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Abstract: Due to the explosive growth of data collected by various sensors, it has become a difficult
problem determining how to conduct feature selection more efficiently. To address this problem, we
offer a fresh insight into rough set theory from the perspective of a positive approximation set. It is
found that a granularity domain can be used to characterize the target knowledge, because of its form
of a covering with respect to a tolerance relation. On the basis of this fact, a novel heuristic approach
ARIPA is proposed to accelerate representative reduction algorithms for incomplete decision table. As
a result, ARIPA in classical rough set model and ARIPA-IVPR in variable precision rough set model
are realized respectively. Moreover, ARIPA is adopted to improve the computational efficiency of
two existing state-of-the-art reduction algorithms. To demonstrate the effectiveness of the improved
algorithms, a variety of experiments utilizing four UCI incomplete data sets are conducted. The
performances of improved algorithms are compared with those of original ones as well. Numerical
experiments justify that our accelerating approach enhances the existing algorithms to accomplish
the reduction task more quickly. In some cases, they fulfill attribute reduction even more stably than
the original algorithms do.

Keywords: rough set; incomplete decision table; variable precision model; attribute reduction;
positive approximation set

1. Introduction

With the wide usage of a diversity of advanced sensors, heterogeneous information
acquisition in real-world applications has become much more simple. It also brings the
challenge of dealing with a huge amount of data collected by these sensors and generating
useful information. To address this challenge, multiple intelligent computing approaches
were proposed, e.g., fuzzy set theory, Dempster–Shafer evidence theory, and rough set
theory. Rough set theory (RST) is considered as a generalization of set theory for analyzing
and processing a variety of data sets consisting of incomplete, imprecise, inconsistent,
or uncertain data. It originated from Zdzislaw I. Pawlak [1] and has been identified as a
creative and innovative mathematical tool in the last two decades. The rough-set-based data
mining approaches have superiority in that they need no prior information, in contrast with
other widely utilized strategies, such as SVM, PCA, and DNN [2–6]. Attribute reduction,
or feature selection, has become one of the hot spots in the research area of big data.
In recent years, the number of objects and dimensions of data sets has been increasing
exponentially, as well as the quantity of large-scale data sets. For example, hundreds of
thousands of attributes, which reflect various characteristics of the corresponding objects
in practice, are stored in various data-sets [7]. However, a large portion of them give no
benefit to the subsequent pattern recognition at all, but only take up precious storage space
and consume computing time in vain. Hence, it has become a research focus to overcome
this obstacle.
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All conventional attribute reduction approaches can be classified into three main
strategies—filtering, packing, and embedding [8]. The first strategy picks up attribute
subsets on the basis of a specific type of measure, e.g., distance [9], information gain [10],
dependence [11], and consistency [12]. There exist two types among these measures, one is
based on distance and the other is based on consistency [13]. The second strategy adopts a
particular learning algorithm to evaluate and choose attribute subsets. The third strategy
is a combined strategy of the above two. Generally, the ultimate goal of rough-set-based
attribute reduction is to make sure that the chosen attribute subset with lower dimension
owns exactly the same discriminability as the universal set of original attributes, but does
not maximize the discriminability of classes blindly [14].

The problem of attribute reduction has received increasing attention in recent decades
and efforts have been made by different researchers to address various drawbacks. One of
the representative methods is proposed by Skowron, who employed the discriminability
matrix to retrieve all potential reducts from a given data set [15]. To fulfill the reduction task
for an incomplete decision table (IDT), Skowron’s method was developed by Kryszkiewicz
into a generalized approach utilizing discriminability matrix [16]. Shu et al. researched an
incremental attribute selection approach for the data sets with dynamic incomplete data to
improve the performances of other algorithms [17–19]. To evaluate candidate features in
incomplete data, Qian and Shu studied a feature selection approach on the basis of mutual
information criterion [20]. Jin and Li investigated in a reduction algorithm based on positive
region, i.e., FPR algorithm, to reduce the computation load of attribute reduction [21]. Yan
and Han presented an conditional entropy-based reduction algorithm for IDT to evaluate
the uncertainty of condition attributes and eliminate redundant ones [22,23]. Xie and
Qin investigated the inconsistency degree and demonstrated an incremental attribute
reduction algorithm in dynamic data environments [24]. Ma et al. researched a general
steg analysis attribute selection approach on the basis of α-positive region reduction [25].
Jing et al. introduced the incremental mechanisms of computing a reduct with a multi-
granulation view and gave a method of updating reducts as the objects and attributes
of DT change dynamically, or increasing simultaneously [26,27]. Sun et al. proposed
an fuzzy neighborhood multi-granulation rough-set-based feature selection approach in
neighborhood decision systems [28]. Unfortunately, some of the aforementioned methods
and other reduction approaches can only deal with the issue of reduction for decision
table, but not for IDT, because of the high complexity of the latter. Additionally, almost
all of conventional reduction approaches for IDT would suffer from different degrees
of long processing time due to large-scale computation when they process incomplete
decision tables. To overcome this shortcoming, a variety of heuristic algorithms have
been investigated, which can shorten computing time and reserve certain properties of
corresponding IDT [29–34]. Nevertheless, their efficiencies for practical applications are
still not satisfying. That is why we made our efforts to realize attribute reduction for IDT in
a more intelligent and more efficient manner.

The aim of this paper is not to find a way of generating superior reducts, in contrast
with most of existing attribute reduction approaches, but to study how to search for the
same reduct in a more efficient way. Furthermore, the accelerating approaches for existing
reduction algorithms in different rough set models, as well as their properties, are investi-
gated in this paper. The major contributions of this research work are concluded as follows:
(1) The concept of positive approximation set is constructed and one of its properties is
investigated; (2) A novel heuristic accelerating approach of attribute reduction using posi-
tive approximation set for IDT is proposed; (3) The implementations of our accelerating
approach are realized in different rough set models and tested by utilizing incomplete UCI
data sets in the real world; (4) The performances of both computing time and stability of
the proposed approach are exhibited and compared with some most recent reduction meth-
ods to verify its superiority. The simulations justify that our approach outputs precisely
the same reducts as other reduction methods, while it consumes evidently less time and
operates more stably in some cases. This paper is organized as follows. Some relevant
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preliminaries and background concepts are briefly reviewed in Section 2. The details of
positive-approximation-set-based reduction approach are provided in Section 3. Section 4
conducts a series of simulations utilizing UCI data sets and gives some analysis. Section 5
draws some conclusions.

2. Preliminaries

For the purpose of presenting our accelerating approach, it is of significance to review
some concepts of rough set concerning our main subject at the very beginning. The rough
set theory was firstly proposed by Z. Pawlak to describe and tackle imprecise, uncertain,
and vague concepts [1]. Both classical and generalized rough set model contain a variety
of mathematical concepts and definitions. To keep our research understandable, some
preliminaries are presented in this section at first. Additional mathematical foundations of
this paper, described in more detail, with some examples, can be found in [22].

2.1. Classical Rough Set Model

RST-based attribute reduction begins with a given data table, i.e., an information
system (IS). It consists of all objects we are interested in, as well as their features which
can be described by a finite attribute set. An IS containing non-empty attribute values is
considered as a complete IS, otherwise it implies as an incomplete information system (IIS).
Generally, meeting empty attribute value in data mining and other data processing is almost
inevitable. These empty values commonly stand for unavailable feature or inaccessible data,
which may be caused by the error in measurement, the impreciseness in data acquisition,
the low level of belief in the obtained data, and other potential factors. Therefore, an IIS
means the existence of unavailable data or missing value in the system [35]. If an IIS
contains a decision attribute which is different from other condition attributes and can
indicate the category of the corresponding object, then it stands for an incomplete decision
table (IDT).

An IS can be described by a pair (U, A), where U = {x1, . . . , xn} indicates the universe
of discourse which is actually a non-empty, finite set of objects, and A = {a1, . . . , am}
indicates a finite attribute set. There also exists a mapping a : U → Va for any a ∈ A, where
Va denotes the domain of the attribute a.

A decision table (DT) with the form of (U, C ∪ {d}) is actually a special information
system, where C indicates the whole condition attribute set in DT which can reflect specific
features of the target object, and d /∈ C indicates decision attribute which implies the object’s
category. Let Vd indicate the domain of decision attribute mapping d(x). An attribute set is
actually a feature set for pattern classification, and a training pattern set or its sign set can
be represented by the universe of discourse.

Let [x]R denote an equivalence relation on U, and ∅ denote an empty set. It implies
that relation R is reflexive, symmetric, and transitive. Hence it can generate a partition
U/R = IND(R) = {[x]R|x ∈ U} on U, where IND(R) indicates a equivalence class (i.e., an
indiscernible class) which is generated by the relation R. In RST, it can also be considered
as an elementary set of R. As for any target set X ⊆ U, the following two elementary sets
of R can be used to approximate X.

R−(X) = {[x]R|[x]R ⊆ X } (1)

R−(X) = {[x]R|[x]R ∩ X 6= ∅} (2)

They are defined as the lower and upper approximation sets of X, respectively. Fur-
thermore, the equations of positive region, negative region, boundary region, and approxi-
mation measure are, respectively, presented as

POS(X) = R−(X) (3)

NEG(X) = U − R−(X) (4)
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BND(X) = R−(X)− R−(X) (5)

αR(X) =
|R−(X)|
|R−(X)| (6)

where X 6= ∅. The lower approximation is equivalent with the positive region of X, which
denotes a subset consisting of the objects that can be undoubtedly classified as members of
X. In contrast, the upper approximation consists of the objects that are possibly members
of X. Moreover, the negative region consists of the objects that can be definitely ruled out
as the members of X. Finally, the approximation measure αR(X) is utilized to evaluate the
completeness degree of our knowledge on X.

We use ∗ to denote empty attribute value, which means that the value of the cor-
responding condition attribute of the object is missing or unavailable. The IS and DT
containing ∗ attribute value are, respectively, defined as incomplete information system
(IIS) and incomplete decision table (IDT). Commonly, the process of attribute reduction for
incomplete data set is starts with an IDT.

2.2. Incomplete Variable Precision Rough Set Model

In the latest decade, a variety of generalized rough-set-model-based reduction ap-
proaches have been proposed and developed. This subsection is dedicated to introducing
some notations concerning incomplete variable precision model for use.

Let (U, A) be an IS which owns attribute subset P ⊆ A. The definition of a binary
similarity relation on U can be expressed as

SIM(P) = {(x, y) ∈ U ×U|∀a ∈ P, [a(x) = a(y)] ∪ [a(x) = ∗] ∪ [a(y) = ∗]} (7)

As a matter of fact, SIM(P) is essentially a tolerance relation on P. It can be simply
obtained that SIM(P) = ∩a∈PSIM({a}).

Let SIM(P) = ∩a∈PSIM({a}) be an IIS, P ⊆ A be a subset of condition attributes A,
and X be a subset of the universe of discourse U. The target set X can be approximated by
SIM(P)X and SIM(P)X, i.e.,{

SIM(P)X = ∪
{

Y ∈ U
/

SIM(P)|Y ⊆ X
}

SIM(P)X = ∪
{

Y ∈ U
/

SIM(P)|Y ∩ X 6= ∅
} (8)

where U
/

SIM(P) denotes a partition of the universe of discourse U with respect to SIM(P).
A classification task for DT can be characterized by DT = (U, C∪D), where C indi-

cates the universe of condition attributes, D indicates the decision attribute set, and there
exists C ∩ D = ∅. All objects are assumed to be partitioned by D into r disjoint sets,
i.e., {X1, X2, . . . , Xr}. Given a tolerance relation, SIM(P), generated from P, where P indi-
cates a condition attribute subset P ⊆ C, then the lower and upper approximation set with
respect to D can be defined, respectively, as SIM(P)D=

{
SIM(P)X1, SIM(P)X2, . . . , SIM(P)Xr

}
SIM(P)D=

{
SIM(P)X1, SIM(P)X2, . . . , SIM(P)Xr

} (9)

Given POSP(D) =
⋃r

i=1 SIM(P)Xi, i.e., the positive region of D with respect to P.
The misclassification function c and the granularity-based approximation set have been
proposed to construct variable precision rough set models [36]. This model can be further
generalized for acquiring a more flexible algorithm for IDT attribute reduction.
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Let the pair (U, A) be an IIS, P ⊆ A be a subset of condition attributes, and X be a
target subset of the universe of discourse U. The threshold β is given as β ∈ [0, 0.5], then X

can be approximated by SIM(P)βX and SIM(P)
β
X, i.e., SIM(P)βX = {x|D(SP(x), SP(x) ∩ X) ≤ β, x ∈ X }

SIM(P)
β
X = {x|D(SP(x), SP(x) ∩ X) ≤ 1− β, x ∈ U }

(10)

where they satisfy SIM(P)βX ⊆ X ⊆ SIM(P)
β
X.

Let the pair (U, C ∪ D) be a DT. All objects are assumed to be partitioned by D into
r disjoint sets, i.e., {X1, X2, . . . , Xr}. Given a tolerance relation SIM(P) generated from P,
where P indicates a condition attribute subset P ⊆ C, then the lower and upper approxima-
tion set with respect to D in variable precision model can be defined, respectively, as SIM(P)βD =

{
SIM(P)βX1, SIM(P)βX2, . . . , SIM(P)βXr

}
SIM(P)

β
D =

{
SIM(P)

β
X1, SIM(P)

β
X2, . . . , SIM(P)

β
Xr

} (11)

The positive region of rough set in variable precision model can be obtained as
POSβ

P(D) =
⋃r

i=1 SIM(P)βXi, i.e., β-positive region of D with respect to P. According
to the above framework, a novel algorithm can be demonstrated for attribute reduction in
an incomplete variable precision model.

Let the pair (U, A) be an IIS. Given a partial order relation ≺ on 2A (power set of
A) [36], if set P is crisper than set Q, in other words Q is rougher than P, then it is definite
that P≺Q satisfies (if SP(xi) ⊆ SQ(xi) holds for any i ∈ {1, 2, . . . , |U|}). If P 6= Q and P≺Q
satisfy simultaneously, then we use the notation P ≺ Q .

2.3. The Positive Approximation Set of IIS and IDT

An introduction of positive approximation set is demonstrated in this subsection
as a preparation for proposing our algorithm. With regard to an incomplete data set,
a granularity domain, which can be employed to describe target knowledge, is provided
by a covering generated from a tolerance relation. Furthermore, a sequence of granularity
domains ranging from rough to crisp is determined by a corresponding sequence of
condition attribute subsets with granularity (same ranging as the domains) in the power
set of condition attributes.

Let the pair (U, A) be an IIS, X ⊆ U be a target subset, and P = {P1, P2, . . . , Pn}
be a subset family satisfying P1�P2� . . .�Pn, where Pi ∈ 2A, i = 1, 2, . . . , n. Given
Pi = {P1, P2, . . . , Pi}, Pi-lower and Pi-upper approximation sets of X for IIS can be defined as Pi(X) =

i⋃
k=1

SIM(Pk)Xk

Pi(X) = SIM(Pi)X
(12)

where X1 = X. It can be obtained that Xk = X − ⋃k−1
j=1 Pj

(
Xj
)

for k = 2, 3, . . . , i, where
i = 1, 2, . . . , n. This definition demonstrates the fact that X can be approximated by
the corresponding approximation sets, i.e., Pi(X) and Pi(X). The Pi-lower and Pi-upper
approximation sets of X for IIS in variable precision model can be defined, respectively, as Pi

β(X) =
i⋃

k=1
SIM(Pk)

βXk

Pi
β
(X) = SIM(Pi)

β
X

(13)
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Let the pair (U, A) be an IIS, X ⊆ U be a target subset, and P = {P1, P2, . . . , Pn} be a
subset family satisfying P1�P2� . . .�Pn, where Pi ∈ 2A, i = 1, 2, . . . , n.
Given Pi = {P1, P2, . . . , Pi}, where i = 1, 2, . . . , n, it can be obtained that

POSU
Pi+1

(D) = POSU
Pi
(D) ∪ POSUi+1

Pi+1
(D) (14)

where U1 = U, Ui+1 = U− POSU
Pi
(D). Since the positive approximation set of IIS is related

to the structure of target concept X (i.e. it is related to the tolerance class in the lower
approximation set of X with respect to P), the tolerance class on U can be employed to
redefine the P-positive approximation set of X.

Let the pair (U, C ∪ D) be an IDT, X ⊆ U be a target subset, P = {P1, P2, . . . , Pn} be a
subset family satisfying P1�P2� . . .�Pn, and U/D = {X1, X2, . . . , Xr} be a partition of the
universe, U, with respect to D. The P-lower and P-upper approximation sets of D for IDT
can be defined, respectively, as{

PD = {P(X1), P(X2), . . . , P(Xr)}
PD =

{
P(X1), P(X2), . . . , P(Xr)

} (15)

The P-lower and P-upper approximation sets of D for IDT in a variable precision
model can be defined, respectively, as PβD =

{
Pβ(X1), Pβ(X2), . . . , Pβ(Xr)

}
PβD =

{
Pβ

(X1), Pβ
(X2), . . . , Pβ

(Xr)
} (16)

There exists a similar conclusion for IDT, which is POSβU
Pi+1

(D) = POSβU
Pi

(D)∪POSβUi+1
Pi+1

(D),

where U1 = U, Ui+1 = U − POSβU
Pi

(D). This implies that the granularity sequence can be
used to approximate the target knowledge D from positive direction. Our accelerating
reduction algorithm for IDT was mainly inspired by this conclusion.

3. Accelerating Reduction Approach for IDT Using Positive Approximation Set

To achieve the ultimate goal of attribute reduction, it is necessary to obtain the specific
attribute subset that contains least condition attributes and reserve the same discriminability
as C. Three procedures should be taken into consideration for realizing a heuristic reduction
algorithm—searching strategy, significance evaluation, and termination condition.

Most of conventional heuristic algorithms for attribute reduction have been suffering
from huge amounts of computation in different degree. For addressing this disadvantage,
our research does not intend to design a brand new reduction algorithm directly, but to
utilize the aforementioned positive approximation set to optimize the existing heuristic
strategies for reduction and improve their performances.

3.1. Definitions of Condition Attribute Significance

One of modern reduction approaches proposed by Xie et al. (abbreviation as IPR) [24]
is adopted in the following section. It is essentially developed from Shu’s algorithm [18,19].
To realize our accelerating reduction algorithm, several definitions of condition attribute
significance should be presented at first. Each of the these definitions can be utilized for
the subsequent reduction process.

Definition 1. Let the pair (U, C ∪ D) be an IDT, and B ⊆ C be a subset of condition attributes.
As for ∀a ∈ B , the definition of the condition attribute significance of a inside B can be expressed as

SIGinner
1 (a, B, D) = γB(D)− γB−{a}(D) (17)

where γB(D) = |POSB(D)|
/
|U|.
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Definition 2. Let the pair (U, C ∪ D) be an IDT, and B ⊆ C be a subset of condition attributes.
As for ∀a ∈ C − B, the definition of the condition attribute significance of a outside B can be
expressed as

SIGouter
1 (a, B, D) = γB∪{a}(D)− γB(D) (18)

The above two definitions are provided by Qian and Liang et al. [37], and the following
two come from Liang and Shi et al. [35].

Definition 3. Let the pair (U, C ∪ D) be an IDT, and B ⊆ C be a subset of condition attributes.
As for ∀a ∈ B, the definition of the condition attribute significance of a inside B can be expressed as

SIGinner
2 (a, B, D) = E(D|B− {a} )− E(D|B ) (19)

Definition 4. Let the pair (U, C ∪ D) be an IDT, and B ⊆ C be a subset of condition attributes.
As for ∀a ∈ C − B, the definition of the condition attribute significance of a outside B can be
expressed as

SIGouter
2 (a, B, D) = E(D|B )− E(D|B ∪ {a} ) (20)

On the basis of Definitions 1 and 2, the corresponding measures of significance can
be utilized to construct a new algorithm in incomplete variable precision model, which is
capable of reserving β-positive region with respect to the target knowledge D.

Definition 5. Let the pair (U, C ∪ D) be an IDT, and B ⊆ C be a subset of condition attributes.
As for ∀a ∈ B, the definition of the condition attribute significance of a inside B can be expressed as

SIGinner
3 (a, B, D) = γ

β
B(D)− γ

β
B−{a}(D) (21)

where γ
β
B(D) =

∣∣∣POSβ
B(D)

∣∣∣/|U|.
Definition 6. Let the pair (U, C ∪ D) be an IDT, and B ⊆ C be a subset of condition attributes.
As for ∀a ∈ C − B, the definition of the condition attribute significance of a outside B can be
expressed as

SIGouter
3 (a, B, D) = γ

β
B∪{a}(D)− γ

β
B(D) (22)

3.2. Rank Reservation Property of Attribute Significance

This subsection plans to give a discussion on rank reservation property of the condition
attribute significance to provide a theory fundamental for proposing our accelerating reduction
algorithm. For simplicity and clarity of the content, the notation SIGouter

λ (a, U, B, D) is adopted
to indicate the condition attribute significance in previous subsection, where λ ∈ (1, 2, 3).
Additionally, SU

B (x) denotes a tolerance class generated from the object x, with respect to the
attribute subset B, on the universe of discourse U. The detailed proofs of all lemmas and
theorems appearing in this subsection are demonstrated in Appendixes A and B , respectively.

Firstly, two Lemmas are presented and proved aiming at investigating in the rank
reservation property of the dependence based condition attribute significance for IDT.

Lemma 1. Let A, B, C, A′, B′, C′ be six finite set such that we have A′ = A ∪ C and B′ = B ∪ C′

satisfied. If A′ ⊆ B′ and C′ ∩ (A ∪ B) = ∅ satisfy, then we have A ⊆ B.

Lemma 2. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U− POSU
B (D)

satisfied. If SU
B∪{a}(x′) ⊆ SU

D(x′) and x′ ∈ U′ satisfy, then we have SU′
B∪{a}(x′) ⊆ SU′

D (x′).

Secondly, the theorem of rank reservation property can be proved as follows according
to Lemmas 1 and 2.
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Theorem 1. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U − POSU
B (D)

satisfied. As for ∀a, b ∈ C − B, if SIGouter
1 (a, U, B, D) ≥ SIGouter

1 (b, U, B, D) is satisfied, then
we have

SIGouter
1

(
a, U′, B, D

)
≥ SIGouter

1
(
b, U′, B, D

)
(23)

Finally, to investigate in the rank reservation property of condition attribute signifi-
cance in Yan’s conditional entropy reduction approach for IDT [23], the following Lemma
3 is indispensable. Additionally, this property can be described by Theorems 2 and 3 in
incomplete rough set model and incomplete variable precision model, respectively.

Lemma 3. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U− POSU
B (D)

satisfied. Then, we have
∣∣SU

B (x′)
∣∣− ∣∣SU

B (x′) ∩ SU
D(x′)

∣∣ = ∣∣∣SU′
B (x′)

∣∣∣− ∣∣∣SU′
B (x′) ∩ SU′

D (x′)
∣∣∣, where

x′ ∈ U′.

Theorem 2. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U − POSU
B (D)

satisfied. As for ∀a, b ∈ C− B, if SIGouter
2 (a, U, B, D) ≥ SIGouter

2 (b, U, B, D), then there exists
SIGouter

2 (a, U′, B, D) ≥ SIGouter
2 (b, U′, B, D).

Theorem 3. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C, β = 0 and
U′ = U − POSU

B (D) satisfied. As for ∀a, b ∈ C− B, if SIGouter
3 (a, U, B, D) ≥ SIGouter

3 (b, U, B, D)
satisfies, then there exists SIGouter

3 (a, U′, B, D) ≥ SIGouter
3 (b, U′, B, D).

It can be concluded from the above theorems that the result of reduction would be
unchanged as the object number of lower approximation set of positive approximation
set for IDT is reduced. In other words, the significance rank of the selected reducts can be
reserved when the positive region of positive approximation set for IDT narrows.

3.3. Accelerating Attribute Reduction Algorithms

Generally, all reduction approaches based on RST are designed to find a minimal
subset consisting of no redundant attribute and reserving specific property, like the whole
universe of condition attributes C. It is essentially NP-hard to seek out all potential reducts
of an IDT, hence it is only necessary to search for any of them.

It is indispensable to achieve the tolerance class generated from the concerning at-
tributes. Therefore, an accelerating algorithm of tolerance class acquisition for IDT reduc-
tion is proposed. The inspiration of this implementation partially comes from the method
of radix sorting, and the computation complexity of the algorithm equates as follows:

O
(
|A||U|+∑|A|

j=1∑
j−1
k=1

∣∣∗ak

∣∣∣∣Vak

∣∣)≈O
(
|A||U|+|A|2|U|

)
=O
(
|A|2|U|

)
(24)

where
∣∣∗ak

∣∣ indicates the number of objects that own empty value in condition attribute ak,
and

∣∣Vak

∣∣ indicates the number of objects that own no empty value in ak. A derived result

of reduced computation complexity equates O
(
|A|2|U|

)
.

The analysis of computation complexity reveals that the dimension of condition at-
tributes has greater influence in the length of computing time, compared with the amount
of target objects. Based on the above discussion, an accelerating reduction approach for IDT
using positive approximation set (ARIPA) is proposed. In the framework of ARIPA, the eval-
uation function (or termination condition) can be expressed as EFU(B, D) = EFU(C, D),
which implies that the discernibility of condition attribute subset B is exactly the same as
that of the universe of condition attributes C. The evaluation function can be chosen accord-
ing to the original reduction algorithm we plan to accelerate. For an instance, if the original
algorithm adopted is Yan’s rough conditional entropy-based reduction algorithm in [23],
then the corresponding evaluation function should be ENU(B, D) = ENU(C, D), where
EN denotes the rough conditional entropy. In other words, if EFU(B, D) = EFU(C, D)
satisfies, then B should be one of the reducts we search for. The detailed steps of ARIPA are
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exhibited as follows. The outer significance SIGouter(ak, red, D, Ui) and inner significance
SIGinner(ak, C, D, U) in Algorithm 1 can be either the pair of SIGouter

1 , SIGinner
1 or the pair of

SIGouter
2 , SIGinner

2 .

Algorithm 1: ARIPA.
Input: IDT = (U, C ∪ D)
Output: Attribute reduct red
1: Initialize red as ∅, i.e., red← ∅, where red indicates

condition attribute subset which has been selected.
2: Evaluate SIGinner(ak, C, D, U), where k ≤ |C|.
3: If SIGinner(ak, C, D, U) > 0, then add ak into red.

IDT’s kernel partly consists of condition attributes
in red at this step.

4: i← 1, U1 ← U, R1 = red, P1 = {R1}.
5: While Ui 6= ∅ and EFUi (red, D) 6= EFUi (C, D), do
6: {Evaluate the positive region of the positive

approximation set POSU
Pi
(D),

7: Ui = U − POSU
Pi
(D),

8: i← i + 1,
9: red← red ∪ {a0}, where

SIGouter(a0, red, D, Ui) = max
{

SIGouter(ak, red, D, Ui)
}

ak ∈ C− red}, End.
10: Ri ← Ri ∪ {a0}, Pi ← {R1, R2, . . . , Ri}.
11: Return red.

To accelerate the reduction algorithm in the incomplete variable precision rough set
(IVPR) model by ARIPA, it is remodeled on the basis of the β-positive approximation
set. The IVPR-version of accelerating reduction, Algorithm 2 (ARIPA-IVPR), is illustrated
as follows.

Algorithm 2: ARIPA-IVPR.
Input: IDT = (U, C ∪ D), threshold β ≤ 0.5
Output: Attribute reduct red
1: Initialize red as ∅, i.e., red← ∅, where red indicates

condition attribute subset which has been selected.
2: Evaluate SIGinner

3 (ak, C, D, U), where k ≤ |C|.
3: If SIGinner

3 (ak, C, D, U) > 0, then add ak into red.
IDT’s kernel partly consists of condition attributes
in red at this step.

4: i← 1, U1 ← U, R1 = red, P1 = {R1}.
5: While Ui 6= ∅ and γ

βUi
red (D) 6= γ

βUi
C (D), do

6: {Evaluate the positive region of the positive
approximation set POSβU

Pi
(D),

7: Ui = U − POSβU
Pi

(D),
8: i← i + 1,
9: red← red ∪ {a0}, where

SIGouter
3 (a0, red, D, Ui) = max

{
SIGouter

3 (ak, red, D, Ui)
}

ak ∈ C− red}, End.
10: Ri ← Ri ∪ {a0}, Pi ← {R1, R2, . . . , Ri}.
11: Return red.
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4. Experiments

To investigate the efficiency and effectiveness of the proposed ARIPA and ARIPA-
IVPR, four incomplete data sets are picked up from the UCI Machine Learning Database
at University of California for experimental purposes. The performances of the proposed
algorithms were analyzed and compared with those of other state-of-the-art algorithms to
prove their superiority.

4.1. Experiments on ARIPA and ARIPA-IVPR

Due to the existence of continuous attribute values contained in the chosen incomplete
data sets, Tsai’s CACC discretization algorithm [38] is adopted as a preprocess before
reduction to discretize continuous values into discrete ones. Another aim of this step is to
reduce the computation load of subsequent steps and compress the data scale. The average
CPU time of ARIPA, ARIPA-IVPR, and their competitors is counted in seconds as their
running time. All simulation work is conducted on the PC with the configurations of 8GB
RAM, Intel i5-8400 2.8GHz CPU, Matlab R2019a, Win10 (64 bit). The statistical results of
the four incomplete data sets for simulations are summarized and analyzed, respectively,
in Table 1.

Table 1. Summary of the experimental incomplete data sets.

Incomplete
Data Sets Objects Condition

Attributes
Empty
Values

Decision
Classes

Incomplete
Rate (%)

Audiology standardized 226 69 291 24 1.87
Breast cancer Wisconsin 699 10 16 2 0.23

Dermatology 366 34 8 6 0.06
Soybean large 307 35 712 19 6.63

To compare our improved reduction algorithms with other competitors (Xie’s IPR [24]
and Yan’s ILCE [23]), a modern approach is carried out for evaluating their computation
complexities [39]. The same reduct would be obtained by each pair of the improved and
original algorithm, thus we just have to make an comparison between their running times.
The graphical illustrations of their performances are shown in Figures 1 and 2. In these
figures, the x-axis indicates the number of data segments which increases from 1 to 20
(all objects of each incomplete data set are equally divided into 20 segments), and the
y-axis indicates the corresponding running time. The experiments using incomplete data
segments in different scales would make us aware of the trend of the computing time as the
scale grows. Furthermore, the simulations indirectly prove that our accelerating algorithm
would exhibit more outstanding performance when the incomplete data set contains tens
of thousands of objects.

With regard to the framework of incomplete variable precision model, Kang’s IVPR
algorithm [36] is conducted as a competitor for our improved ARIPA-IVPR. The experiment
results are illustrated in Figures 3–6.

4.2. Results and Discussions

It can be noticed from Figures 1–6 that the computing time of the improved algorithm
increases more smoothly than that of the original algorithm as the number of data segments
grow. Essentially, this consequence can be the result for the following three reasons. (1) The
accelerated algorithm consumes much less computing time when the universe of discourse
shrinks dramatically. (2) As for the same incomplete data segments, the original algorithms
have to consume more time to evaluate the condition attribute significance of the potential
reducts. (3) Our accelerating algorithm would encapsulate all concerning objects into the
lower approximation set with respect to the decision attribute set during the reduction,
hence it ensures that the improved reduction algorithm would consume less time to finish
the reduction. These results are caused by the rank reservation property of the condition
attribute significance, as discussed in Section 3.2. It provides a solution to the inefficiency



Sensors 2022, 22, 2211 11 of 21

of the existing heuristic algorithms for IDT reduction. Since the reducts from different
algorithms are identical, the same classification accuracy can be ensured in subsequent
process, no matter what type of classifier is chosen, e.g., SVM, decision tree, etc. It is
possible that the accelerating reduction algorithm we propose leads in the problem of over-
fitting, in the perspective of classifier. However, discussion on this issue is not included in
this paper.
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Figure 1. Computing time of IPR and ARIPA-IPR for (a) Audiology standardized, (b) Breast cancer
Wisconsin, (c) Dermatology, and (d) Soybean large.
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Figure 2. Computing time of ILCE and ARIPA-ILCE for (a) Audiology standardized, (b) Breast cancer
Wisconsin, (c) Dermatology, and (d) Soybean large.
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Figure 3. Computing time of IVPR and ARIPA-IVPR for Audiology standardized data set in
(a) β = 0.0, (b) β = 0.1, and (c) β = 0.2.

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

(a) β=0.0

 
2 4 6 8 10 12 14 16 18 20

0

5

10

15

20

25

30

(b) β=0.1

 

2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

(c) β=0.2

 

IVPR

ARIPA-IVPR

IVPR

ARIPA-IVPR

IVPR

ARIPA-IVPR

Co
m

pu
tin

g 
Ti

m
e 

(s
)

Co
m

pu
tin

g 
Ti

m
e 

(s
)

Co
m

pu
tin

g 
Ti

m
e 

(s
)

No. of Incomplete Data Segments No. of Incomplete Data Segments

No. of Incomplete Data Segments

Figure 4. Computing time of IVPR and ARIPA-IVPR for Breast cancer Wisconsin data set in
(a) β = 0.0, (b) β = 0.1, and (c) β = 0.2.

It also can be observed that the computing time rises up for most of time when the
number of data segments increases in each experiment, no matter which incomplete data
set, competitor algorithm, style of rough set model, or value of β we choose. However, not
all the curves show a strictly monotone increasing function, and the opposite may take
place in a few cases (e.g., in Figure 4). This phenomenon a result of the possibility that the
new added data segment, in contrast to the existing ones, may contain specific knowledge
that is more useful for attribute reduction as well as compressing the computation load.
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Figure 5. Computing time of IVPR and ARIPA-IVPR for Dermatology data set in (a) β = 0.0,
(b) β = 0.1, and (c) β = 0.2.
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Figure 6. Computing time of IVPR and ARIPA-IVPR for Soybean large data set in (a) β = 0.0,
(b) β = 0.1, and (c) β = 0.2.

The computation complexities of state-of-the-art [23] and improved algorithms are
analyzed step by step in Table 2. It can be observed that the major difference in computation
aspect is brought by step 2 and steps 5–9 of the algorithms. Among these steps, step 2
corresponds to the evaluation of the attribute significance of potential reducts, and steps 5–9
correspond to the loop which includes the evaluation of the positive region of positive
approximation set and the heuristic search for real reducts. Moreover, Figures 7 and 8
indicate that our improved algorithms run more efficiently than the original algorithms,
both in rough set model and variable precision model (β = 0.0, 0.1, 0.2). Hence, the
experiment results justify the conclusion that the accelerated algorithms are more efficient
for reduction in practical applications.
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Table 2. Analysis on the computation complexity of existing and accelerated attribute reduction algorithm.

Algorithms Step 2 Step 3 Steps 5–9 Other Steps

Existing algorithm O
(
|C|2|U|2

)
O(|C|) O

(
∑|

C|
i=1 (|C| − i + 1)2|U|2

)
Constant

Accelerated algorithm O
(
|C|2|U|+ |C|

∑|
C|

j=1 ∑
j−1
k=1

∣∣∗ak

∣∣∣∣Vak

∣∣) O(|C|) O

(
|C|
∑

i=1
(|C| − i + 1)2|Ui |+

(|C| − i + 1)
|C|−i+1

∑
j=1

j−1
∑

k=1

∣∣∣∗Ui
ak

∣∣∣∣∣∣VUi
ak

∣∣∣)
Constant
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Figure 7. Computing time of IPR, ARIPA-IPR, ILCE, and ARIPA-ILCE for four incomplete data sets.
(1—Audiology standardized; 2—Breast cancer Wisconsin; 3—Dermatology; 4—Soybean large.)
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Figure 8. Computing time of IVPR and ARIPA-IVPR for four incomplete data sets (β = 0.0, 0.1, 0.2).
(1—Audiology standardized; 2—Breast cancer Wisconsin; 3—Dermatology; 4—Soybean large.)

4.3. Algorithm Stability Analysis

To evaluate the stability of both original and improved algorithms, ten-fold cross-
validation was applied. In this validation, a given data set is randomly parted into ten
nearly equally sized subsets. Nine of them are treated as training sets, and one last subset
is reserved as a testing set to evaluate the classification accuracy. The distance between
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two different reducts Ci and Cj is evaluated in Equation (25), where C0 and Ci indicate the
reducts generated from U and the ith segment of U, respectively.

Distance(Ci, Cj) = 1−
∣∣Ci

⋂
Cj
∣∣∣∣Ci

⋃
Cj
∣∣ (25)

Furthermore, by using the statistical method, mean (i.e., µ in Equation (26)) and
standard deviation (i.e., σ in Equation (27)) of the above ten distances of the segments can
be determined as well.

µ =
1

10

10

∑
i=1

(1− |Ci
⋂

C0|
|Ci
⋃

C0|
) (26)

σ =

√√√√ 1
10

10

∑
i=1

(Distance(Ci, C0)− µ)2 (27)

The stability of the reduct outputted from the heuristic reduction algorithm is char-
acterized by standard deviation of those distances. More specifically, lower the standard
deviation gets, more stably the corresponding reduction algorithm would run. The stability
analysis of each pair of algorithms is carried out in Tables 3–5.

Table 3. Computing time and stability of IPR and ARIPA-IPR for four incomplete data sets.

Incomplete Data Sets IPR’s Computing
Time (s)

ARIPA-IPR’s
Computing
Time (s)

IPR’s Stability ARIPA-IPR’s
Stability

Audiology standardized 71.5631± 5.1558 17.0331± 1.1149 0.2624± 0.1380 0.2624± 0.1380
Breast-cancer-WI 13.3757± 1.6881 4.5208± 0.8269 0.0792± 0.1635 0.0792± 0.1635

Dermatology 42.5979± 1.9307 15.3719± 0.5125 0.2893± 0.2271 0.2893± 0.2271
Soybean large 35.9553± 3.9234 10.7832± 1.4693 0.2289± 0.2049 0.2289± 0.2049

Table 4. Computing time and stability of ILCE and ARIPA-ILCE for four incomplete data sets.

Incomplete Data Sets ILCE’s Computing
Time (s)

ARIPA-ILCE’s
Computing
Time (s)

ILCE’s Stability ARIPA-ILCE’s
Stability

Audiology standardized 37.5503± 2.7268 20.8380± 1.1990 0.1868± 0.1061 0.1868± 0.1061
Breast cancer Wisconsin 38.6970± 3.0960 25.6673± 2.4608 0.0727± 0.1160 0.0727± 0.1160

Dermatology 34.1226± 0.5987 24.2288± 0.5979 0.2537± 0.1784 0.2535± 0.1784
Soybean large 18.7405± 1.9096 12.1051± 0.7328 0.1754± 0.1349 0.1754± 0.1349

Table 5. Computing time and stability of IVPR and ARIPA-IVPR for four incomplete data sets.

Incomplete Data Sets β IVPR’s
Computing
Time (s)

ARIPA-IVPR’s
Computing
Time (s)

IVPR’s Stability ARIPA-IVPR’s
Stability

Audiology standardized
0.0 76.4555± 3.0168 31.0325± 1.6524 0.2570± 0.1351 0.2570± 0.1351
0.1 76.0280± 3.5442 31.3581± 1.5407 0.2356± 0.1364 0.1782± 0.0895
0.2 75.9417± 3.6175 29.2186± 1.0746 0.2329± 0.1705 0.1903± 0.1479

Breast cancer Wisconsin
0.0 22.6102± 3.1587 15.2200± 3.1775 0.0678± 0.1493 0.0678± 0.1493
0.1 23.3089± 4.1228 9.9927± 3.5050 0.1167± 0.1779 0.0710± 0.1136
0.2 23.9333± 3.6824 9.5895± 3.6140 0.2272± 0.2118 0.1389± 0.2826

Dermatology
0.0 38.1813± 0.3769 23.5210± 0.4671 0.2209± 0.1930 0.2209± 0.1930
0.1 39.3397± 0.9589 22.8845± 0.4153 0.3329± 0.1241 0.2451± 0.1771
0.2 46.1933± 5.9338 22.4904± 0.3651 0.4899± 0.2778 0.3640± 0.1962

Soybean large
0.0 41.1054± 5.1171 21.1961± 2.9962 0.3520± 0.1881 0.3520± 0.1881
0.1 47.4468± 18.8684 20.9551± 2.4125 0.3752± 0.2183 0.3580± 0.2016
0.2 92.1092± 23.7040 19.5275± 2.0451 0.4695± 0.1330 0.2348± 0.1209

In Table 3, it can be found that ARIPA-IPR consumes less computing time, and its
lower standard deviation of computing time (in ten-fold cross-validation) implies better



Sensors 2022, 22, 2211 16 of 21

robustness than that of the original IPR algorithm. On the other hand, they both own
exactly the same stability, as well as the same standard deviation of stability. By borrowing
the positive approximation set approach, ARIPA-IPR not only reduces the computation of
IPR evidently and enhances its robustness simultaneously, but also holds the same stability
as IPR by generating the identical reduct. Similarly, same conclusions can be drawn from
Table 4 for the pair of ARIPA-ILCE and ILCE. With regard to the pair of ARIPA-IVPR and
IVPR in Table 5, the former half of the above conclusion still holds, and the stability of them
are identical if β = 0.0. This result can be explained reasonably by Theorem 3. While in
case of β = 0.1 or 0.2, ARIPA-IVPR runs more stably than IVPR does. This is because in
incomplete variable precision rough set model, the selected reduct (which is with respect to
a nonzero β), would become closer to the reduct generated from the universe of condition
attributes, when the norm of the lower approximation set of the positive approximation
set decreases.

When β varies between 0.0 and 0.5, it can be noticed that the reducts output from
our reduction algorithm may be diverse in different cases. This result can be explained
through the definition of incomplete variable precision model, i.e., the concerning inclusion
degree function is non-monotonic. Although this does not meet our expectation, it is
still meaningful because of the following reasons. (1) When the improved reduction
algorithm meets its termination condition, the output reduct would definitely contain all
the condition attributes that are included in the reduct output from the original reduction
algorithm, on the condition that the compressed subset of universe Ui is nonempty. Since
the termination condition demands that γ

βUi
red (D) = γ

βUi
C (D) and γ

βU
red (D) = γ

βU
C (D) satisfy

simultaneously, both of the reducts output from the original algorithm and the improved
algorithm have the same approximation ability. (2) When the compressed subset of universe
Ui is empty, the dependence of the selected subset outputted from the improved algorithm
would be γ

β
B(D) =

(∣∣∣POSβ
B(D)

∣∣∣/|U|) = 1. Since all of the objects in the universe of
discourse U are encapsulated into the lower approximation set with respect to the decision
attribute in this case, the improved reduction algorithm, which provides us with a more
satisfying option, would have a better approximation capability than the original one.

5. Conclusions

To address the disadvantage of conventional methods of attribute reduction for in-
complete decision table in the aspect of computational efficiency, the concept of a positive
approximation set based on a tolerance relation is introduced. Additionally, the rank reser-
vation property of the condition attribute significance is discussed, and it is employed to
accelerate other existing reduction algorithms under various heuristic strategies. As a result,
a novel accelerating reduction approach for IDT using positive approximation set (ARIPA)
is proposed. Several state-of-the-art reduction algorithms in different rough set models are
accelerated by ARIPA. To assess the performances of both improved and original reduction
algorithms, a series of experiments utilizing four real-world incomplete data sets are con-
ducted. The results show that the ARIPA-improved algorithm would ensure the output
of the same reduct as that from the original reduction algorithm. While the former can
finish attribute reduction in a more efficient and maybe a more stable manner, in contrast
with the latter. Average computing time of ARIPA-IPR, ARIPA-ILCE, and ARIPA-IVPR is
cut to 33.32%, 55.21%, and 43.62%, respectively. The proposed approach has been verified
distinctly effective for dealing with incomplete data sets with large amounts of objects.
However, the question of how to ensure its high efficiency for incomplete data sets with
hundreds of thousands of dimensions (condition attributes) is still an unresolved issue left
for the future.
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Appendix A

Lemma A1. Let A, B, C, A′, B′, C′ be six finite set, such that we have A′ = A∪C and B′ = B∪C′

satisfied. If A′ ⊆ B′ and (A ∪ B) ∩ C′ = ∅ satisfy, then we have A ⊆ B.

Proof. Let a ∈ A satisfy, since A′ = A ∪ C and A ⊆ A′, we have a ∈ A′. Since A′ ⊆ B′, we
can derive a ∈ B′. (A ∪ B) ∩ C′ = ∅, thus we have A ∩ C′ = ∅; furthermore, a /∈ C′. Since
B′ = B ∪ C′, a ∈ B′ and a /∈ C′, there exists a ∈ B. Finally, we can obtain A ⊆ B. QED.

Lemma A2. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U−POSU
B (D)

satisfied. If SU
B∪{a}(x′) ⊆ SU

D(x′) and x′ ∈ U′ satisfy, then we have SU′
B∪{a}(x′) ⊆ SU′

D (x′).

Proof. Since U′ = U− POSU
B (D) and x′ ∈ U′ satisfy, two notations X and Y can be defined

as follows.
X =

{
x
∣∣∣(x ∈ SU

B∪{a}
(
x′
))
∩
(

x ∈ POSU
B (D)

)}
Y =

{
y
∣∣∣(y ∈ SU

D
(

x′
))
∩
(

y ∈ POSU
B (D)

)}
Therefore, we can obtain SU

B∪{a}(x′) = SU′
B∪{a}(x′)∪X and SU

D(x′) = SU′
D (x′)∪Y. Accord-

ing to Y’s formula, it can be derived that Y ⊆ POSU
B (D). Thus, there exists Y ∩ SU′

B∪{a}(x′) = ∅

and Y ∩ SU′
D (x′) = ∅, i.e., Y ∩

(
SU′

B∪{a}(x′) ∪ SU′
D (x′)

)
= ∅. Then, according to SU

B∪{a}(x′) ⊆
SU

D(x′) and Lemma 1, it can be derived that SU′
B∪{a}(x′) ⊆ SU′

D (x′).

http://archive.ics.uci.edu/ml/index.php
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Lemma A3. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U−POSU
B (D)

satisfied. Then, we have
∣∣SU

B (x′)
∣∣− ∣∣SU

B (x′) ∩ SU
D(x′)

∣∣ = ∣∣∣SU′
B (x′)

∣∣∣− ∣∣∣SU′
B (x′) ∩ SU′

D (x′)
∣∣∣, where

x′ ∈ U′.

Proof. Since U′ = U − POSU
B (D) and x′ ∈ U′, two notations X and Y can be defined

as follows.
X =

{
x
∣∣∣(x ∈ SU

B
(
x′
))
∩
(

x ∈ POSU
B (D)

)}
Y =

{
y
∣∣∣(y ∈ SU

D
(

x′
))
∩
(

y ∈ POSU
B (D)

)}
Then it can be obtained that SU

B (x′) = SU′
B (x′) ∪ X and SU

D(x′) = SU′
D (x′) ∪Y. Accord-

ing to the definitions of X and Y, we can derive that X ⊆ POSU
B (D) and Y ⊆ POSU

B (D).
Thus, there exists Y ∩ SU′

B (x′) = ∅ and X ∩ SU′
D (x′) = ∅. As for ∀x ∈ X, it can be obtained

that x ∈ SU
B (x′). It can be derived that x′ ∈ SU

B (x) on the basis of the symmetry of tolerance
relation. Furthermore, it can be derived that SU

B (x) ⊆ SU
D(x) on the basis of the definition

of positive region, hence x′ ∈ SU
D(x). Similarly, it can be obtained that x ∈ SU

D(x′). Since
for ∀x ∈ X and ∀x ∈ POSU

B (D), there exists x ∈ Y, i.e., X ⊆ Y. Therefore, the following
formula can be derived.

SU
B
(

x′
)
∩ SU

D
(

x′
)
=
(

SU′
B
(

x′
)
∪ X

)
∩
(

SU′
D
(

x′
)
∪Y

)
=
(

SU′
B
(

x′
)
∩ SU′

D
(
x′
))
∪
(

SU′
B
(
x′
)
∩Y

)
∪
(

X ∩ SU′
D
(
x′
))
∪ (X ∩Y)

=
(

SU′
B
(

x′
)
∩ SU′

D
(
x′
))
∪ X

And since X ⊆ POSU
B (D), we can obtain

(
SU′

B (x′) ∩ SU′
D (x′)

)
∩ X = ∅ and∣∣SU

B (x′) ∩ SU
D(x′)

∣∣ = ∣∣∣SU′
B (x′) ∩ SU′

D (x′)
∣∣∣+ |X|. Therefore, the following formula can be derived.

∣∣∣SU′
B
(

x′
)∣∣∣− ∣∣∣SU′

B
(

x′
)
∩ SU′

D
(
x′
)∣∣∣ = (∣∣∣SU

B
(
x′
)∣∣∣− |X|)− (∣∣∣SU

B
(
x′
)
∩ SU

D
(
x′
)∣∣∣− |X|)

=
∣∣∣SU

B
(
x′
)∣∣∣− |X| − ∣∣∣SU

B
(
x′
)
∩ SU

D
(
x′
)∣∣∣+ |X|

=
∣∣∣SU

B
(
x′
)∣∣∣− ∣∣∣SU

B
(
x′
)
∩ SU

D
(
x′
)∣∣∣

i.e.,
∣∣SU

B (x′)
∣∣− ∣∣SU

B (x′) ∩ SU
D(x′)

∣∣ = ∣∣∣SU′
B (x′)

∣∣∣− ∣∣∣SU′
B (x′) ∩ SU′

D (x′)
∣∣∣, where x′ ∈ U′.

Appendix B

Theorem A1. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U −
POSU

B (D) satisfied. As for ∀a, b ∈ C− B, if SIGouter
1 (a, U, B, D) ≥ SIGouter

1 (b, U, B, D) satisfies,
then we have

SIGouter
1

(
a, U′, B, D

)
≥ SIGouter

1
(
b, U′, B, D

)
.

Proof. According to the definition SIGouter
1 (a, B, D) = γB∪{a}(D)−γB(D), it is definite that

the value of SIGouter
1 (a, B, D) relies on the dependence function γB(D) = |POSB(D)|

/
|U|.

U′ = U − POSU
B (D), hence, we can obtain POSU′

B (D) = ∅. According to Lemma 2, we can
obtain that if SU

B∪{a}(x′) ⊆ SU
D(x′), x′ ∈ U′ satisfies, then there exists SU′

B∪{a}(x′) ⊆ SU′
D (x′).

Therefore, it can be derived that POSU′
B∪{a}(D) = POSU

B∪{a}(D)− POSU
B (D). Furthermore,

we can the following:
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SIGouter
1 (a, U, B, D)

SIGouter
1 (a, U′, B, D)

=
γU

B∪{a}(D)− γU
B (D)

γU′
B∪{a}(D)− γU′

B (D)

=
|U′|
|U|

∣∣∣POSU
B∪{a}(D)

∣∣∣− ∣∣∣POSU
B (D)

∣∣∣∣∣∣POSU′
B∪{a}(D)

∣∣∣− ∣∣∣POSU′
B (D)

∣∣∣
=
|U′|
|U|

∣∣∣POSU
B∪{a}(D)

∣∣∣− ∣∣∣POSU
B (D)

∣∣∣∣∣∣POSU
B∪{a}(D)

∣∣∣− ∣∣∣POSU
B (D)

∣∣∣
=
|U′|
|U| .

Since 1 ≥ |U′|
/
|U| ≥ 0, then, if SIGouter

1 (a, U, B, D) > SIGouter
1 (b, U, B, D) satisfies,

then there exists SIGouter
1 (a, U′, B, D) > SIGouter

1 (b, U′, B, D).

Theorem A2. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C and U′ = U −
POSU

B (D) satisfied. As for ∀a, b ∈ C − B, if SIGouter
2 (a, U, B, D) ≥ SIGouter

2 (b, U, B, D), then
there exists

SIGouter
2

(
a, U′, B, D

)
≥ SIGouter

2
(
b, U′, B, D

)
.

Proof. Let U
/

SIM(B) =
{

SU
B (x1), SU

B (x2), . . . , SU
B
(
xq
)
, SU

B
(
xq+1

)
, . . . , SU

B

(
x|U|

)}
and

U
/

SIM(D) =
{

SU
D(x1), SU

D(x2), . . . , SU
D
(
xq
)
, SU

D
(

xq+1
)
, . . . , SU

D

(
x|U|

)}
be true, where

xi ∈ POSU
B (D), i = 1, 2, . . . , q. The notation ENU(D|B ) is used to indicate the rough

conditional entropy on the universe of discourse U in Yan’s approach [23].

ENU(D|B ) =
1

|U|2
|U|

∑
i=1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣)

=
1

|U|2
q

∑
i=1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣)+ 1

|U|2
|U|

∑
i=q+1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣)

=
1

|U|2
q

∑
i=1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi)

∣∣∣)+ 1

|U|2
|U|

∑
i=q+1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣)

=
1

|U|2
|U|

∑
i=q+1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣)

In addition, the following equation can be derived according to Lemma A3

1

|U|2
|U|

∑
i=q+1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣) =

|U′|2

|U|2
1

|U′|2
|U|

∑
i=q+1

(∣∣∣SU
B (xi)

∣∣∣− ∣∣∣SU
B (xi) ∩ SU

D(xi)
∣∣∣)

=
|U′|2

|U|2
1

|U′|2
|U′ |

∑
j=1

(∣∣∣SU′
B
(
xj
)∣∣∣− ∣∣∣SU′

B
(

xj
)
∩ SU′

D
(
xj
)∣∣∣)

=
|U′|2

|U|2
ENU′(D|B )

Therefore, there exists

SIGouter
2 (a, U, B, D)

SIGouter
2 (a, U′, B, D)

=
|U′|2

|U|2
.
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Hence, for ∀a, b ∈ C − B, if SIGouter
2 (a, U, B, D) ≥ SIGouter

2 (b, U, B, D) satisfies, then
there exists SIGouter

2 (a, U′, B, D) ≥ SIGouter
2 (b, U′, B, D).

Theorem A3. Let the pair (U, C ∪ D) be an IDT, such that we have B ⊆ C, U′ = U− POSU
B (D)

and β = 0 satisfied. As for ∀a, b ∈ C− B, if SIGouter
3 (a, U, B, D) ≥ SIGouter

3 (b, U, B, D) satisfies,
there exists SIGouter

3 (a, U′, B, D) ≥ SIGouter
3 (b, U′, B, D).

Proof. Omitted because of its similarity to the proof of Theorem A1.
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