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Approximate confidence intervals for
moment-based estimators of the
between-study variance in random

effects meta-analysis
Dan Jackson,a* Jack Bowdena and Rose Bakerb
Moment-based estimators of the between-study variance are very popular when performing random effects
meta-analyses. This type of estimation has many advantages including computational and conceptual
simplicity. Furthermore, by using these estimators in large samples, valid meta-analyses can be performed
without the assumption that the treatment effects follow a normal distribution. Recently proposed
moment-based confidence intervals for the between-study variance are exact under the randomeffectsmodel
but are quite elaborate. Here, we present a much simpler method for calculating approximate confidence
intervals of this type. This method uses variance-stabilising transformations as its basis and can be used for
a very wide variety of moment-based estimators in both the random effects meta-analysis and meta-
regression models. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
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1. Introduction

The random effects model formeta-analysis (Biggerstaff and Tweedie, 1997; DerSimonian and Laird, 1986; Hardy and
Thompson, 1996) is nowwidely used. This model includes a random effect that describes the extent of the between-
study variation. The variance of this random effect is called the ‘between-study variance’, and here, the focus is on
performing interval estimation for this parameter. Although inference for the average treatment effect is of primary
interest, accurately quantifying the extent of the between-study variance is an important secondary consideration.

The most popular estimator of the between-study variance is the moment-based estimator proposed by
DerSimonian and Laird (1986), which has since been put into more general estimation frameworks (DerSimonian
and Kacker, 2007; Rukhin, 2013). One major advantage of these point estimates is that they do not require the
normality assumptions made by the random-effects model. This means that, in large samples (meta-analyses with
sufficient numbers of large studies, so that both the between and the within-study variances can be well
approximated by their estimates; the central limit theorem then ensures the pooled estimate is approximately
normally distributed), valid random effects meta-analyses can be performed without making normality
assumptions. By a valid random effects meta-analysis we mean an analysis where the bias in the pooled estimate
is negligible and where the actual coverage probability of the confidence interval for the average treatment effect
is very close to the nominal level. The standard confidence interval for the treatment effect will be valid
approximately in a distribution-free context when there are many studies (Higgins et al., 2009), but in smaller
samples, we require normality assumptions to justify the use of a normal approximation for the pooled estimate.

Confidence intervals based on these moment-based estimators, which are exact under the random effects
model, have recently been developed (Biggerstaff and Jackson, 2008; Jackson, 2013). It is important to recognise
that these ‘exact’ methods are only exact under the random effects model. As explained in Section 2, this model
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makes some strong assumptions, including fixed and known within-study variances. Some may therefore describe
our exact confidence intervals as ‘non-approximate’ or ‘small sample’ confidence intervals, in order to avoid any
connotations of the word ‘exact’. For real datasets, such as those in Section 5, all confidence intervals are only
approximate because the random effects model merely provides an approximation in practice. A further difficulty
is that these ‘exact’ confidence intervals require the use of iterative methods and algorithms (Farebrother, 1984)
and so are computationally and conceptually quite complex. The intention here is to provide a much simpler
method for producing approximate confidence intervals of this type. An alternative exact method for obtaining
confidence intervals is the Q profile method (Viechtbauer, 2007). Efficient methods for obtaining confidence
intervals using this method are now available (Jackson et al., 2014), but in contrast to the method proposed here,
iterative methods are also needed when using the Q profile method.

Moment-based estimators for the between-study variance have also been proposed for the random effects
meta-regression model (Knapp and Hartung, 2003; Jackson et al., 2014). In the context of meta-regression, the
between-study variance represents the variation in the study estimates that is not explained by the covariates.
This variance is usually referred to as the residual between-study variance in the context of a meta-regression
model. The exact methods for calculating confidence intervals for the between-study variance in random-effects
meta-analysis have recently been extended to the meta-regression setting (Jackson et al., 2014). The proposed
approximate method is derived below in the more general framework of meta-regression, so that the necessary
results for meta-analysis are recovered as the special case of an intercept only (no covariates) regression. Hence,
our methods are applicable to both random-effects meta-analysis and meta-regression models, but the former
type of model provides our main interest.

The rest of the paper is set out as follows. In Section 2, we briefly review the random effects model. In
Section 3, we present our new approximate method for calculating confidence intervals. In Section 4, we
perform a simulation study, and in Section 5, we apply our methods to some real datasets. We conclude with
a discussion in Section 6.
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2. The random effects model

We will present our methods in terms of a general random effects meta-regression model. The necessary methods
for meta-analysis are obtained as a special case from the results presented in Sections 2 and 3.

The random effects meta-regression model assumes that Yi xi∼N xiβ; σ2i þ τ2
� ��� , where Yi is the estimated effect

from the ith study, i= 1, 2,…, n, xi is the 1 × p row vector of covariates associated with this study and β is the vector
of regression parameters of interest. For a standard meta-analysis simply focusing on an overall effect, with no
adjustment for covariates, xi=1 for all i. The parameter τ2 is the between-study (in a meta-regression, residual)
variance. The within-study variances σ2i are estimated in practice but are treated as fixed and known in analysis.
Our aim is to provide a simple approximate method for calculating confidence intervals for τ2.

It is important to recognise that the random-effects model makes a number of assumptions and can be quite a
crude approximation when applied to real data. These assumptions include within and between-study normality
where the within-study variances are replaced by their estimates. These assumptions greatly simplify the
mathematics. All the confidence intervals for τ2 calculated in this paper, unlike the point estimates, require the
normality assumptions made by the random effects model. Our position is that the methods that follow can be
used in situations where the random-effects model is considered to be a suitable approximation. In current
practice, the random-effects model is generally considered to be widely applicable and is routinely used. The
random effects model provides a reasonable approximation in situations where the studies are large enough to
justify the use of normal approximations within-studies and the assumption of between-study normality is
considered to be reasonable. However, Kulinskaya et al. (2011a, 2011b) show that results concerning quadratic
forms in meta-analysis that rely on the assumptions of the random effects model can be poor approximations
when applied to real datasets, and all the methods that follow are subject to these issues. Methods that take into
account the fact that the within-study variances are estimated have been proposed (Böhning et al., 2002; Malzahn
et al., 2000), but at present, our methodology does not attempt this. Extending our methods in order to
acknowledge the uncertainty in the estimates of the within-study variances is a very important avenue for further
research.

To produce our methodology, we will require frequent use of matrix algebra. The matrix formulation of the
random effects meta-regression model is

Y X∼N Xβ;Δþ τ2I
� ��� (1)

where Y is a column vector of length n containing the Yi, X is the n× p design matrix (sometimes referred to as the
model matrix) whose ith row is xi, Δ ¼ diag σ2i

� �
(i.e. Δ is the diagonal matrix containing the σ2i ) and I is the n× n

identity matrix. We will also define Σ=Δ+ τ2I.
DerSimonian and Kacker (2007) proposed using a generalised version of Cochran’s Q statistic (Cochran, 1954;

Biggerstaff and Jackson, 2008) in the special case of meta-analysis. This uses an arbitrary set of fixed positive
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constants ai instead of wi ¼ σ�2
i when computing Q. As explained by Jackson et al. (2014), an obvious and more

general version of DerSimonian and Kacker’s heterogeneity statistic for meta-regression is

Qa ¼
Xn
i¼1

ai Yi � Ŷ i

� �2

where the ai are arbitrary positive constants and Ŷ i ¼ xi β̂a, where β̂a ¼ XtAXð Þ�1XtAY and A=diag(ai). If ai=wi for
all i, then Qa reduces to the usual Q statistic for meta-regression (Knapp and Hartung, 2003), and if further there
are no covariates, then, because we use the approximation that the within-study variances are fixed and known,
Qa reduces to Cochran’s heterogeneity statistic for meta-analysis. We use the symbol Qa to emphasise that Q
depends on the weights ai. The same weights are used for calculating β̂a and Qa. Hence, the same intuition for
choosing weights applies throughout. Intuitively appealing weights include the reciprocal of the within-study
variances or the reciprocal of the standard errors.

In order to derive the properties of Qa, we write this in matrix form. We have that

Y� Ŷ ¼ I� X XtAXð Þ�1
XtA

� �
Y

so that Qa can be written as

Qa ¼ Y� Ŷ
� �t

A Y� Ŷ
� �

and after further manipulation, we can write

Qa ¼ YtBY

where B=A�AX(XtAX)� 1XtA. In the case of a meta-analysis (no covariates), the matrix B has the particularly
simple form B ¼ A� 1

aþ
aat , where a is the vector containing the ai and a+ =

P
i ai. Writing Y=Xβ +Z, because

BX= 0, we can write

Qa ¼ YtBY ¼ ZtBZ (2)

where Z ∼N(0,Σ). Equation (2) provides the basis of the approximate method for calculating confidence intervals
for τ2 that follows in Section 3. The exact method for calculating confidence intervals (Biggerstaff and Jackson,
2008; Jackson, 2013; Jackson et al., 2014) is based on writing Qa as a linear combination of χ2 random variables,
but here, we instead base our approximate method on the first two moments of Qa and use a variance-stabilising
transformation.

Such transformations have long been used in statistical work, Fisher’s z transformation of the correlation
coefficient (Fisher, 1915) probably being the earliest example. More recently, Lyles and Kupper (1999) used them
to obtain improved confidence intervals, and they are currently widely used in the life sciences.

3. Approximate confidence intervals for τ2

Kulinskaya et al. (2008), chapter 22, present variance stabilisation for the non-central χ2 distribution, but here, we
stabilise the variance of Qa. Searle (1971), Theorem 1 on page 55 and Corollary 1.3 on page 57 (with a slight clash
of notation to ours), state that when x ∼N(0,V) we have that E(xtAx) = tr(AV) and Var(xtAx) = 2tr(AVAV). The first
of these results for the expectation of the quadratic form is also true when x is non-normal (Searle, 1971, page 55).
Applying these results to Qa in (2), with the modelling assumptions made in (1), immediately results in

E Qað Þ ¼ tr BΣð Þ ¼ tr BΔð Þ þ tr Bð Þτ2 (3)

and

Var Qað Þ ¼ 2tr BΣBΣð Þ ¼ 2tr BΔBΔð Þ þ 4τ2tr BΔBð Þ þ 2τ4tr B2
� �

(4)

All matrices on the right-hand side of (3) and (4) are constants under the random effects model because the
weights ai and the within-study variances σ2i are constants under this model. Using weights that are derived from
estimates invalidate the theory, but we continue to use the standard approximation of taking the within-study
variances, so that the weights that follow are regarded as known. Caution is however required when using this
approximation when some of the studies are small.

Equation (3) results in a moment-based estimator for τ2 by replacing E(Qa) with the observed value of Qa, and τ2

with τ̂2 , and then solving for τ̂2 . Because the first of Searle’s results above is true without the assumption of

normality, (3) provides an estimate of τ2 without requiring normality assumptions. The estimate τ̂2 is usually
truncated when the solution of the estimating equation is negative. In the context of meta-analysis, upon using
ai=wi, this procedure results in the famous DerSimonian and Laird (1986) estimator.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2015, 6 372–382
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We will base our approximation on the ‘untruncated’ estimate of τ2 resulting from (3), τ̂2a ¼ Qa � tr BΔð Þð Þ=tr Bð Þ.
Then (3) and (4) imply that

E τ̂2a
� � ¼ τ2 (5)

and

Var τ̂2a
� � ¼ C0 þ C1τ2 þ C2τ4 (6)

where C0 = 2tr(BΔBΔ)/(tr(B)2), C1 = 4tr(BΔB)/(tr(B)2) and C2 = 2tr(B2)/(tr(B)2).

3.1. The variance stabilising transformation for the ‘untruncated’ estimate of τ2

From the moments in (5) and (6), the variance-stabilising transformation for τ̂2a is

f x;C0;C1;C2ð Þ ¼
Z x duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C0 þ C1uþ C2u2
p ¼ 1ffiffiffiffiffi

C2
p log 2C2x þ C1 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 C2x2 þ C1x þ C0ð Þ

pn o
(7)

The integral in (7) is a standard result when C2> 0 (Jeffrey and Zwillinger, 2014), which can be verified by
differentiating the integrand in the right-hand side of (7) and rearranging the resulting expression.

Although it is clear that g(x) =C0 + C1x+ C2x
2> 0 for x ≥ 0, because g(x) is the variance of Qa when τ2 = x, to make

convenient statistical use of (7), we also require that g(x)> 0 for � tr(BΔ)/tr(B) ≤ x< 0. This will be true if the

discriminant of the quadratic C2
1 � 4C0C2 ¼ �δ2 < 0. In the Appendix, we prove that this condition is satisfied.

With δ> 0, we can gain some insight into the nature of the transformation (7) by writing C0 +C1u+C2u
2 =C2

{(u� β)2 + α2}, where from equating coefficients β =�C1/2C2, α= δ1/2/2C2. Then, we change variable to u= β
+ α sinh(y), when du= α cosh(y)dy, where 2 sinh(y) = exp(x)� exp(�x) and 2 cosh(y) = exp(x) + exp(�x), and the
integral is

1ffiffiffiffiffi
C2

p arcsinh 2C2x þ C1ð Þ=δ1=2
n o

¼ 1ffiffiffiffiffi
C2

p log 2C2x þ C1ð Þ=δ1=2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2C2x þ C1ð Þ2=δ

q� 	

We regain (7) on adding the constant of integration log δð Þ= 2
ffiffiffiffiffi
C2

p� �
. This shows that the variance-stabilising

transformation is Johnson’s arcsinh transformation (Johnson, 1949), which is often used to normalise distributions.

3.2. Obtaining confidence intervals for τ2

From the linear approximation that underlies the variance stabilising transformation (7), we have the
approximation that

f τ̂2a;C0;C1;C2

� �
∼N f τ2;C0;C1; C2

� �
; 1

� �

so that an approximate 100(1� α)% confidence interval for τ2 is given by

f�1 f τ̂2a;C0;C1;C2

� �� Zα=2; C0;C1;C2

� �
; f�1 f τ̂2a; C0; C1;C2

� �þ Zα=2; C0; C1; C2

� �
 �
(8)

where Zα/2 is the 100(1� α/2)% percentile of a standard normal density and [a, b] is the interval from a to b. For
example, for a 95% confidence interval, we use Z0.975 = 1.96. It is also possible to use different probabilities in each
tail (with their sum equalling α) to define a confidence interval, but here, we follow the common convention of
using ‘equal tailed’ confidence intervals.

Although the function f is quite complicated, an advantage of the proposed interval is that its inverse function is
of a particularly simple form, which follows from the fact that it is an arcsinh. This inverse can be obtained by
exploiting that fact or directly from (7): We write y= g(x) and rearrange the resulting equation until we obtain
x= h(y) and g� 1(�) = h(�). Then, the necessary rearrangement begins by multiplying both sides of y= g(x) by

ffiffiffiffiffi
C2

p
,

exponentiating and then subtracting (2C2x+ C1) from both sides, and then squaring both sides. The x2 terms cancel,
and the resulting inverse function is

f�1 x;C0;C1;C2ð Þ ¼ exp
ffiffiffiffiffi
C2

p
x

� �� 2C1 þ C2
1 � 4C0C2

� �
exp � ffiffiffiffiffi

C2
p

x
� �

4C2

This inverse function can be used to provide the two confidence interval bounds in (8); because we have
established in the Appendix that the discriminant C2

1 � 4C0C2

� �
is non-positive, f�1(x; C0, C1,C2) is increasing in

x, and hence (8) provides a confidence interval where the lower bound is less than the upper bound. If both
the confidence bounds are negative (which is possible), then they would be truncated to zero in practice; this
means that the resulting confidence interval can include 0 and could be [0, 0], as in the exact method (Jackson,

2013; Jackson et al., 2014). This truncation is also conventionally performed for the estimate τ̂2a. The resulting point
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2015, 6 372–382
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estimate of τ2 is then guaranteed to lie in the confidence interval and is a natural point estimate to accompany the
confidence interval given by (8). Alternative conventions to setting the confidence interval to [0, 0] when both the
confidence bounds are negative are to report this interval as the empty set or instead conclude that the interval is
undefined. This statement would be accompanied with a conclusion like the data appear to be highly
homogenous or that the interval estimation fails (Jackson et al., 2014).

3.3. A comparison with other approaches

Because Qa, and hence τ̂2a, are typically positively skewed, a natural idea is to use a log transformation for one of
these statistics. The transformation f(�) involves a log function and so is not dissimilar to this idea. However, a

simple log transformation for τ̂2a is not possible when this estimate is negative. Similarly, Higgins and Thompson
(2002), in their Appendix A2, suggested obtaining intervals for their H2 statistic (the ratio of Cochran’s Q statistic
and its degrees of freedom v) using a standard error for log(H2) and a normal approximation on the log(H2) scale.
Because log(H2) = log(Q/v) = log(Q)� log(v), this idea is very similar to using a log transformation on log(Qa).
However, Higgins and Thompson provide two forms of the standard error of H2, where the one used in practice
depends on the value of H2 (Higgins and Thompson, 2002, page 1554). By basing our intervals on the variance-

stabilising transformation of τ̂2a, we can use our approximation regardless of its magnitude.
Biggerstaff and Tweedie (1997) and Biggerstaff and Jackson (2008) suggest alternative approximations to the

true density of Cochran’s Q statistic. Extending these for use with Qa so that approximate confidence intervals
could be produced in a similar way is a possible avenue for further work. In particular, the gamma approximation
to Cochran’s Q statistic (Biggerstaff and Tweedie, 1997; Biggerstaff and Jackson, 2008) is also based on the first two
moments of Q. However, the approach suggested here, which uses a normal approximation, is conceptually and
computationally much simpler than this and other alternative approximate methods. Furthermore, the approach
we propose here is motivated by variance-stabilising transformations and so is especially well grounded in well
established statistical practice.

4. Simulation study

In order to investigate the properties of our proposal, the simulation study performed by Jackson (2013) was
reproduced using the proposed method to provide approximate 95% confidence intervals. This simulation study
explores how well the approximation works for meta-analyses (no covariates) and simulates data under the
random effects model. Results using the exact method and 40 000 simulated datasets for each set of parameters
were previously given by Jackson (2013), where some of these results were presented in the Supporting
Information. Here, the simulation study was performed using 100 000 simulated datasets, in order to further
reduce the Monte Carlo error and to ensure that all methods were applied to the same simulated datasets. All
results presented here are within Monte Carlo error of those presented previously by Jackson (2013). The aim
of this simulation study was to investigate how well the proposed method performs in the simulation study
design presented previously.

The within-study variances were obtained as the (0, 1, 2, …, (n� 1)) × 100/(n� 1)% quantiles of the scaled and
truncated χ2 distribution originally used by Brockwell and Gordon (2001; 2007) for producing within-study variances.
Specifically, the within-study variances were taken as these quantiles from 0:25�χ21 , where this random variable is
further truncated to lie within the interval [0.009, 0.6]. Brockwell and Gordon (2001) state that this distribution of
within-study variances is consistent with the typical distribution of within-study variances for log-odds ratios in
practice. Hence, we also use this distribution here, but more realistic distributions for within-study variances, and
distributions that are consistent with other outcomes, could be explored in future simulation studies. Further
simulation studies could also allow for an association between the within-study variances and the estimated effects.
By using quantiles from Brockwell and Gordon’s distribution, rather than random observations, we have fixed within-
study variances for each value of n. This facilitates the interpretation of values of τ2 as corresponding to fixed values of
I2. Data were simulated using a true treatment effect of zero, but this choice is immaterial.

Five values of τ2 = 0, 0.029, 0.069, 0.206, 1.302 were investigated, because they correspond to I2 = 0, 0.30,
0.50, 0.75, 0.95 (Higgins et al., 2009) when n=5 and so cover a wide range of possibilities. Meta-analyses with
n=5, 10, 20, 40 studies were simulated, and both the standard weights ai ¼ 1=σ2i and the weights ai=1/σi
proposed by Jackson (2013) were used. The use of ai=1/σi allows large studies to have more weight than small
ones, but this weight is distributed more evenly than in the fixed-effect weights (ai ¼ 1=σ2i ), which is likely to be
more appropriate if heterogeneity is present. Results using the Q profile method (Knapp et al, 2006; Viechtbauer,
2007) were also obtained using the metafor package so that readers can compare the main results to those
obtained using this method.

The average length of 100 000 exact and approximate confidence intervals for each combination of n and τ2

were calculated, and the coverage probabilities of the approximate 95% confidence intervals were estimated
by the proportion of intervals that contain the true values. As explained by Jackson (2013), the exact method
provides the correct nominal coverage probability of 0.95 if τ2> 0. If τ2 = 0, however, the exact method is
conservative and produces a coverage probability of 0.975 (Jackson, 2013).
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2015, 6 372–382
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The main results of the simulation study are shown in Table 1. The approximate method is consistently even
more conservative than the exact method when τ2 = 0. This can be explained because, before truncation, the
normal approximation that underlies the proposed approximation can include negative values of τ2 within the
confidence interval. Hence, the true value of τ2 = 0 is included in the approximate confidence intervals more often.
This means that the approximate method can be conservative when τ2 is small. However, the approximate
method provides confidence intervals that are, on average, shorter than the exact method. Because the exact
confidence intervals are bounded from below at zero, the very long exact confidence intervals must be because
of the large upper bounds. This means that larger values of τ2 are less likely to be included in the approximate,
than the exact, confidence intervals. This has some unfortunate implications for the coverage probabilities of
confidence intervals obtained using the approximate method when τ2 is large and n is small. Together these
observations make it clear that the variance-stabilising transformation is not able to fully counteract the skewness
of Qa statistics across the entire range of τ2 in small samples, but it is perhaps unrealistic to expect it to be
completely successful in this respect. As noted by Jackson (2013), ai= 1/σi provides shorter confidence intervals
than ai ¼ 1=σ2i unless the extent of the between-study heterogeneity is small. Hence, the best choice of the
two possibilities explored for the ai depends on the magnitude of τ2.

The finding that the proposed approximate method can provide shorter confidence intervals but also that it
can provide larger confidence probabilities for small τ2 may appear curious. In order to investigate this further,
in Table 2 we show the average 95% confidence interval lower bounds and the estimated probabilities that the
confidence interval lower bounds are greater than the true value of τ2 (so that the entire confidence interval lies
to the right of the true value). For the exact and Q profile methods, the estimated probabilities that the confidence
interval lower bounds are greater than than the true value of τ2 were found to be within Monte Carlo error of
0.025, as theory dictates. The probability that the confidence intervals lie to the left of the true value of τ2 can
be obtained from the results in Tables 1 and 2 as 1� CA�MA. The average upper bounds can also be obtained
from these results as the average lower bounds plus the average confidence interval lengths. For τ2 = 0, we have
CA +MA = 1, because if there is no between-study heterogeneity, then confidence intervals either contain the true
value of τ2 = 0 or lie to the right of this value.

From Table 2, we can see that the approximate method consistently provides slightly, but noticeably, smaller
lower confidence interval bounds. This means that the shorter average confidence interval lengths from the
proposed approximate method is entirely due to it providing much smaller average values of the upper
confidence interval bounds. This provides more evidence that the variance-stabilising transformation is not able
to fully counteract the skewness of Qa statistics across the entire range of τ2. The larger than 95% coverage
probabilities of the approximate method when τ2 is small can be explained by the finding that the approximate
method provides, on average, slightly smaller confidence interval lower bounds than the exact method. The exact
method is conservative when τ2 = 0, which partly explains why the approximate method is also conservative when
the data are homogenous. The proposed approximate method generally departs substantially from providing
equal tailed confidence intervals and in small samples is, at times, almost one-tailed. This observation suggests
that the results using the proposed method are not necessarily directly comparable to those obtained using
the exact method; this is because we have not investigated the use of the exact method with unequal tailed
confidence intervals, and this may form the subject of future work.

One interpretation of the results in Tables 1 and 2 is that the approximation only gives similar results (especially
with regard to the average length of the confidence intervals) to the exact method when n is really quite large;
even for n= 40, we can see from Tables 1 and 2 that the results using approximate method do not match the exact
method very closely. A more positive interpretation however is that the estimated coverage probabilities of the
approximate 95% confidence intervals in Table 1 do not drop below around 90%. Hence, the actual coverage
probability of the approximate method is likely to be considered satisfactory in practice.

It should be recognised that the simulation study completely adheres to the random-effects model. The
simulation study therefore investigates the properties of the proposed method in an idealised setting where all
the assumptions are true. Further simulation studies are needed to evaluate all the various methods for calculating
confidence intervals for τ2 because the conclusions from our simulation study may not generalise to other
settings. Our aim here was to see how the proposed method performs in the setting previously investigated
(Jackson, 2013). In particular, further simulation studies could investigate alternative distributions of within-study
variances that are intended to correspond to other measures of treatment effect and further could explore the
properties of all the various proposals in situations where the random effects model only provides an
approximation. We also leave an investigation of how well the proposed method performs in practice for meta-
regression as an avenue for future work.
3
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5. Application to examples

In order to further examine the use of the approximate method, we applied both this and the exact method to
nine real datasets. Eight of these represent the type of dataset we encounter quite often, where there are quite
small numbers of studies. We also include one unusually very large dataset to examine a situation where we
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2015, 6 372–382
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Table 3. Results for the nine examples using the exact and proposed approximate methods.

Data set n I2 (%)

ai ¼ 1=σ2i ai=1/σi

τ̂2a Exact CI Approx CI τ̂2a Exact CI Approx CI

Cervix3 5 56 0.087 (0, 1.372) (0, 0.633) 0.104 (0, 1.464) (0, 0.663)
Aspirin 6 49 0.027 (0, 0.339) (0, 0.181) 0.012 (0, 0.235) (0, 0.119)
Glycerol 9 23 0.079 (0, 1.124) (0, 0.688) 0.011 (0, 1.012) (0, 0.663)
Diuretic 9 71 0.230 (0.047, 1.431) (0.014, 1.056) 0.329 (0.074, 1.678) (0.036, 1.179)
Nsclc4 11 75 0.132 (0.040, 0.559) (0.026, 0.419) 0.170 (0.055, 0.651) (0.039, 0.493)
Nsclc1 17 45 0.024 (0.000, 0.118) (0, 0.093) 0.035 (0, 0.147) (0, 0.118)
Cervix1 18 62 0.112 (0.032, 0.370) (0.021, 0.308) 0.144 (0.043, 0.438) (0.031, 0.368)
Sclerotherapy 19 56 0.302 (0.071, 1.023) (0.040, 0.854) 0.231 (0, 0.867) (0, 0.724)
Smoking 111 26 0.038 (0.006, 0.092) (0.004, 0.087) 0.043 (0, 0.110) (0, 0.105)

τ̂2a denotes the estimated between-study variance. Exact CI and Approx CI denote 95% confidence intervals for τ2

using the exact and approximate methods. A lower bound of 0 means that this was truncated to zero. I2 denotes
the conventional heterogeneity statistic. The estimated effects for the Cervix3, Nsclc4, Nsclc1 and Cervix1 datasets
are log hazard ratios. For the other five datasets, the estimated effects are log odds ratios.
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would expect our approximation to work well. Hence, if the proposed method cannot perform well here, then it is
unlikely to perform well anywhere. Now that we have real data, the random-effects model only provides an
approximation, and hence, the ‘exact’ confidence intervals are also in reality only approximate.

Four of the examples (Aspirin, Glycerol, Duiretic and Sclerotherapy) are somewhat ‘historic’ examples, where
we took the study specific estimates and within-study variances from Biggerstaff and Jackson (2008) and Jackson
(2013). We provide results for these examples so that they be compared with those given in previous papers using
the exact method. Four of the other examples relate to cancer (Cervix3, Nsclc4, Nsclc1 and Cervix1) and are from
Bowden et al. (2011). The last, very large, example with 111 studies (smoking) is from Baker and Jackson (2013).

The results in Table 3 reinforce the conclusion from Table 1 that the approximate 95% confidence interval is
only in good agreement with the exact confidence interval when the sample size is large enough. The
approximate 95% confidence intervals are much shorter than the exact ones for the four examples where
n< 10. The approximate confidence intervals are in better agreement with exact ones for the four examples
where 10 ≤ n ≤ 20 (but are still considerably shorter). As we would hope and anticipate, the approximate and exact
confidence intervals are in very good agreement for the final very large dataset. Furthermore, no approximate
confidence bound in this empirical investigation is greater than the corresponding exact confidence bound, which
also supports the conclusions from the simulation study. To summarise, both the simulation study and this
empirical investigation reassure us that the proposed method performs satisfactorily. However, meta-analyses
with fewer than 10 studies are the general rule in many application areas. The case for using the approximate
method proposed here, instead of the previously developed exact method, is weakest in such situations.

The R code that produces the results using the proposed method in Table 3 is available in the Supporting
Information. The R code in the Supporting Information also contains the data used in analysis for all nine examples
and forest plots that illustrate these data.
6. Conclusions

The proposed approximate approach for constructing confidence intervals for the between-study variance is
conceptually and computationally simple. The simulation study suggests that the proposed approximate
confidence interval does not deviate far from the intervals’ nominal level of 95% over the wide range of
possibilities explored. However, the approximate method appears to result in shorter confidence intervals than
the corresponding exact method, so it should not be assumed that the approximate interval necessarily agrees
very well with the exact method unless the number of studies is really quite large. Narrower confidence intervals
that are able to retain the nominal coverage probability, and the same allocation of non-coverage between the
two tails, are preferable to longer confidence intervals; our approximate method results in narrower confidence
intervals but does not quite retain the nominal coverage probability. The exact method is quite computationally
intensive in very large sample sizes, and so the proposed method is especially advantageous in meta-analyses
where there are very many studies.

The proposed approach means that interval estimation for the between-study variance can now be as
straightforward as the point estimation. This has hitherto not been the case, so we feel that our proposed
approach will be attractive to many meta-analysts. The methodology provides an approach that is accessible to
applied researchers who may not have access to Farebrother’s algorithm or iterative methods. Furthermore, the

bounds of the proposed approximate confidence interval, like the point estimate, are functions of τ̂2a and hence
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2015, 6 372–382
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are also functions of Qa. The approximate approach therefore makes the calculation of confidence intervals for the
between-study variance much more transparent than other methods.

We presented our methods in the context of the random-effects meta-regression model. Meta-regression
provides a framework for some types of network meta-analysis (White et al., 2012), and so our method is also
potentially useful in the network meta-analysis setting.

Although the method for calculating confidence intervals developed here is only approximate, the random
effects model only provides an approximation to real data such as that in Section 5. The value of an exact method
is diminished when the approximations made in the modelling process are quite crude. Hence, there will be many
situations where the proposed approximation is likely to be considered to be adequate. The method developed
here in no way diminishes the exact method, but we feel that, at the very least, the proposed approximate method
adds another useful technique to the ever expanding meta-analysis armoury that we now have at our disposal.
Appendix

We will show that the surds in (7) present no difficulties. For this we require that g(x) =C0 + C1x+ C2x
2 ≥ 0 for

x ≥� tr(BΔ)/tr(B), but it is easier to prove the stronger condition that g(x) is nonnegative for all x. The discriminant
of the quadratic equation g(x) is C2

1 � 4C0C2, and if this discriminant is non-positive, then g(x) has either no real
roots or a single root of zero. Furthermore, the leading coefficient, C2, of this quadratic is positive because tr
(B2) ≥ 0. This is because B is positive semi-definite and hence so is B2 (a consequence of Zhang, theorem 7.5.2),
and so tr(B2) ≥ 0. Hence, if the discriminantC2

1 � 4C0C2 is non-positive, then g(x) ≥ 0 for all x. This condition requires

tr BΔBð Þð Þ2≤tr BΔBΔð Þtr B2
� �

(9)

The result on page 213 of Zhang can be used to establish (9). This result states that if C and D are positive semi-
definite matrices of the same size, then tr(C1/2D1/2) ≤ (tr(C))1/2(tr(D))1/2, where C1/2 andD1/2 are the square roots of C
and D (Zhang, 2010). This is a special case of the Cauchy–Schwarz inequality. Using this result with C= (B1/2ΔB1/2)2

and D=B2 results in (9), so that g(x) ≥ 0.
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