, including the left primary motor area
and supplementary motor area, and in the bilateral IPL in
response to the preceding car’s acceleration than in response to
the accelerator sensitivity changes (Supplementary Figure 2).

Multivoxel Pattern Analysis Results
We first examined whether the cerebellar activity distinguished
the two levels of accelerator sensitivity (high vs. low sensitivity)
while participants were driving their car. We performed the
classification analysis using the data only in the no-change
condition (“test 1” in Figure 2). As a result, we did not
find any significant above-chance classification accuracy in any
cerebellar ROI: 50.6% (SD: 12.9%) in the left anterior cerebellum
[t(19) = −0.29, p = 0.77], 48.9% (13.2%) in the right anterior

cerebellum [t(19) = −0.31, p = 0.77], 48.7% (11.5%) in the
left posterior cerebellum [t(19) = −0.50, p = 0.62], and 52.5%
(12.0%) in the right posterior cerebellum [t(19) = 0.99, p = 0.33].
We next applied the classifier trained using the data in the no-
change condition to those in the change condition (“test 2” in
Figure 2). The accuracy in no ROI was significantly higher than
the chance level: 48.9% (7.02%) in the left anterior cerebellum
[t(19) = −0.74, p = 0.47], 51.8% (7.03%) in the right anterior
cerebellum [t(19) = −0.97, p = 0.34], 47.8% (8.76%) in the
left posterior cerebellum [t(19) = −1.26, p = 0.22], and 51.5%
(8.92%) in the right posterior cerebellum [t(19) = 0.83, p = 0.42].
Accordingly, contrary to our expectation, the cerebellum did not
maintain distinct activity patterns corresponding to the two levels
of accelerator sensitivity or switch patterns in response to the
sensitivity change.

DISCUSSION

The current fMRI study investigated the neural bases supporting
driving behaviors to flexibly switch driving modes in response to
changes in the driving environment. We first found the activities
in the sensorimotor area, including the cerebellum, the FPN, and
SN regions, that increase in response to abrupt changes in the
accelerator sensitivity of a virtual car (Figure 4A). By contrast,
we found deactivation in the PCC, a component of the DMN,
after the change (Figure 4B). The GLM results suggest that the
sensorimotor system is engaged in adaptive behaviors for car
driving. Our results also highlight the role of the large-scale
networks related to saliency, attention, and cognition in adaptive
driving behaviors.

Drivers are required to construct and switch multiple
driving modes in response to changes in driving environments.
Internal models may be the key mechanism underlying such
adaptive driving behavior. Previous studies, in which participants
controlled a computer mouse or joystick, demonstrated the
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FIGURE 3 | Behavior results. (A) Time courses of inter-vehicle distance for one participant as an example. The solid blue and red lines denote time courses of the
distance in the conditions when accelerator sensitivity changed from low to high and from high to low, respectively. By contrast, the dotted blue and red lines
indicate time courses of the distance in the conditions where the sensitivity remained low or high, respectively. The distance was averaged across trials in each
condition. The vertical dotted line denotes the timing at which his car passed the 500-m point of the straight section. In the change conditions, the level of
accelerator sensitivity changed at this timing. (B) Time courses of difference in inter-vehicle distance between change and no-change conditions. The values were
averaged across participants at every moment. Colored shaded areas indicate 95% confidence intervals.

cerebellar activity that reflects the acquisition of internal models
(Imamizu et al., 2000, 2003; Seidler and Noll, 2008; Kim et al.,
2015). The current driving study also reveals that the activity in
the left cerebellar lobule VI significantly increases after the change
in the level of accelerator sensitivity (Figure 4A). Importantly, the
activated area found in our study largely overlaps that involved in
velocity control, not positional control, of a cursor manipulated
with a computer mouse (Imamizu et al., 2003). This finding
suggests the possibility that internal models for the same control
property are allocated to the activity in the same cerebellar region
regardless of the type of control device.

We also found activation in the DLPFC, IPL, and insula
(Figure 4A), all of which were reported to be associated with
internal model switching (Imamizu et al., 2004). It has been
suggested that the DLPFC and IPL contribute to internal model
switching driven by the error between predicted and actual
sensorimotor feedback (postdictive switching, Imamizu and
Kawato, 2008). Forward internal models predict sensorimotor

feedback from the efference copy of a motor command and
are influential in the comparison between predicted and actual
feedback (Wolpert et al., 1995; Miall and Wolpert, 1996;
Blakemore et al., 2000). In our task, the level of accelerator
sensitivity randomly changed in a trial-by-trial manner so
that internal models could not be switched in advance of the
sensitivity change (i.e., predictive switching). Thus, the model
optimized for the environment before the sensitivity change
addressed the new environment, resulting in a large prediction
error. Our results suggest that such prediction error functioned as
a signal of the change in the driving environment and prompted
the brain to switch internal models postdictively.

Although the GLM results suggest the possibility of internal
model switching, the MVPA results show neither distinction
nor switching of cerebellar activity patterns during car driving.
One possible reason for this unexpected result is that internal
model switching is not necessarily an optimal strategy for every
participant to address changes in the driving environment.
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FIGURE 4 | GLM results. (A) Clusters of activation (in red) that significantly increased after change in the level of accelerator sensitivity. (B) Clusters of activation (in
blue) that significantly decreased after change in the level of accelerator sensitivity. A threshold at p < 0.05 (FWE-corrected at cluster level with a cluster-forming
threshold of p < 0.001) was set for statistical testing. AI, anterior insula; Post CG, post central gyrus; SMG, supramarginal gyrus.

Driving engages executive cognitive functions, such as attentional
control, cognitive inhibition, and cognitive flexibility (Navarro
et al., 2018). Some participants might dominantly exert cognitive
strategies in which such executive functions are employed rather
than internal model switching. The driving simulator used in
this study did not provide a perfectly realistic driving experience.
The difference between real and simulated driving experiences
might encourage participants to develop cognitive strategies
uniquely optimal to the simulated environment. We found a large
variance in the classification accuracies across participants, which
might imply individual differences in their strategies. Another
possible reason is the difficulty of controlling participant driving
behavior in the driving simulator. We could control participant
driving behavior to some extent by requiring them to follow
the preceding car at a constant distance. However, there was
no measure to monitor whether and when participants switched
their driving modes. Hence, it might be possible to use the trials

in which participants could not switch their driving modes, or the
switching timing was much delayed, for MVPA.

We also found deactivation in the PCC in response to the
change in the level of accelerator sensitivity (Figure 4B). The
PCC is a part of the DMN, a set of coordinated brain regions
that shows more activation at rest than during cognitive demand
tasks (Raichle et al., 2001; Buckner et al., 2008). The DMN
regions respond to non-stimulus induced or internally oriented
thoughts such as mind-wandering (Andrews-Hanna et al., 2010;
Raichle, 2015), and thus the activation could interfere with task
performance (Eichele et al., 2008; Hinds et al., 2013). The change
in the driving environment possibly required participants to
switch their cognitive modes of car-driving in addition to internal
model switching. The deactivation in the PCC encouraged them
to switch such cognitive modes quickly. The activities in the
DMN regions are typically anticorrelated to those in the FPN
regions (Fox et al., 2005, 2009). Previous studies suggest the
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TABLE 1 | Summary of GLM results.

MNI coordinates(Peak voxel)

Brain region Side Cluster size t-value at peak x y z

Activate

1. Thalamus Right 282 6.53 16 −16 12

2. Supramarginal gyrus Left 647 6.06 −66 −26 28

3. Superior frontal gyrus Right 208 6.05 24 −4 72

4. Middle frontal gyrus Right 156 6.00 36 40 32

5. Postcentral gyrus Right 624 5.91 38 −34 58

6. Cerebellum (VI) Left 190 5.46 −20 −60 −22

7. Insula Right 290 5.14 28 20 6

8. Insula Left 204 4.94 −30 16 12

9. Opercular part of inferior
frontal gyrus

Right 144 4.71 54 10 14

Deactivate

1. Cerebellum (VIIa Crus1) Right 252 6.21 16 −84 −34

2. Posterior cingulate gyrus Left 158 5.00 −2 −44 42

A threshold at p < 0.05 (FWE-corrected at cluster level with a cluster-forming threshold of p < 0.001) was set for statistical testing.

crucial role of the SN in switching this balance between the
FPN and DMN (Sridharan et al., 2008; Menon and Uddin, 2010;
Uddin, 2015). Importantly, the current study found significant
activation in the bilateral AI and thalamus, parts of the SN
(Figure 4A). Our results imply the involvement of the large-scale
networks (FPN, DMN, and SN) and their switching mechanism
in adaptive driving behavior, which was a possible candidate of
unique neural features for car driving.

Previous neuroimaging studies have identified multiple brain
regions involved in different aspects of car driving using driving
simulators or video games (Walter et al., 2001; Calhoun et al.,
2002; Uchiyama et al., 2003; Horikawa et al., 2005; Spiers
and Maguire, 2007; Okamoto et al., 2020; see also review and
meta-analysis studies in Lappi, 2015; Navarro et al., 2018). The
neural correlates of driving reported in the previous literature
overlap those found in the current study. Calhoun et al.
(2002), having identified functional co-activation patterns using
independent component analysis, related the cerebellar and
occipital activation to complex visuomotor integration during
driving. This study also found that the activation in the DMN
regions decreased during driving and was negatively correlated
with driving speed, suggesting an association with the vigilance
function during driving. In addition, Spiers and Maguire (2007)
suggested that the activations in the cerebellum, posterior parietal
cortex, and SN regions were associated with unprepared actions
such as swerving and avoiding collisions. These regions were
considered necessary for responding to abrupt events. Thus, the
brain regions found in the current study reflected the suggestions
from previous findings. Meanwhile, our study aimed at more
specific functions for driving (i.e., switching of multiple driving
modes) than those examined in previous studies in order to
elucidate the detailed role of each region from the perspective of
adaptive motor control.

Although we obtained findings suggesting that adaptive
driving behaviors were involved in internal model switching,

it is still open to debate whether the brain allocates different
internal models to different parameters with the same type of
control property (e.g., different angles in rotation control or
different gains in velocity control). Hence, there remains the
possibility that the brain achieved switching of driving mode
without changing internal models in the current experimental
setting. One possible scenario could be the brain using a single
internal model for controlling a virtual car and adjusting the
control parameters of the internal model in response to changes
in the driving environment. Consequently, as a limitation of this
study, we cannot deny the possibility that the internal models
are not switched.

As mentioned above, our driving simulator cannot represent
a perfectly realistic driving experience. In particular, the device
used in this study required participants to control steering and
acceleration/deceleration using different effectors from those
used in actual driving (i.e., steering control by turning a steering
knob with the right hand vs. by manipulating a steering wheel
with both hands; acceleration/brake control by pushing two
pedals with the left index finger vs. by stepping on two pedals
with the right foot). We assume that the skill targeted in the
current study, that is, flexibly switching different driving modes in
response to changes in the driving environment, is supported by
higher-order motor/cognitive functions that can be generalized
regardless of the effectors used. However, we still cannot deny the
possibility that the target skill is dependent on control devices.
Therefore, it might also be possible that we observed brain
activities that were unique to the current setup. The best approach
to overcoming this limitation is to develop a device that can
measure brain activity, with comparable precision to an fMRI
scanner, in a real car. Because the current technology cannot
offer such devices, we translated driving behaviors into possible
naturalistic behaviors inside an fMRI scanner while minimizing
head movements (realistic steering handle and acceleration
and brake pedals manipulated in the MRI environment;
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Kim et al., 2020; Okamoto et al., 2020). In our simulator, the
accelerator and brake pedals were replaced by hand levers while
the steering wheel was replaced by a knob dial. Such substitutions
are common in the controllers of remote-control cars. Future
studies are needed to improve both the driving simulator and
neuroimaging devices in order to measure brain activities in more
realistic driving experiences than that of the current study.

The current study targeted adaptive driving behaviors
determined by sensorimotor feedback (i.e., switching of driving
modes in response to changes in the driving environment
postdictively). However, experienced drivers also possess
the skill of anticipating future changes and preparing for
possible responses to environmental changes. Unfortunately,
our experimental design did not allow us to investigate
such predictive aspects of driving skills. To further probe
comprehensive driving skills, we need future studies on
predictive switching of driving modes by introducing into
experimental tasks various environmental changes that
participants can anticipate in advance (e.g., an uphill incline that
decelerates car speed).

In sum, this study searched for the neural substrates that
support flexibly switching of different driving modes in car
driving. Our findings demonstrate that the neural bases found
in previous motor control studies, especially the cerebellum
involving internal models and the DLPFC, IPL, and insula for
switching of different internal models, are also fundamental to the
adaptive behaviors of switching driving modes. Furthermore, this
study also highlighted the involvement of the large-scale brain
network in addressing cognitive demands for driving, suggesting
a possible neural process unique to car driving.
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