
 International Journal of 

Molecular Sciences

Review

Androgen-Regulated microRNAs (AndroMiRs) as
Novel Players in Adipogenesis

Julia Jansen †, Thomas Greither † and Hermann M. Behre *

Center for Reproductive Medicine and Andrology, Martin Luther University Halle-Wittenberg,
06120 Halle (Saale), Germany; julia.jansen@uk-halle.de (J.J.); thomas.greither@medizin.uni-halle.de (T.G.)
* Correspondence: hermann.behre@medizin.uni-halle.de; Tel.: +49-345-557-4782
† These authors contributed equally to this work.

Received: 1 November 2019; Accepted: 12 November 2019; Published: 16 November 2019 ����������
�������

Abstract: The development, homeostasis, or increase of the adipose tissue is driven by the induction
of the adipogenic differentiation (adipogenesis) of undifferentiated mesenchymal stem cells (MSCs).
Adipogenesis can be inhibited by androgen stimulation of these MSCs resulting in the transcription
initiation or repression of androgen receptor (AR) regulated genes. AR not only regulates the
transcription of protein-coding genes but also the transcription of several non-coding microRNAs
involved in the posttranscriptional gene regulation (herein designated as AndroMiRs). As microRNAs
are largely involved in differentiation processes such as adipogenesis, the involvement of AndroMiRs
in the androgen-mediated inhibition of adipogenesis is likely, however, not yet intensively studied.
In this review, existing knowledge about adipogenesis-related microRNAs and AndroMiRs is
summarized, and putative cross-links are drawn, which are still prone to experimental validation.
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1. Introduction

Androgen regulation of gene transcription is mediated through testosterone, or the more bioactive
derivate dihydrotestosterone (DHT), or any other androgenic hormone binding to the androgen
receptor (AR), followed by intra-nuclear binding of the ligand-activated AR to androgen-responsive
elements (ARE) in the promoter region of the respective gene and subsequent transcription initiation
or repression by AR-recruited cofactors [1,2]. These genes do not necessarily have to be protein-coding,
as the transcription of several non-coding genes has been shown to be regulated by the AR [3–5].
On a somatic level, several tissues including prostate, muscle, liver, breast, ovaries or fat are prone
to androgen action [6–9]. With respect to adipose tissue, testosterone and DHT were demonstrated
to inhibit the adipogenic differentiation (adipogenesis) of mouse and human mesenchymal stem
cells [10–14].

Adipogenesis designates the differentiation process of a mesenchymal progenitor cell to a mature
adipocyte. In the times of increasing obesity prevalence, it is of utmost importance to understand the
process of adipogenic differentiation, as the excessive proliferation of the body’s fat mass is strongly
associated with serious adverse conditions such as type 2 diabetes, mellitus, and cardiovascular
diseases. The general developmental process of adipose tissue is composed of two components: (1) the
increase of adipocyte numbers by differentiation (hyperplasia), and (2) the swelling of the single-cell
by accumulation of triglycerides (hypertrophy). On the cellular level, at first mesenchymal stem
cells (MSCs) are recruited through abrogation of the differentiation block (commitment phase), and
subsequently differentiate to the mature adipocyte (terminal differentiation phase, see Figure 1).
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Figure 1. Phases of the adipogenic differentiation. Abbreviations: DLK1—delta-like homolog 1,
Pref-1—preadipocyte factor 1.

On the molecular level, especially two master regulators of adipogenesis are essential for
differentiation: the transcription factors peroxisome proliferator-activated receptor gamma (PPARγ)
and CCAAT/enhancer-binding protein alpha (CEBPα), which both induce a plethora of different
adipocyte-specific genes during the commitment phase of differentiation [15]. Furthermore, an
essential signaling pathway for the induction of adipogenesis by PPARγ is the Wnt pathway [16].
Mesenchymal progenitor cells are kept in an undifferentiated state by the canonical Wnt pathway
through the induction of cyclin-D1 and c-myc. This differentiation block is mediated through the direct
binding of c-myc on the DNA sequence of PPARγ and C/EBPα following inhibition of transcription.
By such mechanisms, canonical Wnt10b and Wnt1 are capable of inhibiting the expression of PPARγ
and blocking adipocytic differentiation [17,18].

On the other hand, several signaling pathways like the MAPK pathway, the PI3K/Akt pathway,
the cAMP/PKA/CREB pathway, and the TGF-β pathway play an adipogenesis-promoting role after
induction of the differentiation program within the commitment phase [19]. In recent years, by the
identification and analysis of microRNAs, an additional player for the regulation of these different
signaling pathways on the post-transcription level has been unraveled. MicroRNAs are small (18–25 nt
long), endogenous RNAs, that are non-coding but involved in the post-transcriptional silencing of gene
expression by translation inhibition [20]. Also during adipocytic differentiation, a subset of microRNAs
are differentially expressed and subsequently regulate the differentiation course by inducing a massive
shift in the cellular phenotype by changes in the expression patterns of their downstream target genes.

Actually, adipogenesis-regulating microRNAs and androgen-regulated microRNAs (AndroMiRs)
could still be seen as “two separated kingdoms”. However, by connecting adipogenesis-related
microRNAs to those prone to androgen-regulation, interesting candidates for the molecular mechanisms
of the well-known hypogonadism-induced fat tissue accumulation as well as potential therapeutic
targets against this detrimental process might be identified. In this review, we aim to summarize the
existing literature on both microRNA kingdoms and show potential connections between both of them.

2. MicroRNAs in Human Mesenchymal Stem Cell Adipogenesis

In the past years, over 30 microRNAs or microRNA families have been identified to be involved
in the adipogenic differentiation process in human mesenchymal stem cells or preadipocytic cell lines
(see Table 1). Furthermore, extensive studies on mouse cell lines or other species have revealed several
more candidate microRNAs yet to be verified in human cells (see Tables S1 and S2).
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Table 1. Adipogenesis-regulating microRNAs in human cell lines/preadipocytes.

microRNA Effect on
Adipogenesis Cell System Target Gene/

Signaling Pathway Reference

miR-10b i hADSC CEBPα, PPARγ, AP2, Li et al., 2018 [21]
mir-17-5p/106a p hADSC BMP2 Li et al., 2013 [22]

miR-21 p hMSC SPRY2 Mei et al., 2013 [23]

miR-26b p hADSC PTEN Song et al., 2014 [24];
Trohatou et al., 2017 [25]

miR-27b i hMSC PPARγ Karbiener et al., 2009 [26]
miR-27b i hADSC LPL, CEBPα, PPARγ Hu et al., 2018 [27]
miR-29 i hMSC Cyclin D1 Beezhold et al., 2016 [28]

miR-29b p hADSC TNF-α SP-1 Zhang et al., 2016 [29]
miR-30 family p hMADS RUNX2 Zaragosi et al., 2011 [30]

miR-30c p hMADS PAI-1, ALK2 Karbiener et al., 2011 [31]
miR-31 i hADSC CEBPα Liu et al., 2018 [32]

miR-103 p hADSC Thy1 (CD90) Woeller et al., 2017 [33]
miR-107 i SGBS CDK6 Ahonen et al., 2019 [34]
miR-124 p hMSC FABP4, PPARγ, SOX9 Laine et al., 2012 [35]

miR-125a-3p p hADSC RhoA/ROCK1/ERK1/2 Chen et al., 2015 [36]
miR-125b-5p p/i SGBS MMP11 Rockstroh et al., 2016 [37]

miR-130 i hMSC PPARγ Lee et al., 2011 [38]
miR-137 i hADSC CDC42 Shin et al., 2014 [39]

miR-140-5p i hMSC LIFR Li et al., 2017 [40]
miR-148a p hMSC Wnt1 Shi et al., 2015 [41]

miR-149-3p i BMSC FTO Li et al., 2019 [42]
miR-155 i hMSC PPARγ, CEBPα Skarn et al., 2012 [43]

miR-192-3p i hADSC SCD, ALDH3H2 Mysore et al., 2016 [44]
miR-193b p hADSC CRKL, FAK Mazzu et al., 2017 [45]
miR-194 i hMSC COUP-TFII Jeong et al., 2014 [46]

miR-199a-3p p BMMSC KDM6A Shuai et al., 2019 [47]
miR-204-5p p hADSC DVL3 He et al., 2015 [48]

miR-320 fam. p hMSC RUNX2 Hamam et al., 2014 [49]
miR-335 p hADSC MEST Zhu et al., 2014 [50]

miR-342-3p p hMSC CtBP2 Wang et al., 2015 [51]
miR-363 p hADSC E2F3 Chen et al., 2014 [52]

miR-369-5p i hMSC FABP4 Bork et al., 2011 [53]
miR-375 i SGBS ADIPOR2 Kraus et al., 2015 [54]

miR-377-3p i hMSC LIFR Li et al., 2018 [55]
miR-431 i BMMSC IRS2 Wang et al.,2018 [56]

miR-483-5p p hADSC RhoA/ROCK1/ERK1/2 Chen et al., 2015 [36]
miR-1908 i hMADS PPARγ, CEBPα Yang et al., 2015 [57]
miR-1275 i hADSC ELK1 Pang et al., 2016 [58]
miR-4739 p hMSC LRP3 Elsafadi et al., 2017 [59]

Abbreviations: p—promoting effect, i—inhibiting effect, hADSC—human adipose-derived stem cells, hMSC—human
mesenchymal stem cell, SGBS—Simpson Golabi Behmel syndrome cells, BMMSC—bone marrow-derived stem cells,
hMADS—human multipotent adipose-derived stem cells.

Li et al. identified miR-10b as a critical regulator for balancing osteogenic and adipogenic
differentiation of human adipose-derived stem cells (hADSCs) by repressing ‘mothers against
decapentaplegic homolog 2’ (SMAD2) [21]. Its expression is negatively correlated to adipogenic
markers like CEBPα, PPARγ and activating protein 2 (AP2). In 3T3-L1 cells, apolipoprotein 6 (Apol6),
which acts as an oncogene in obesity-related cancers, was identified as further target of miR-10b-5p.
Inhibition of miR-10b-5p encouraged the adipogenic differentiation of 3T3-L1 cells. However, it has no
effect on cell proliferation [60]. Similarly, the overexpression of miR-27b blunts the induction of the
two key regulators CEBPα and PPARγ and represses triglyceride accumulation at the late stages of
adipogenic differentiation [26]. Kim et al. confirmed these results by demonstrating a similar action of
miR-27a in the 3T3-L1 cell adipogenesis of obese mice [61]. Accordingly, Hu et al. showed in microarray
analysis an increase of lipoproteinlipase (LPL) during adipogenic differentiation of hADSCs, while
miR-27b is decreased [27]. In addition, miR-130a and miR-130b influence the PPARγ expression in
human preadipocytes. QPCR arrays showed that miR-130a/b targeted both the mRNA coding region
as well as the 3’untranslated region of PPARγ [38]. These effects were also replicated in mouse 3T3-L1
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preadipocytes. Further microRNAs that inhibit the expression of PPARγ and C/EBPs and lead to an
obstructed adipogenic differentiation in hMSCs are for example miR-155, miR-221 and miR-222 [43].

Yang et al. studied the effect of miR-1908 on the differentiation on hMADS. MiR-1908 is
highly expressed in human multipotent adipose-derived stem cells (hMADS) and inhibits adipocyte
differentiation by promoting the proliferation of hMADS cells and influencing the cell cycle through
expanding the S phase and inhibiting the G1 phase [57]. Recently, studies with Simpson Golabi Behmel
syndrome (SGBS) cells were conducted. For example, miR-107 inhibits adipogenic differentiation
of SGBS cells via cell division protein kinase 6 (CDK6), which regulates neurogenic locus notch
homolog protein 3 (Notch3) and his target ‘hairy and enhancer of spli-1’ (Hes1). Furthermore,
miR-107 induces the attenuated triglyceride storage by impairing glucose uptake and triglyceride
synthesis [34]. Adiponectin receptor 2 (ADIPOR2), a direct target of miR-375, has an inhibiting effect
on the adipogenic differentiation of SBGS cells, too. Kraus et al. showed the inhibiting effect of
androgens on adipogenic differentiation through an androgen receptor-mediated pathway [54]. Bork
et al. performed investigations regarding miR-369-5p, which both impaired the proliferation of human
MSCs and enhanced the accumulation of lipid droplets during adipogenic differentiation.

Accordingly, the expression of adiponectin (ADIPOQ) and ‘fatty acid-binding protein 4’ (FABP4)
is reduced during differentiation after transfection with miR-369-5p [53]. MiR-149-3p inhibits
adipogenic differentiation in BMSC by directly targeting ‘fat mass and obesity-associated protein’
(FTO). Knockdown of miR-149-3p led to a decreased expression of adipocyte-related genes including
CEBPα, CEBPβ, CEBPδ, FABP4 and PPARγ, whereas osteogenic markers like alkaline phosphatase
(ALP), ‘bone gamma-carboxyglutamic acid-containing protein’ (BGLAP), secreted phosphoprotein 1
(SPP1), collagen type 1 (COL1A1), and ‘bone morphogenetic protein 4’ (BMP4) increased. MiR-149-3p
also acts as a regulator of the switch between adipogenic and osteogenic differentiation [42]. Similar
effects were observed for miR-194 and its target gene COUP transcription factor II (COUP-TFII),
which activates PPARγ expression. Enhanced expression of miR-194 leads to a reduced expression of
COUP-TFII, whereas inhibition of the miR-194 expression leads to an increased COUP-TFII level [46].
In contrast, miR-17-5p and miR-106a could promote osteogenesis and decrease adipogenesis. However,
miR-17-5p and miR-106a are directly targeting BMP2, which has a reverse effect on the differentiation
of hADSC. Downregulation of BMP2 through RNA interference suppressed osteogenesis and increased
adipogenic differentiation [22]. By the application of a dual-luciferase assay, Chen et al. identified
RhoA and ‘mitogen-activated protein kinase 1’ (ERK1) as direct targets of miR-125a-3p and miR-483-5p.
Downregulation of these microRNAs in hADSC resulted in a decreased ERK1/2 phosphorylation in
the nucleus in subcutaneous adipose tissue of patients with multiple symmetric lipomatosis.

Furthermore, miR-125a-3p and miR-483-5p promote the de novo formation of adipose tissue in nude
mice [36]. Mei et al. demonstrated that through regulating the ERK-MAPK pathway, the only active
signaling during adipogenic, osteogenic and chondrogenic differentiation, miR-21 stimulates MSC
differentiation on an early stage. In this context, the expression of the marker gene for adipogenesis,
PPARγ, and the marker gene for osteogenesis, Cbfa-1, were both increased after transfection of MSC
with miR-21 mimics, while miR-21 inhibition resulted in a reduced expression level of both genes [23].
MiR-26b knockdown inhibits the accumulation of lipid droplets in adipogenic differentiation in human
preadipocytes. Furthermore, the expression levels of PPARγ, AP2, C/EBPα and hormone-sensitive
lipase (HSL) are reduced in knockdown cells towards untreated cells [24]. Moreover, PTEN was
identified as a direct target of miR-26a [25,57]. Zhang and colleagues identified tumor necrosis factor
(TNFα) by use of bioinformatical methods as an indirect target of miR-29b. Via specificity protein 1
(SP-1), it acts as enhancer of the adipogenic differentiation. Thereby, lipid accumulation in hADSC is
promoted and the mitotic clonal expansion is inhibited [29]. Further well-studied microRNAs, which
promote adipogenic differentiation, are the miR-30 family. It directly targets ‘plasminogen activator
inhibitor’ (PAI-1) and ‘anaplastic lymphoma kinase’ (ALK2) in hMADS and enforces adipocyte marker
gene induction. Interestingly, only the silencing of both genes leads to a pro-adipogenic effect of
miR-30c, while silencing of one target has no effect on adipogenesis [31]. Additionally, Zaragosi
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and colleagues identified miR-30 with the help of gain and loss of function studies as enhancer of
adipogenesis. Via ‘Runt- related transcription factor’ (RUNX2), also known as Cbfa-1, miR-30 family
acts as a key regulator balancing adipogenesis and osteogenesis [30]. The miR-320 family has a
similar effect [49]. Recent studies investigated ‘lysine-specific demethylase 6A’ (KDM6A) as a target of
miR-199a-3p which regulates WNT signaling downstream [47]. The promoting effect of mir-199a-3p
could be validated in 3T3-L1 cells [62]. Wang et al. identified mir-342-3p as a further powerful
promoter of the adipogenic differentiation. Both in humans and in obese mice, it is upregulated during
adipogenesis. The inhibition of miR-342-3p results in a decreased expression of adipogenic markers
like PPARγ, C/EBPα, FABP4, and LPL. By the use of luciferase assays, CtBP2 was confirmed as a direct
target of miR-342-3p [51].

3. Androgen-Regulated microRNAs (AndroMiRs)

Although several tissues have been shown to be androgen-sensitive, the utmost studies performed
on androgen-regulated microRNAs (AndroMiRs) are from prostate carcinoma (PCa) or breast carcinoma
(BCa) and the respective cell lines, potentially resulting in a bias, as these model systems represent
pathological tissues and therefore are not necessarily reflecting the miRNome of their corresponding
somatic counterparts. With regard to the existing literature on identified AndroMiRs, this fact has to
be considered. Thus, in many cases, studies on the androgen-regulation of these proposed AndroMiRs
in somatic tissues are still warranted.

As the first AndroMiR, miR-125b was identified in the androgen-sensitive prostate carcinoma cell
line LNCaP to be induced by the synthetic androgen R1881 treatment [63]. Furthermore, miR-125b
stimulated androgen-independent growth of LNCaP cells, also by targeting of BCL2-antagonist
(BAK1) [63]. MiR-125b expression in LNCaP cells was demonstrated to be significantly downregulated
by treatment with the AR antagonist bicalutamid, and miR-125b also targeting the AR-repressor
complex protein (NCOR2) [64]. An induction of miR-125b expression in LNCaP cells after stimulation
with DHT was also observed [65]. Concordantly, Sun and colleagues reported AR-mediated regulation
on the promoter of the miR-99a/let-7c/miR-125b-2 cluster host gene LINC00478, although showing
repression of miR-125b in reaction to AR stimulation with R1881. Additionally, the expression
of the miR-100/let-7a-2/miR-125b-1 cluster was not affected by androgen stimulation [66]. Also in
the breast cancer cell line MDA-MB-453, treatment with the AR-agonist CI-4AS-1 resulted in a
significant downregulation of miR-125b and miR-100 and induced the expression of their target gene
metalloprotease-13 (MMP13) [67]. In a non-transformed cell system, Sen and colleagues demonstrated
induction of miR-125b, but not miR-125a, expression in mouse granulosa cells upon stimulation with
testosterone or dihydrotestosterone, while estradiol stimulation exhibited no effect [68].

As one of the most prominent oncogenic microRNAs, miR-21 was early identified to be upregulated
by R1881 treatment in the androgen-sensitive PCa cell lines LNCaP and LAPC-4 [69]. Additionally,
the same group intensely studied the miR-21 promoter region by bioinformatics and furthermore
demonstrated AR recruitment to an ARE in this promoter region by chromatin immunoprecipitation
(ChIP) [69,70]. Concordantly, Mishra and colleagues described the downregulation of miR-21 in
AR-silenced prostate cancer cell lines (22Rv1 and MDA-PCA-2b), resulting in the increased expression
of the miR-21 target gene TGFBR2, as well as the formation of a positive AR-miR-21 feedback loop
in prostate epithelial cells [71]. Teng and colleagues observed the induction of miR-21 through AR
activation by several dihydroepiandrosterone (DHEA) metabolites, among them DHT, by promoter
recruitment visualized via ChIP in the hepatocellular carcinoma cell line HepG2 [72]. Contrarily, in the
breast cancer cell lines MCF-7 and SK-BR-3 the AR was shown to downregulate miR-21 expression,
primarily by recruiting HDAC3 to the miR-21 promoter [73].

Also in LNCaP, the expression of miR-101 was shown to be upregulated following R1881
treatment, while subsequently the expression of its target gene ‘enhancer of zeste homolog’ (Ezh2)
was downregulated [74]. The same relationship could be demonstrated in mouse granulosa cells,
where Ezh2 is initially inactivated via phosphorylation mediated by the PI3K/Akt pathway, then Ezh2
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transcript is downregulated via the testosterone-mediated induction of miR-101 expression [75]. In
the neuronal cell line SH-SY5Y and the glioblastoma cell line U251, miR-101 was upregulated after
testosterone stimulation resulting in the downregulation of CYP2D6 [76]. Guo et al. verified an AR
binding site in the promoter region of miR-101 via ChIP, thus linking AR-induced autophagy inhibition
in prostate cancer cell lines to miR-101 upregulation [77].

MiR-221 was initially detected as regulator of Dvl2 and being upregulated in an
androgen-insensitive LNCaP-AI cell line in comparison to the original LNCaP, while miR-222, miR-21,
miR-125b, and miR-101 were also differentially expressed in these cells [78]. Gui and colleagues
identified miR-221/222 as AR-repressed gene, showing downregulation of pri-miR-221/222 after
androgen stimulated chromatin modification of the miR-221/222 host gene promoter region [79]. In
line with these findings are the results of Sun et al., showing the involvement of miR-221/222 in the
development of castration-resistant prostate carcinoma [80–83].

MiR-27a was identified as oncomiR in PCa by targeting the AR corepressor Prohibitin (pHB) [84].
Furthermore, for the miR-23a/27a/24-2 cluster it was demonstrated that the AR in PCa cell lines not
only induces the transcription by binding to an ARE in the promoter region, but also accelerates
the processing of the pri-miR-23a/27a/24-2 cluster [84]. Concordantly, Mo and colleagues showed
the upregulation of miR-27a expression (besides miR-133b and miR-19a) by DHT stimulation of
LNCaP cells, and proposed ‘ATP-binding cassette transporter’ (ABCA1) and ‘sister chromatid cohesion
protein’ (PDS5B) as target genes of miR-27a [85]. In castration-resistant PCA, miR-27a was found to be
repressed by the PI3K pathway, thereby levering the repression of its target gene MAP2K4 [86]. In
the endothelial cell line EA.hy926 as well as in HUVEC, DHT stimulation downregulated miR-27a
expression and upregulated expression of its target gene TFPIα [87]. Also, in a mouse model of the
polycystic ovary syndrome characterized by androgen excess, DHT facilitates the upregulation of
miR-27a in the granulosa cells resulting in a feedback loop by miR-27a targeting the transcription factor
Creb1 [88].

MiR-32, as well as miR-148a, was demonstrated to be upregulated in LNCaP cells after stimulation
with DHT and to target BTG2 [89]. By siRNA-mediated knockdown of AR in prostate cancer cell lines,
miR-32 was found to be upregulated and to enhance NSE activity, thereby promoting neuroendocrine
differentiation of the prostate cancer cells [90].

In a Northern blot approach, miR-200c was observed to be differentially expressed between
androgen-sensitive and androgen-insensitive PCa cell lines [91]. Furthermore, members of the miR-200
family comprising miR-200a-c were found to be upregulated by R1881 treatment in AR-induced PC-3
cells, with the highest increase of miR-200b expression, resulting in the suppression of proliferation
and invasiveness of the prostate carcinoma cells [92]. Furthermore, miR-200a and miR-200b are higher
expressed in the androgen-sensitive LNCaP cell line in comparison to androgen-insensitive DU145,
and siRNA-mediated silencing of AR in LNCaP leads to a decrease in miR-200a/b and an increase of
their target gene ‘zinc finger E-box-binding homeobox 2’ (ZEB2) [93].

By luciferase reporter assays and ChIP analyses, the miR-1-2 promoter region was shown to be
activated by the AR, and miR-1 targeting ‘tyrosine-protein kinase’ (SRC) in DU145 derived prostate
cancer cell lines [94]. Interestingly, the miR-1-2 promoter is also targeted by ‘Kruppel like factor 4’ (Klf4),
which expression itself is induced by the AR [95]. Additionally, androgen-induced miR-1 downregulates
TCF7 in prostate cancer cell lines and therefore negatively impacts the Wnt signaling pathway [96].
Another target gene of miR-1, in the context of the transition of PCa from androgen-sensitive to
castration-resistant, is ZBTB46 [97].

MiR-375 and miR-141 were initially detected to be upregulated in the serum of patients with
castration-resistant prostate carcinoma [98]. In LNCaP cells, significant overexpression of miR-375
and miR-141 was shown after stimulation with DHT for 24 h [99]. Conversely, Chu and colleagues
demonstrated low expression of this microRNA and hypermethylation of the miR-375 promoter in
the AR-negative PCa cell lines Du145 and PC-3 [100]. The same effect was observed in differentiating
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SGBS preadipocytes, where testosterone or DHT stimulation led to the downregulation of miR-375
during the differentiation course and upregulation of its target gene ADIPOR2 [54].

Other AndroMiRs include let-7a, b, c [101], let-7d [102], miR-135a [103,104], miR-141 [99,105],
members of the miR-17~92 cluster [106,107], miR-216a [108,109], miR-29 family members [110,111]
and miR-30 family members [99,112]. Additional proposed androgen-regulated microRNAs—yet not
intensively studied—are given in Table 2.

Table 2. Androgen-regulated microRNAs (AndroMiRs).

microRNA Androgen
Regulation Tissue Cell Line Target Gene/

Signaling Pathway Reference

let-7a u BCA
MCF-7;

MDA-MB-231;
MDA-MB-453

KRAS; CMYC Lyu et al., 2014 [101]

let-7c d PCA LNCaP IGFR1 Sun et al., 2014 [66]
let-7d u PCA LNCaP, C4-2B PBX3 Ramberg et al., 2011 [102]
miR-1 u PCA LNCaP SRC Liu et al., 2015 [94]
miR-1 u PCA LNCaP TCF7 Siu et al., 2017 [96]
miR-1 u PCA LNCaP ZBTB46 Chen et al.,2017 [97]

miR-17-92
cluster u PCA LNCaP; 22Rv1 ATG7 Guo et al., 2016 [107]

miR-17-92
cluster u PCA DUCaP; LNCaP - Pasqualini et al., 2015 [106]

miR-19a u PCA LNCaP
SUZ12; RAB13;

SC4MOL; PSAP;
ABCA1

Mo et al., 2013 [85]

miR-21 u PCA LNCaP; LAPC-4 - Ribas et al., 2009 [69]
miR-21 u PCA LNCaP - Ribas et al., 2010 [70]
miR-21 u HCC HepG2 PDCD4 Teng et al., 2014 [72]

miR-21 u PCA BPH-1; 22Rv1;
PC-3 TGFBR2 Mishra et al., 2014 [71]

miR-21 d BCA MCF-7 - Casaburi et al., 2016 [73]
miR-22 u placenta JEG-3 ESR1 Shao et al., 2017 [113]
miR-22 u PCA DUCaP; LNCaP LAMC1 Pasqualini et al., 2015 [106]

miR-23b d mouse
Sertolicells - PTEN Nicholls et al., 2011 [112]

miR-27a u PCA LNCaP PHB Fletcher et al., 2012 [84]
miR-27a u PCA LNCaP ABCA1; PDS5B Mo et al., 2013 [85]

miR-27a u PCA
LNCaP, 22Rv1;

Du145;
PC3

MAP2K4 Wan et al., 2016 [86]

miR-27a/b d endothelial cell
lines EA.hy926; HUVEC TFPIα B Arroyo et al., 2017 [87]

miR-29a u PCA DUCaP; LNCaP Mcl-1 Pasqualini et al., 2015 [106]
miR-29a/b d epididymis PC-1 AR, IGF1 Ma et al., 2013 [110]
miR-29b u PCA LNCaP; BicR TET2 Takayama et al., 2015 [111]
miR-30d d Sertoli cells - - Nicholls et al., 2011 [112]

miR-32 u PCA 22Rv1;
LNCaP;RWPE1 NSE Dang et al., 2015 [7]

miR-32 u PCA LNCaP BTG2 Jalava et al., 2012 [89]
miR-99a d PCA LNCaP IGFR1 Sun et al., 2014 [66]
miR-100 d BCA MDA-MB-453 MMP13 Ahram et al., 2017 [67]
miR-101 u PCA LNCaP Ezh2 Cao et al., 2010 [74]
miR-101 u PCA LNCaP - Guo et al., 2015 [77]

miR-101 u granulosa cells
primary mouse

GCs;
KGN

Ezh2 Ma et al., 2017 [75]

miR-101 u neuronal cells SH-SY5Y; U251 CYP2D6 Li et al., 2015 [76]
miR-124 u PCA PC3; LNCaP AR Chu et al., 2015 [114]

miR-125b u PCA LNCaP; cds1 Bak1 Shi et al., 2007 [63]
miR-125b u PCA LNCaP NCOR2 Yang et al., 2012 [64]
miR-125b d PCA LNCaP - Sun et al., 2014 [66]
miR-125b u PCA LNCaP - Yang et al., 2015 [65]
miR-125b d BCA MDA-MB-453 MMP13 Ahram et al., 2017 [67]
miR-128-2 u neuronal cells SH-SY5Y; U251 CYP2D6 Li et al., 2015 [76]

miR-133b u PCA LNCaP CDC2L5; PTPRK;
RB1CC1; CPNE3 Mo et al., 2013 [85]

miR-133b u PCA LNCaP - Yang et al., 2015 [65]
miR-135a u PCA LNCaP; PC-3 ROCK1, ROCK2 Kroiss et al., 2015 [84]
miR-135a u PCA LNCaP MMP11, RBAK Wan et al., 2016 [104]
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Table 2. Cont.

microRNA Androgen
Regulation Tissue Cell Line Target Gene/

Signaling Pathway Reference

miR-137 u PCA LNCaP
KDM2A, KDM4A;
KDM5B; KDM7A;

MED1
Nilsson et al., 2015 [115]

miR-141 u PCA LNCaP, VCaP - Waltering et al., 2011 [105]
miR-141 u PCA LNCaP - Tiryakioglu et al., 2013 [99]
miR-141 u PCA tissue - Nguyen et al., 2013 [98]
miR-141 u PCA LNCaP - Gezer et al., 2015 [116]

miR-145 d RCC ACHN; SCRC-2;
SW-839 HIF2α Chen et al., 2015 [117]

miR-148a u PCA LNCaP CAND1 Murata et al., 2011 [118]
miR-148a u PCA LNCaP - Jalava et al., 2012 [89]

miR-182-5p u PCA LNCaP ARRDC3 Yao et al., 2016 [119]

miR-185-5p u RCC SW839 VEGF-c;
HIF2α Huang et al., 2017 [120]

miR-190a d PCA LNCaP AR; YB1 Xu et al., 2015 [121]
miR-193a-3p u PCA LNCaP; C4-2B AJUBA Jia et al., 2017 [122]

miR-200a/b u PCA LNCaP; PC-3;
Du145 ZEB2 Jacob et al., 2014 [93]

miR-200a-c u PCA PC-3-AR - Williams et al., 2013 [92]
miR-203 u PCA LNCaP; 22Rv1 SRC Siu et al., 2016 [95]
miR-204 d PCA LNCaP, 22Rv1 XRN1 Ding et al., 2015 [123]

miR-216a u HCC tissue TSLC1 Chen et al., 2012 [108]
miR-216a u PCA LNCaP - Miyazaki et al., 2015 [109]

miR-221/222 d PCA LNCaP; C4-2B - Gui et al., 2017 [79]
miR-363 u BCA MCF-7 IQWD1 Nakano et al., 2013 [124]

miR-375 u PCA
LNCaP; C4-2;

22Rv1;
PC-3; Du145

- Chu et al., 2014 [100]

miR-375 d hMSC SGBS ADIPOR2 Kraus et al., 2015 [54]
miR-375 u PCA LNCaP - Tiryakioglu et al., 2013 [99]
miR-375 u PCA tissue - Nguyen et al., 2013 [98]

miR-421 d PCA
LNCaP; 22Rv1;

Du145;
PC-3

NRAS, PRAME,
CUL4B, PFKMB2 Meng et al., 2016 [125]

miR-471-5p u Sertoli cells primary cells LAP Panneerdoss et al.,2017
[126,127]

miR-690 d Sertoli cells - - Nicholls et al., 2011 [112]
miR-2909 u PCA LNCaP TGFBR2 Ayub et al., 2017 [128]
miR-4496 u PCA LNCaP β-Catenin Wang et al., 2018 [129]

Abbreviations: d—downregulated; u—upregulated; PCA—prostate carcinoma; BCA—breast cancer;
HCC—hepatocellular carcinoma; RCC—renal cell carcinoma.

Interestingly, Panneerdoss and colleagues studied testosterone-specific microRNA signatures
in mouse sertoli cells, identifying two X-linked microRNA clusters (Cluster 1: miR-743a, miR-471,
miR-741, miR-463, miR-880, miR-878, and miR-871. Cluster 2: miR-201 and miR-547) highly induced
by testosterone [126,127]. Although the AR is regulating the expression of many microRNAs,
AR translation is also repressed by several microRNAs (an actual overview is given in Table
S3), therefore, adding an additional regulative layer to the interplay between these two factors
in differentiation processes.

4. AndroMiRs Putatively Involved in Adipogenesis

Comparing the androgen-regulated microRNAs (AndroMiRs) to the adipogenesis-related
microRNAs (AdipoMiRs), several overlapping candidates can be extracted from the existing literature.
In Figure 2, putative candidates for microRNAs involved in the androgen-mediated inhibition of the
adipogenesis are given.
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MiR-17-5p/miR-106a was shown to determine lineage commitment in early hMSC differentiation,
wherein the upregulation was of both microRNAs suppressed BMP2 expression and therefore
shifting the MSC fate towards adipogenesis [22]. However, in PCa cell lines androgens triggered
the upregulation of the miR-17-92 cluster [106,107], therefore, analysis of the regulation in somatic
tissues remains crucial for the determination of the role of this cluster in differentiation processes.
MiR-21 upregulation increased the potential of adipogenic and osteogenic differentiation of hMSCs via
modulation of the ERK-MAPK4 pathway [23], therefore, being no adipogenesis-specific modulator. In
line with this fact, the androgen-induced upregulation of miR-21 observed in several studies [69–72]
may point towards a general role of this microRNA in differentiation initiation, rather than driving
a special lineage commitment. Regarding the miR-27a/b family, there is still a discrepancy in the
role and regulation of the individual family members. In androgen-responsive PCa cell lines, mainly
the induction of miR-27a (located on chromosome 19) is described [84–86]. Only in one study an
androgen-responsiveness of miR-27b (located on chromosome 9) in endothelial cells was observed [87].
Nonetheless, in hMSCs, it is mainly miR-27b regulating adipogenesis by targeting the key adipogenic
transcription factor PPARγ [26,27]. However, there are several reports from mouse pre-adipocytes
verifying the assumption that miR-27a exhibits the same role as miR-27b by repressing adipogenic
differentiation of mouse 3T3-L1 cells [61,130,131].

A similar situation is given for the miR-29 family, where miR-29b is involved in adipogenesis
of human mesenchymal stem cells [28,29], while both miR-29a and miR-29b are androgen-regulated
in PCa cell lines, but also in epididymal cells [106,110,111]. When comparing in vitro differentiated
osteoblasts, adipocytes, and chondroblasts to their originating mesenchymal stem cells, Laine et al.
found miR-124 to be exclusively expressed in adipocytes and to suppress proliferation of hMSCs [35].
Qadir and colleagues concordantly detected that miR-124 exerts a pro-adipogenic effect on 3T3-L1
mouse preadipocytes [132]. In PCa cell lines, the tumor-suppressive miR-124 and the AR formed a
positive feedback loop [114]. As one of the most prominent androgen-regulated microRNAs [63–67],
miR-125b is still scarcely studied in terms of adipogenesis. However, it was shown that miR-125b is
overexpressed during human SGBS preadipocyte differentiation, though experimental overexpression
of miR-125b by mimics inhibited the adipogenic differentiation [37].

These observations point towards a strictly balanced regulatory network including miR-125b,
which can be shaped via androgen-induced upregulation of this microRNA towards the inhibition
of adipogenesis. MiR-137 is induced via androgen stimulation in PCa cell lines, though progressive
promoter methylation is detected from normal prostate tissue to androgen-insensitive PCa cell
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lines [115]. In line with this finding, the overexpression of miR-137 inhibits hADSC proliferation and
differentiation [39]. MiR-148a was found to be CREB-induced upon the adipogenic differentiation
of hMSCs and promoting hMSC adipogenesis commitment by targeting the Wnt pathway effector
Wnt-1 [41]. In the androgen-responsive PCa cell line LNCaP, miR-148a expression is also induced
by androgens, resulting in increased cell proliferation [89,118]. The tumor-suppressive miR-204 is
downregulated upon androgen stimulation in PCa cell lines [123]. In line with the androgen-mediated
inhibition of the adipogenesis, miR-204 is upregulated in differentiating hADSCs and inhibits the
activation of the Wnt pathway, therefore, supporting the initiation of differentiation [48]. Lastly, miR-375
was in several studies shown to be sensitive to androgen regulation [54,98–100], although in PCa cell
lines the AR triggers upregulation of miR-375, while in differentiating hMSCs and SGBS preadipocytes
miR-375 is downregulated upon androgen stimulation. However, Chu and colleagues demonstrated
the hypermethylation of the miR-375 promoter region in androgen-insensitive cell lines, therefore,
giving a possible explanation for this different reaction of miR-375 to androgen stimulation [100].
Furthermore, the upregulation of miR-375 was demonstrated during adipogenesis [54], therefore
making this the first AndroMiR to be experimentally revealed in the androgen-mediated inhibition
of adipogenesis.

Finally, one has to bear in mind, that in most cases the androgen-regulation of a given microRNA
was analyzed and verified in tissues or cell lines completely different from the tissues or cell lines used
for the studies on the involvement of this microRNA in adipogenesis. Therefore, the connections drawn
in this chapter are literature-based, but in most cases still speculative, and should be experimentally
verified for a realistic assessment of the androgen-regulated miRNome in the inhibition of adipogenesis.

5. Conclusions

While over 30 microRNAs/microRNA families have been described to be involved in the
regulation of adipogenesis of human mesenchymal stem cells and pre-adipocytes, and over
30 microRNAs/microRNA families are known to be regulated in their expression by the androgen
receptor, knowledge about the AndroMiRs involved in the regulation of the adipogenesis is still scarce.
Therefore, based on this review, further experimental studies on the interplay between the AR-mediated
miRNome regulation and the inhibition of adipogenesis are needed and also promising, especially in
the light of the growing obesity epidemics and the well-known clinical effects of testosterone treatment
on reducing adipose tissue in hypogonadal men [133,134].

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/22/
5767/s1, Table S1: Adipogenesis-regulating microRNAs in mouse, Table S2: Adipogenesis-regulating microRNAs
in other species, Table S3: microRNAs regulating AR expression.
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