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Serum ceramides have emerged as potential biomarkers of
insulin resistance, diabetes, and heart disease. In this issue
ofDiabetes, Lemaitre et al. (1) report the largest longitudinal
study to date correlating sphingolipids with insulin resis-
tance, profiling a cohort of 2,086 American Indians at high
risk for diabetes. With the analytical power that derives
from profiling such a large number of samples obtained at
two visits, 5 years apart, the data from the Strong Heart
Family Study (SHFS) revealed that several ceramide species
correlated with hyperinsulinemia and the HOMA of insulin
resistance (HOMA-IR) in this at-risk population. Here, we
summarize these results in the context of other preclinical
and clinical studies investigating roles for ceramides as drivers
of cardiometabolic dysfunction.

Ceramides are central intermediates in the biosynthetic
pathway that produces the large family of sphingolipids,
which includes more than 4,000 distinct molecular enti-
ties. Much of the complexity in the cellular sphingolipid
pool derives from the large number of acyl chains that can
be incorporated into the ceramide scaffold. Over the past
20 years, a large number of studies in preclinical models
suggest that ceramides may be among the most pathogenic
nutrient metabolites that accumulate in obesity, linking
overnutrition to insulin resistance and its sequelae of
comorbidities. In cultured cells or isolated tissues, ceram-
ides inhibit insulin signaling and action and inhibit lipid
oxidation (2). In rodents, numerous ceramide-lowering
interventions have been shown to improve insulin sensi-
tivity and ameliorate diabetes and cardiovascular pathol-
ogies (2). Because of these data, a handful of companies
have started to develop ceramide-reducing interventions
in hopes of producing insulin-sensitizing therapeutics.

Despite the strongly consistent findings obtained in
preclinical models, the role of ceramides in human car-
diometabolic pathologies has been controversial. The de-
bate stems largely from discordance in lipidomic profiling
studies, as ceramides in muscle or liver biopsies have been
reported to be changed in some, but not all, insulin-
resistant subjects (3–5) (Fig. 1). As these discrepant studies
typically involved relatively small subject numbers, studies

such as the one by Lemaitre et al. (1) are informing the
debate. Lemaitre et al. profiled 15 sphingolipid species in
a large cohort of Native Americans without diabetes
(average age of 38 years), 24% of whom had a BMI of
35 kg/m2 or greater. Those participants with twofold
higher (90th percentile) ceramide with 16:0 (Cer-16),
Cer-18, Cer-20, or Cer-22 displayed hyperinsulinemia and
insulin resistance (estimated using HOMA-IR, a measure
of insulin resistance determined from fasting glucose
and insulin concentrations). Indeed, those with twofold
higher baseline concentrations of Cer-16 had 14% higher
levels of insulin, revealing the increased insulin needed to
maintain euglycemia owing to the insulin insensitivity.
These studies are consistent with earlier, smaller studies
evaluating relationships between serum ceramides and
insulin resistance in both humans and nonhuman primates
(6–10). However, this new study distinguishes itself from
the prior ones because of 1) the large size of the cohort, 2) the
novel population surveyed, and 3) the longitudinal nature of
the analysis (i.e., 5-year follow-up).

Insulin resistance is a major risk factor for diabetes and
cardiovascular disease, and the findings of Lemaitre et al.
(1) are interesting to consider in relation to other recent
studies evaluating relationships between ceramides and
clinical indices of cardiometabolic dysfunction. For exam-
ple, Wigger et al. (11) identified relationships between
dihydroceramides, the precursor to ceramides, that re-
vealed increased rates of ceramide synthesis as markers
for and predictors of diabetes development. Other groups
have found relationships between circulating ceramides
and future cardiovascular events. Tarasov et al. (12) found
that specific ceramides associated with fatality in patients
with coronary artery disease. Laaksonen and colleagues
(13,14) found that distinct plasma ceramide ratios were
predictors of cardiovascular death in patients with stable
coronary artery disease and acute coronary syndromes. Yu
et al. (15) reported that plasma ceramide levels correlated
with the severity of chronic heart failure and were an
independent risk factor of mortality and reduced left
ventricular systolic function. The authors of each of these
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studies highlighted that circulating ceramide levels might
provide additional predictive value for cardiovascular
events beyond conventional risk measures, and the studies
served as the foundation for a diagnostic test being
marketed by the Mayo clinic that uses a ceramide score to
predict future adverse cardiovascular events. We will not
summarize all of the studies that profiled tissue ceramides,
but a subset have also shown associations between muscle,
liver, or adipose ceramides and insulin resistance (reviewed

by Summers and Goodpaster [3]). We highlight the largest
of these, a particularly robust study by Luukkonen et al.
(16) that profiled 125 liver biopsies, finding that Cer-16
and other “saturated” ceramides correlated strongly with
insulin resistance independent of steatosis. Nonetheless,
this finding is not universal, as several smaller studies have
identified no such relationship between tissue ceramides
and insulin sensitivity (5). The reason for the discrepancy
is unclear but could reveal differences in statistical power,

Figure 1—Abbreviated summary of published studies relating serum ceramides to various measures of cardiometabolic disease. Upper
panel denotes sites where the studies were performed. Lower panel denotes study population, number of subjects, lipids analyzed, and
clinical end points assessed. IVGTT, intravenous glucose tolerance test; MACE, major adverse cardiovascular events; NAFLD, nonalcoholic
fatty liver disease; NASH, nonalcoholic steatohepatitis; T2D, type 2 diabetes.
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as the larger studies have generally revealed relationships
between ceramides and clinical pathologies. Alternatively,
hepatic ceramides may be more tightly linked with pro-
gression to nonalcoholic steatohepatitis, with plasma ceram-
ides serving as a predictive biomarker in progression of the
disease (17).

A theme that has emerged from the multiple profiling
studies is that the acyl composition of the ceramide species
likely influences their contribution to metabolic disease.
Indeed, long-chain Cer-16 and Cer-18 often show stronger
associations with disease pathologies than very long-chain
ceramides such as Cer-24. These findings are consistent
with determinations made in preclinical models involving
the genetic ablation of ceramide synthase isoforms. Indeed,
these studies in mice have identified roles for Cer-16–
containing ceramides produced by the liver, adipose tissue,
and heart (18–22) and Cer-18–containing ceramides gen-
erated in skeletal muscle (18–22) as antagonists of insulin
action and lipid oxidation. By comparison, the very long-
chain ceramides, such as the Cer-24–containing ones pro-
duced in excess in the liver, were deemed to be unlikely to
contribute to metabolic disorders (20,21). Lemaitre et al. (1)
found that Cer-20– and Cer-22–containing ceramides, in
addition to Cer-16 and Cer-18, correlated with insulin re-
sistance. Of note, only Cer-20 and some hexosylceramide
species correlated with impaired HOMA of b-cell function, an
indicator of impairedb-cell function. A limitation of this work
is that only static (fasting) measures were taken, which limit
the capacity to fully distinguish insulin resistance from b-cell
dysfunction.

Most ceramides are converted into sphingomyelins,
which represent approximately 70% of sphingolipid mass.
However, these more abundant species had less predictive
value than ceramides, as relationships with insulin resis-
tance were evident only when the data were stratified by
BMI. This is consistent with speculation of many investi-
gators, including us (23), that intermediates in the sphingo-
lipid synthesis cascade rather than sphingomyelins contribute
to insulin resistance.

Although the study by Lemaitre et al. (1) adds strongly
supportive evidence for roles of ceramides in insulin re-
sistance, it is unlikely by itself to provide full resolution to
the debate about the relevance of ceramides to insulin
resistance, which has percolated for a long time. Nonetheless,
in our opinion, the preponderance of data supports roles
for these sphingolipids in insulin resistance and its related
comorbidities. Two additional lines of evidence are worth
noting. First, recent studies have revealed associations be-
tween mutations in the coding region of genes required
for ceramide synthesis and cardiometabolic pathologies in
humans (24). Second, mutations in adiponectin receptors
that negate its intrinsic ceramidase activity negate the
cardioprotective and antidiabetes actions of the adipokine
in rodents (25). Human observations support the inverse
association of adiponectin with plasma ceramides (26). As
pharmaceutical interventions to limit sphingolipid abun-
dance progress, we will edge ever closer to knowing whether

ceramides will indeed prove to be bona fide mediators of
insulin resistance.
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